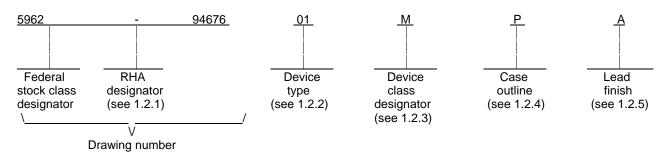
									KEVISI	ONS										
LTR					[DESCR		N					DA	ATE (YI	R-MO-I	DA)		APPF	ROVED	
А	Make	e chang	je to TA	ABLE I	in acco	rdance	with N	.O.R. 5	962-R	012-95.					0-28			M.A	. Frye	
В	Add o chan	device ges to	type 02 1.2, 1.2	2. Chan 2.2, 1.4,	ge boile TABLE	erplate E I, Fig	to radi ure 1, a	ation hand Fig	ardene ure 4.	d forma	at. Make	e	96-01-31				M.A. Frye			
С	Change ratings values under 1.3 and added 1.5. Editorial changes throughout. -lgt						hout.		99-0)7-09			Ray Monnin							
D	Add a	appenc	lix A to	specify	die red	quirem	entsI	rrp						00-0)7-17		Ray Monnin			
REV																				
REV SHEET																				
	D	D	D	D	D	D	D	D	D											
SHEET	D 15	D 16	D 17	D 18	D 19	D 20	D 21	D 22	D 23											
SHEET REV SHEET REV STATUS				18 REV	19			22 D	23 D		D		D	D		D	D	D	D	D
SHEET REV SHEET REV STATUS OF SHEETS				18	19		21	22	23	D 4	D 5	D 6	D 7	D 8	D 9	D 10	D 11	D 12	D 13	D 14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	15	16		18 REV SHE PREI Greg	19 ET PARED A. Pitz	20 BY	21 D	22 D	23 D		5	6	7 SE SI	8 UPPL	9 Y CE	10 NTEF		12 -UMB	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	15 NDAF	16 RD CUIT		18 REV SHE Greg	19 ET PARED	20 9 BY BY	21 D	22 D	23 D		5	6	7 SE SI	8	9 Y CE	10 NTEF		12 -UMB	13	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN MICRO DRA THIS DRAWIN FOR US DEPAF	15 NDAF OCIRC WIN IG IS A SE BY RTMEN	16 RD CUIT G VAILAI ALL ITS	17 BLE	18 REV SHE Greg CHE Rajes	19 ET PARED A. Pitz CKED I	20 BY ithadia	21 D	22 D	23 D	4 MIC AMI	5	6 EFEN	7 SE SI COL	8 UPPL UMBI	9 Y CE US, O	NTEF HIO	11 R COL 43210	UMB	13 US	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN MICRO DRA THIS DRAWIN FOR US	15 NDAF CIRC WIN IG IS A SE BY RTMEN ICIES (16 RD CUIT G VAILAI ALL ITS DF THE	3LE	18 REV SHE Greg CHE Rajes	19 ET PARED A. Pitz CKED I sh R. P ROVEI ael A. F	20 BY ithadia D BY Trye	21 D	22 D 2	23 D	4 MIC AMI	5 DI ROC PLIFIE	6 EFEN	7 SE SI COL	8 UPPL UMBI	9 Y CE US, O	NTEF HIO	11 R COL 43210	UMB	13 US	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STAN MICRO DRA THIS DRAWIN FOR US DEPAF AND AGEN DEPARTMEN	15 NDAF CIRC WIN IG IS A SE BY RTMEN ICIES (16 RD CUIT G VAILAI ALL ITS DF THE DEFEN	3LE	18 REV SHE Greg CHE Rajes APP Michs DRA 94-08	19 ET PARED A. Pitz CKED I sh R. P ROVEI ael A. F	20 BY ithadia D BY Trye	21 D	22 D 2	23 D	4 MIC AMI SILI	5 DI ROC PLIFIE	EFEN IRCU ER, U	7 SE SI COL	8 UPPL UMBI NEAR HIGH	9 Y CE US, O	10 NTEF HIO RREN EED, I	11 8 COL 43210 IT FE MONO	UMB	13 SUS ACK IIC	


DSCC FORM 2233 APR 97

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1. SCOPE

1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

1.2 PIN. The PIN is as shown in the following example:

1.2.1 <u>RHA designator</u>. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.

