INTEGRATED CIRCUIT

TA31001P, TA31002P, TA31002AP TA31001F, TA31002F, TA31002AF

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TONE RINGER (For telephone set)

- . Current consumption is small. (at no-load)
- . Package is compact. (DIP-8 pin)
- . Oscillation frequency is variable.
- Built-in threshold circuits prevent false triggering due to power noise as well as "chirps" due to rotary dial.
- . Few external components.

DIFFERENCE BETWEEN TA31002P/F AND TA31002AP/AF

NAME OF PRODUCT	INITIATION SUPPLY VOLTAGE	SUSTAINING SUPPLY VOLTAGE			
TA31002P/F	19V (Typ.)	12V (Typ.)			
TA31002AP/AF	16V (Typ.)	9V (Typ.)			

MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
Power Supply Volt	age	V _{CC}	30	V	
Power Dissipation	P/AP Type	PD	800	mW	
	F/AF Type	ן דט	350		
Operating Tempera	ture	Topr	-40~85	°C	
Storage Temperatu	re	Tstg	-55~150	°C	

Weight:

DIP16-P-300A: 1.0g(Typ.) SSOP16-P-225: 0.2g(Typ.)

BLOCK DIAGRAM

Note: R_1 , R_2 , C_1 and C_2 are parts externally mounted.

INTEGRATED CIRCUIT

TA31001P, TA31002P, TA31002AP TA31001F, TA31002F, TA31002AF

PIN CONNECTION

ELECTRICAL CHARACTERISTICS (Ta=25°C) TA31001P/F, TA31002P/F

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage		Vopr	_		_	_	29	V
Initiation Supply Voltage		V _{si}	-	(Note 1)	17	19	21	V
Sustaining Supply Voltage		V _{sus}	_	(Note 2)	10.5	12	-	V
Initiation Current Consumption		I _{si}	-	No-Load	1.4	3.3	4.2	mA
Sustaining Current Consumption		I _{sus}	_		0.7	1.4	2.5	mA
Oscillation Frequency (Note 3)		$f_{ m L}$	-	$C_1=0.47\mu F$, $R_1=165k\Omega$	9	10	11	
		fH1 _	C2=6800pF, R2=191kΩ	461	512	563	Hz	
		f _{H2}	02 0000p1, N _Z 1	02 0000p1, N2 171N=	576	640	703	
Output Voltage	"H" Level	v _{OH}	-	V _{CC} =24V, I _{OH} =-10mA PIN 7=GND	20.0	21.5	22.5	V
	"L" Level	VOL	-	V _{CC} =24V, I _{OL} =10mA PIN 7=7V	0.7	1.0	2.0	
TRIGGER IN Terminal Operating Voltage (TA31001P/F)		V _{Trig}	-	V _{CC} =15V I(PIN)=100μA	7.8	10	11.5	V

ELECTRICAL CHARACTERISTICS (Ta=25°C) TA31002AP/AF

"L" Level

TEST CHARACTERISTIC SYMBOL CIR-TEST CONDITION MIN. TYP. UNIT MAX. CUIT Operating Voltage Vopr 29 V V_{si} Initiation Supply Voltage (Note 1) 14 16 18 V v_{sus} Sustaining Supply Voltage (Note 2) 8.4 9.0 V Initiation Current 1.1 2.7 3.6 I_{si} mΑ Consumption No-Load Sustaining Current 0.3 0.8 1.8 Isus mΑ Consumption f_{L} $C_1=0.47\mu F$, $R_1=165k\Omega$ 9 10 11 Oscillation Frequency f_{H1} 461 512 563 Ηz $C_2=6800pF$, $R_2=191k\Omega$ (Note 3) 576 f_{H2} 640 703 $V_{CC}=24V$, $I_{OH}=-10mA$ "H" Level 20.0 21.5 22.5 V_{OH} PIN 7=GND Output Voltage V

Note 1. Initiation Supply Voltage (Vsi) is a supply voltage required to start oscillation of the tone ringer.

VOT.

