

SANYO Semiconductors DATA SHEET

LA6504H — Monolithic Linear IC DVD System motor Drives

Overview

The LA6504H is a DVD system motor drives.

Functions

• PWM H bridge driver (3CH) + power operation amplifier (2CH)

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Output block supply voltage	V _M 1, 2 max		16.0	V
Output current 1	I _O max1	FOCUS, TRACKING, LOADING	1.0	А
Output current 2	I _O max2	FOCUS, TRACKING : 1msec	1.8	А
Output current 3	IO max3	SLED	0.7	А
Allowable power dissipation 1	Pd max1	Independent IC	0.8	W
Allowable power dissipation 2	Pd max2	Mounted on a board.	1.8	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

* Specified substrate : 114.3mm×76.1mm×1.6mm, glass epoxy board.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Output block supply voltage	V _M 1, 2		8 to 14	V

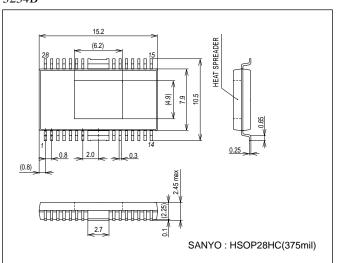
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

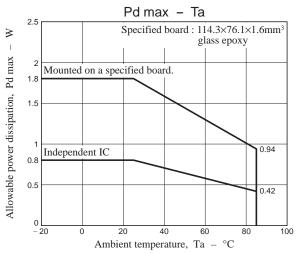
LA6504H

Parameter	Symbol	Conditions	Ratings			Unit
Falamelei		Conditions	min	typ	max	Unit
Supply current 1		MUTE pin H at no load		20	35	mA
Supply current 2 I _{CC} 2		MUTE pin L *1 at no load		45	60	mA
Supply current 3	ICC3	MUTE pin L *2 at no load		70	110	mA
Standby current	ICC ⁴	MUTE pin L *3 at no load		0.2	0.4	mA
Overheat protection circuit						
Heat protection circuit operation temperature	TSD	Design target value *5	150	180		°C
Temperature hysteresis width	ΔTSD	Design target value *5		40		°C
SLED, loading input pin						
H level input voltage range	VIH		2.5		5.0	V
L level input voltage range	VIL		0		0.6	V
Input current	IIN			0.1	0.15	mA
MUTE pin			•		·	
H level input voltage range	V _{MU} H	MUTE OFF	2.5		5.0	V
L level input voltage range	VMUL	MUTE ON	0		0.6	V
Input current	IINM			0.1	0.15	m/
Output block	•		•		•	
Saturation voltage 1	VSAT1	FOCUS, TRACKING : I _O = 0.5A		1.5	2.3	V
Saturation voltage 2	VSAT2	SLED : I _O = 0.5A		2.2	3.0	V
Saturation voltage 3	VSAT3	LOADING : I _O = 0.5A		1.5	2.3	V
BTL block		•	•		·	
Output offset voltage	VOFF	Voltage difference between outputs of each channel RL = 12Ω *4	-50		50	m∖
Maximum output amplitude	V _O A	$R_L = 12\Omega$	7.9	10		V
Voltage gain	VGAIN	Gain between input and output $R_L = 12\Omega *4$	16	18	20	dB
Input OPAMP block						
Common-phase input range	VINOP		0.5		4.0	V
Input offset voltage	V _{OFF} OP	*4	-6.0		6.0	m∖
Input bias current	IBIASOP				300	nA
Output high level voltage	V _O HOP		3.7	4.0		V
Output low level voltage	V _O LOP		1	0.2	0.5	V
TD OFST output offset voltage	VOFFTD	*4	-40		40	m∖
TD OFST pin maximum voltage	V _{TD} MAX		2.7	3.0	3.3	V

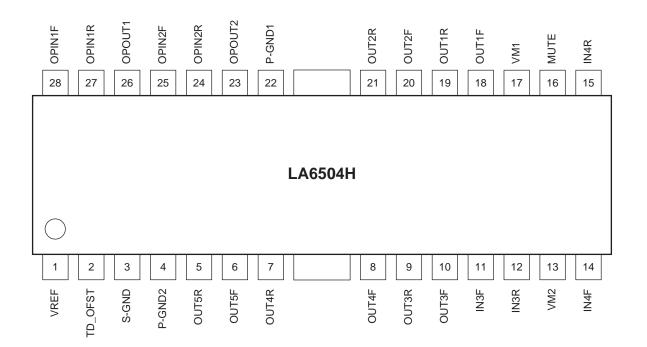
*1 : During LD motor rotation. IN4F = Hi, IN4R = Low.

*2 : At braking of LD motor. IN4F = Hi, IN4R = Hi.