1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

GDIP1-T8 or CDIP2-T8

Device type	<u>Generic number</u>	Circuit function
01	HFA1100	Ultra high speed current feedback amplifier
02	HS1100RH	Radiation hardened, ultra high speed current feedback amplifier

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class		Device requirements documentation				
Μ		N class level B mi	o the requirements for MIL-STD-883 compliant, crocircuits in accordance with MIL-PRF-38535,			
Q or V	Certifica	ation and qualifica	tion to MIL-PRF-38535			
Case outline(s).	The case outline(s) are as de	signated in MIL-S	TD-1835 and as follows:			
Outline letter	Descriptive designator	Terminals	Package style			

1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

8

Dual-in-line

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL D	SHEET 2

1.2.4

Р

Voltage at either input terminal.....+Vs and -Vs Output current (50% duty cycle)±55 mA Storage temperature range (T_{STG}).....--65°C to +150°C Lead temperature (soldering, 10 seconds).....+300°C 1.4 Recommended operating conditions. Operating supply voltage $(\pm V_S)$ $\pm 5 \text{ V}$ Load resistance (R_L)..... \geq 50 Ω 1.5 Radiation features. Maximum total dose available (dose rate = 50-300 rads (Si)/s) 300 Krads (Si) Latch-up None 4/ 2. APPLICABLE DOCUMENTS 2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation. **SPECIFICATION** DEPARTMENT OF DEFENSE MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. **STANDARDS** DEPARTMENT OF DEFENSE

MIL-STD-883	-	Test Method Standard Microcircuits.
MIL-STD-973	-	Configuration Management.
MIL-STD-1835	-	Interface Standard For Microcircuit Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

1.3 Absolute maximum ratings. 1/

MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's). MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

- 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
- 2/ If device power exceeds package dissipation capability, provide heat sinking or derate linearly. The derating is based on θ_{JA} at the following rate of 8.7 mW/°C.
- 3/ Value is to be specified when testing is completed.
- <u>4</u>/ Not required by this technology.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	3

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.

3.1.1 Microcircuit die. For the requirements for microcircuit die, see appendix A to this document.

3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.

3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein.

3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.

3.2.3 Test circuits and waveforms. The test circuits and waveforms shall be as specified on figure 2.

3.2.4 Irradiation circuit. The irradiation circuit shall be as specified on figure 3.

3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.

3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.

3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.

3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.

3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.

3.8 <u>Notification of change for device class M</u>. For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-973.

3.9 <u>Verification and review for device class M</u>. For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

3.10 <u>Microcircuit group assignment for device class M</u>. Device class M devices covered by this drawing shall be in microcircuit group number 49 (see MIL-PRF-38535, appendix A).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	4