- 2. Sustaining Supply Voltage (V_{SUS}) is a supply voltage required to maintain oscillation of the tone ringer.
- 3. Oscillation frequency is determined by the following equations 1,2, and 3. (1) $f_L=1/1.234 \cdot R_1 \cdot C_1$ (Hz), (2) $f_{H1}=1/1.515 \cdot R_2 \cdot C_2$ (Hz), (3) $f_{H2}=1.24 f_{H1}$ (Hz)

 $V_{CC}=24V$, $I_{OL}=10mA$

PIN 7=5V

0.7

1.0

2.0

DataSheet4U.com

INTEGRATED CIRCUIT TECHNICAL DATA

TA31001P, TA31002P, TA31002AP TA31001F, TA31002F, TA31002AF

METHOD OF USING PIN 2

TA31001P/F METHOD OF USING TRIGGER IN

Usually PIN 2 is used at an open state, but in the TA31001P/F, the TRIGGER IN terminal can prohibit oscillation and also can change the initiation supply voltage (Vsi).

When the TA31001P/F is oscillating ($V_{\text{SUS}} \!\!< V_{\text{S}}$), if PIN 2 is connected to GND as shown in Fig. la, the TA31001P/F can stop oscillating. Further, the oscillation of the TA31001P/F can be stopped by connecting PIN 2 to voltage $V_{
m I}$ through the resistor RT as shown in Fig. 1b.

In case of $V_{sus} < V_{s} \le V_{si}$, the oscillation of the TA31001P/F can be started by forcing a current $I_E(4\mu A < I_E < lmA)$ into PIN 2.

If PIN 2 is connected to Vs as shown in Fig. 2a, oscillation can be started under a lower supply voltage than the initiation supply voltage at the time when PIN 2 is used at an open state.

Further, the initiation supply voltage (Vsi) can be changed by using a zener diode as shown in Fig. 2b.

Vsi is determined by the following formulas:

$$V_{si}=V_{Trig} + V_Z + 4R_E$$

 $R_E = (M\Omega)$

Fig. la

Fig. 2a

Fig. 2b

www.DataSheet4U.com

of RSI.

INTEGRATED CIRCUIT

In the TA31002P/F, TA31002AP/AF METHOD OF USING RSL In the TA31002P/F, TA31002AP/AF the initiation current consumption (I_{si}) can be changed by using the RSL terminal.

The resistor RSL is connected to GND from PIN 2 as shown in Fig. 3.

Further, the initiation current consumption (I_{si}) can be changed by changing the value

Fig. 4 and Fig. 5 show the graph of Vs-Is characteristic at the time when RsL has been changed to three values. The Vs-Is characteristic in TA31002P/F at the time when RsL=6.8k Ω coincides with that at the time when PIN 2 of the TA31001P/F has been used at an open state.

TA31002P/F SUPPLY VOLTAGE-CURRENT CONSUMPTION

Fig. 4

TA31002AP/AF SUPPLY VOLTAGE-CURRENT CONSUMPTION

Fig. 5

INTEGRATED CIRCUIT TECHNICAL DATA

TA31001P, TA31002P, TA31002AP TA31001F, TA31002F, TA31002AF

APPLICATION CIRCUIT OF TONE RINGER

*Use for TA31002P/F,TA31002AP/AF

f_L=1/1.234R₁·C₁

f_{H1}=1/1.515R₂ • C₂

 $f_{H2}=1.24f_{H1}$

Example $R_1=165k\Omega$ $R_2=191k\Omega$

 $C_1 = 0.47 \mu F$ $C_2 = 0.0068 \mu F$

fL ≑10Hz

 $f_{H1} = 500Hz$

 $f_{H2} = 630 Hz$

Example of Output Circuit

aSh

INTEGRATED CIRCUIT TECHNICAL DATA

TA31001P, TA31002P, TA31002AP TA31001F, TA31002F, TA31002AF

OUTLINE DRAWING DIP8-P-300A

Unit in mm

Weight: 0.5g (Typ.)

9097247 0019618 348 📟

TA31001P-7 1991-5-29

товнівачебарбежней

DataSheet4U.com