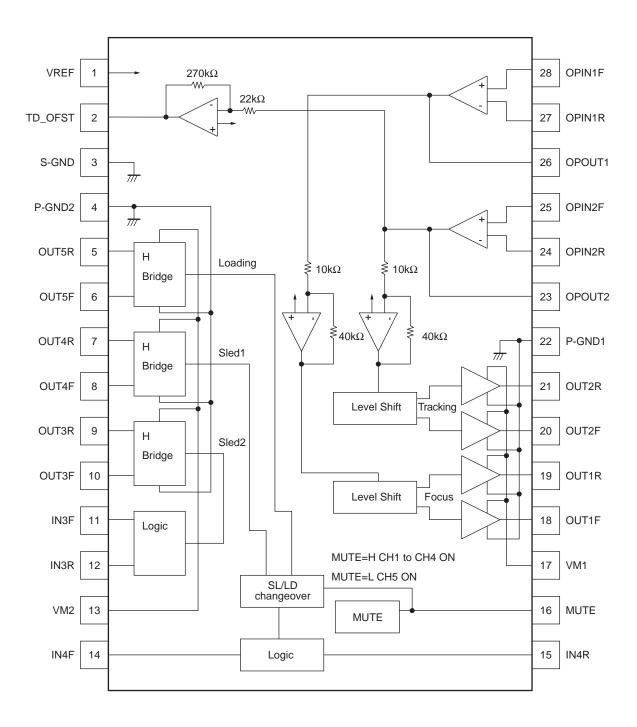

*3 : At standby. IN4F = Low, IN4R = Low.


*4 : Pre-OPAMP is used as buffer.

*5 : Design target value. It doesn't measurement.


Package Dimensions

unit : mm (typ) 3234B



Pin Assignment

Block Diagram

Pin Functions

Pin No.	Pin Name	Description (Function)
1	VREF	Reference voltage pin
2	TD_OFST	TD_OFST pin
3	S-GND	Signal system GND
4	P-GND2	Power system GND for CH3, 4, and 5
5	OUT5R	Loading output (-)
6	OUT5F	Loading output (+)
7	OUT4R	CH4 output pin (-)
8	OUT4F	CH4 output pin (+)
9	OUT3R	CH3 output pin (-)
10	OUT3F	CH3 output pin (+)
11	IN3F	CH3 input pin (+)
12	IN3R	CH3 input pin (-)
13	VM2	Power system power supply for CH3, 4, and 5
14	IN4F	CH4 input pin (+)
15	IN4R	CH4 input pin (-)
16	MUTE	MUTE pin
17	VM1	Power supply for the power and other systems for CH1 and 2
18	OUT1F	CH1 BTL AMP output pin (+)
19	OUT1R	CH1 BTL AMP output pin (-)
20	OUT2F	CH2 BTL AMP output pin (+)
21	OUT2R	CH2 BTL AMP output pin (-)
22	P-GND1	Power system GND for CH1 and 2
23	OPOUT2	OP-AMP output pin for CH2
24	OPIN2R	OP-AMP input pin (-) for CH2
25	OPIN2F	O-AMP input pin (+) for CH2
26	OPOUT1	OP-AMP output pin for CH1
27	OPIN1R	OP-AMP input pin (-) for CH1
28	OPIN1F	OP-AMP input pin (+) for CH1

* The center frame (FR) functions as the power system GND. Set it to the minimum potential together with S-GND.

Pin dese	cription		
Pin No.	Pin name	Function	Equivalent circuit
27 28 24 25	OPIN1R OPIN1F OPIN2R OPIN2F	Input pin (CH1 to 2)	OPIN*R OPIN*F OPIN*F
11 12 14 15	IN3F IM3R IN4F IN4R	CH3(PWM) input CH4, 5(PWM) input	IN*R/F 300Ω 50kΩ 100kΩ 50kΩ
26 23 18 19 20 21	OPOUT1 OPOUT2 OUT1F OUT1R OUT2F OUT2R	CH1 and 2 outputs	$\begin{array}{c} OPOUT^{*} \\ 5k\Omega \lessapprox \\ 5k\Omega \swarrow \\ 6 \\ 40k\Omega \Biggr \\ 5k\Omega \\ 5k\Omega \\ 40k\Omega \\ 5 \\ 5k\Omega \\ 40k\Omega \\ 5 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 6 \\ 5 \\ 6 \\ 6$
10 9 8 7	OUT3F OUT3R OUT4F OUT4R	CH3(PWM) output CH4(PWM) output	2kΩ 2kΩ