Test	Symbol		Conditions C <u><</u> T _A <u><</u> +		Device	Group A	Li	mits	Unit
		unless	$V_{S} = \pm 5 V_{S}$ otherwise		type	subgroups	Min	Max	
Input offset voltage	VIO	$V_{CM} = 0 V$			All	1	-6	6	mV
		_				2, 3	-10	10	
			M, D, P,	L, R, F <u>2</u> /	02	1	-10	10	
Common mode rejection	CMRR	$\Delta V_{CM} = \pm 2 V$ +V = 3 V, -V			All	1	40		dB
ratio		+V = 3 V, -V +V = 7 V, -V				2, 3	38		
			M, D, P,	L, R, F <u>2</u> /	02 1 38				
Power supply rejection	PSRRP	$\Delta V_{S} = \pm 1.25$			All	1	45		dB
ratio		+V = 6.25 V +V = 3.75 V				2, 3	42		
			M, D, P,	L, R, F <u>2</u> /	02	1	42		
	PSRRN	$\Delta V_{S} = \pm 1.25$			All	1	45		dB
		+V = 5 V, -V +V = 5 V, -V				2, 3	42		
		[M, D, P,	L, R, F <u>2</u> /	02	1	42		
Non-inverting input	I _{BSP}	V _{CM} = 0 V			All	1	-40	40	μA
(+IN) current		2, 3	2, 3	-65	65				
			M, D, P,	L, R, F <u>2</u> /	02	1	-65	65	
+IN current common	CMSIBP	$\Delta V_{CM} = \pm 2 V$			All	1		40	μA/V
mode sensitivity			/ = 3 V, -V = -7 V / = 7 V, -V = -3 V			2, 3		50)
			M, D, P,	L, R, F <u>2</u> /	02	1		50	
+IN resistance	+R _{IN}	<u>3</u> /			All	1	25		kΩ
						2, 3	20		
Inverting input (-IN)	I _{BSN}	$V_{CM} = 0 V$			All	1	-50	50	μA
current		_				2, 3	-75	75	
			M, D, P,	L, R, F <u>2</u> /	02	1	-75	75	
-IN current common	CMSIBN	$\Delta V_{CM} = \pm 2 V$			All	1		7	μA/V
mode sensitivity		+V = 3 V, -V +V = 7 V, -V				2, 3		10	
		Í	M, D, P,	L, R, F <u>2</u> /	02	1		10	
e footnotes at end of table	Э.								
STAI MICROCIRC	NDARD	WING		SIZE A				596	2-9467
DEFENSE SUPPLY COLUMBUS, (REV	ISION LEVEL D		SHEET	5

	TABLE	I. Electrical performan	nce characte	ristics - (Continued.			
Test	Symbol	Conditions -55°C \leq T _A \leq +1 V _S = \pm 5 V	25°C	Device Type	Group A subgroups	Lir	nits	Unit
		unless otherwise s		. , P •	5 <u>9</u> . 5 p 5	Min	Max	
-IN current power	PPSSIBN	$\Delta V_{\rm S} = \pm 1.25 \text{ V}$,	All	1		15	μA/V
supply sensitivity		+V = 6.25 V, -V = -5 V +V = 3.75 V, -V = -5 V	/		2, 3		27	
			_, R, F <u>2</u> /	02	1		27	
	NPSSIBN	$\Delta V_{S} = \pm 1.25 V$ +V = 5 V, -V = -6.25 V	/	All	1		15	
		+V = 5 V, -V = -3.75 V			2, 3		27	
			_, R, F <u>2</u> /	02	1		27	
Output voltage swing	V _{OP100}			All	1	3		V
					2, 3	2.5		
		$V_{IN} = -3 V, A_V = -1$ $R_L = 100 \Omega$ M, D, P	[,] L, R, F <u>2</u> /	02	1	2.5		
	V _{ON100}	V_{IN} = +3.5 V, A _V = -1 R _L = 100 Ω		All	1		-3	V
		$V_{IN} = +3 V, A_V = -1, R$	_L = 100 Ω		2, 3		-2.5	
		V _{IN} = +3 V, A _V = -1, R M, D, P	∟ = 100 Ω , L, R, F <u>2</u> /	02	1		-2.5	
	V _{OP50}	$V_{IN} = -3 V, A_V = -1, R_L$	_ = 50 Ω	All	1, 2	2.5		V
		$\begin{split} V_{\text{IN}} &= -2.25 \text{ V}, \text{ A}_{\text{V}} = -1, \text{ R}_{\text{L}} = 50 \ \Omega \\ V_{\text{IN}} &= -2.25 \text{ V}, \text{ AV} = -1 \\ \text{R}_{\text{L}} &= 50 \ \Omega \end{split}$			3	1.5		
				02	1	1.5		
			, L, R, F <u>2</u> /					
	V _{ON50}	$V_{IN} = +3 V, A_V = -1$ $R_L = 50 \Omega$ $V_{IN} = +2.25 V, A_V = -1$ $R_L = 50 \Omega$ $V_{IN} = +2.25 V, AV = -1$ $R_L = 50 \Omega$ M, D, P, L, R, F <u>2</u> /		All	1, 2		-2.5	V
					3		-1.5	
				02	1		-1.5	
Output current	+l _{OUT}	<u>4</u> /		All	1, 2	50		mA
					3	30]
	-l _{out}	4/		All	1, 2		-50	
					3		-30	
See footnotes at end of tab	ble.							
ST/ MICROCIR	ANDARD CUIT DRA	WING	SIZE A				59	62-94676
DEFENSE SUPPL COLUMBUS				R	EVISION LEVEI D	L	SHEE	т 6