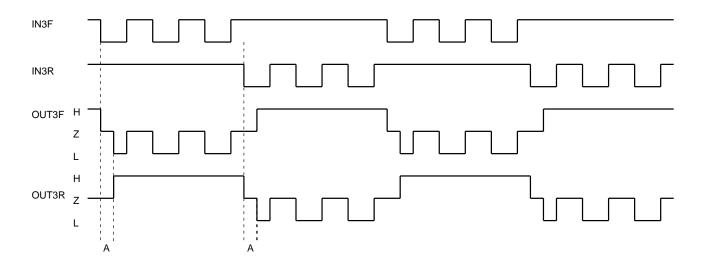
Continued on next page

	m preceding pag		
Pin No.	Pin name	Function	Equivalent circuit
6 5	OUT5F OUT5R	CH5(PWM) output	2kΩ 2kΩ
16	MUTE	MUTE pin	MUTE $40k\Omega \ge$ $20k\Omega \ge$ $10k\Omega \ge$
1	VREF	VREF pin	
2	TD_OFST	TD_OFST pin	

Actuator truth table

Loading block

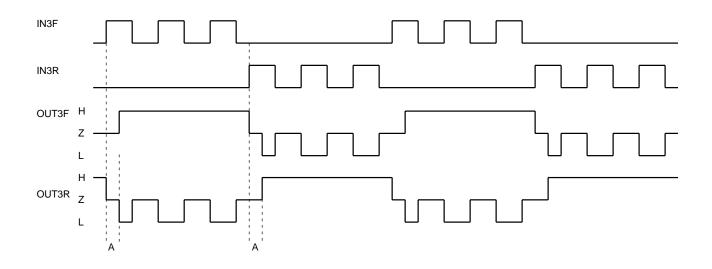
0				
MUTE	IN4F	IN4R	OUT5F	OUT5R
L	L	L	Z	Z
L	Н	L	Н	L
L	L	Н	L	Н
L	н	н	L	L
Н	×	×	Z	Z


SLED block

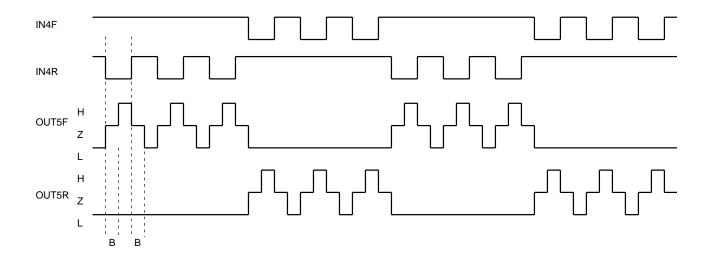
MUTE	IN3, 4F	IN3, 4R	OUT3, 4F	OUT3, 4R
н	L	L	н	н
н	Н	L	Н	L
н	L	н	L	н
н	н	н	н	н
L	×	×	Z	Z

Z : open

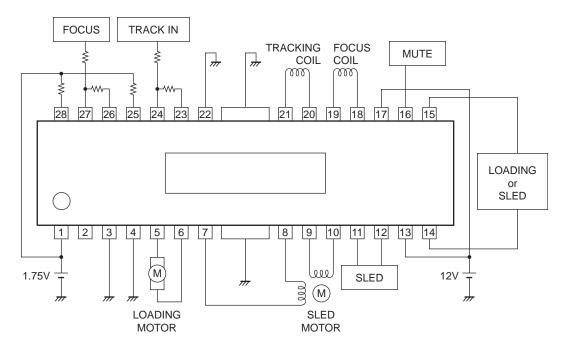
Loading input is shared also by the SLED input pin (IN4F/IN4R pin).


SLED timing chart

SLED performs PWM on the lower side. In this case, the upper side of another phase is always ON. Only initial changeover contains the OFF section A (about $1\mu s$) as a measure for through operation. OUT4F and R do the same operation.


LA6504H

SLED timing chart


SLED performs PWM on the lower side. In this case, the upper side of another phase is always ON. Only initial changeover contains the OFF section A (about $1\mu s$) as a measure for through operation. OUT4F and R do the same operation.

SLED timing chart

LOADING contains the OFF section B (about $1\mu s$) on both edges for changeover of the input. With the input at HH, the short braking occurs on the lower side.

Sample Application Circuit

Cautions for use

1. GND

The center frame (FR) functions as a power system GND. Set it to the minimum potential together with S-GND. 2. Bypass capacitor

For power supply, connect the bypass capacitor immediately near the pin of this IC.

3. Lightening, ground fault, and short-circuit between outputs

Avoid short-circuit between the output pin and power supply (lightening), short-circuit between the output pin and GND (ground fault), and short-circuit between output pins (load short-circuit). When mounting IC to the substrate, pay attention to the direction of IC. Mounting in the wrong direction may cause damage to IC, and fuming in certain cases.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2007. Specifications and information herein are subject to change without notice.