Test	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		Device	Group A	Lir	nits	Unit
		$V_S = \pm 5 V$ unless otherwise specified	type	subgroups	Min Max		
Quiescent power supply	Icc	R _L = 100 Ω	All	1	14	26	mA
current				2, 3		33	
		M, D, P, L, R, F <u>2</u> /	02	1		33	
	I _{EE}	R _L = 100 Ω	All	1	-26	-14	mA
				2, 3	-33		
		M, D, P, L, R, F <u>2</u> /	02	1	-33		
-3 dB bandwidth	BW(-1)	$A_V = -1, V_{OUT} = 200 \text{ mV}_{P-P} \frac{5}{2}/R_F = 430 \Omega$	All	4	300		MHz
	BW(+1)	$A_V = +1, V_{OUT} = 200 \text{ mV}_{P-P} \underline{5}/R_F = 510 \Omega$		4	550		
	BW(+2)	A_V = +2, V _{OUT} = 200 mV _{P-P} <u>5</u> / R _F = 360 Ω	1	4	350		
Gain flatness	GF30	$f \le 30 \text{ MHz}, A_V = +2 \frac{5}{2}$ V _{OUT} = 200 mV _{P-P}	All	4		±0.04	dB
	GF50	f ≤ 50 MHz, A _V = +2 <u>5</u> / V _{OUT} = 200 mV _{P-P}		4		±0.10	
	GF100	f ≤ 100 MHz, A _V = +2 <u>5</u> / V _{OUT} = 200 mV _{P-P}	1	4		±0.30	
Slew rate	+SR(+1)	$A_V = +1, V_{OUT} = 5 V_{P-P} 5/6/$	All	4	1200		V/μs
	-SR(+1)	$A_V = +1, V_{OUT} = 5 V_{P-P} 5/6/$		4	1100		•
	+SR(+2)	$A_V = +2$, $V_{OUT} = 5 V_{P-P} 5/6/$ R _F = 360 Ω	-	4	1650		
	-SR(+2)	$A_V = +2, V_{OUT} = 5 V_{P-P} 5/6/R_F = 360 \Omega$		4	1500		
Rise and fall time	t _R	$A_V = +2, 5/6/$ V _{OUT} = 0.5 V _{P-P} , R _F = 360 Ω	All	9		1	ns
	t _F	$A_V = +2, 5/6/$ V _{OUT} = 0.5 V _{P-P} , R _F = 360 Ω		9		1	
Overshoot	+OS	A_V = +2, <u>5</u> / <u>7</u> / V _{OUT} = 0.5 V _{P-P} , R _F = 360 Ω	All	4		25	%
	-OS	$A_V = +2, 5/7/$ V _{OUT} = 0.5 V _{P-P} , R _F = 360 Ω	1	4		20	
Settling time	ts	A_V = +2, V _{OUT} = 2 V to 0 V <u>5</u> / R _F = 510 Ω, measured at 0.1%	All	9		20	ns
		$A_V = +2$, $V_{OUT} = 2$ V to 0 V <u>5</u> / $R_F = 510 \Omega$, measured at 0.05%	-	9		33	

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

SIZE A		5962-94676
	REVISION LEVEL D	SHEET 7

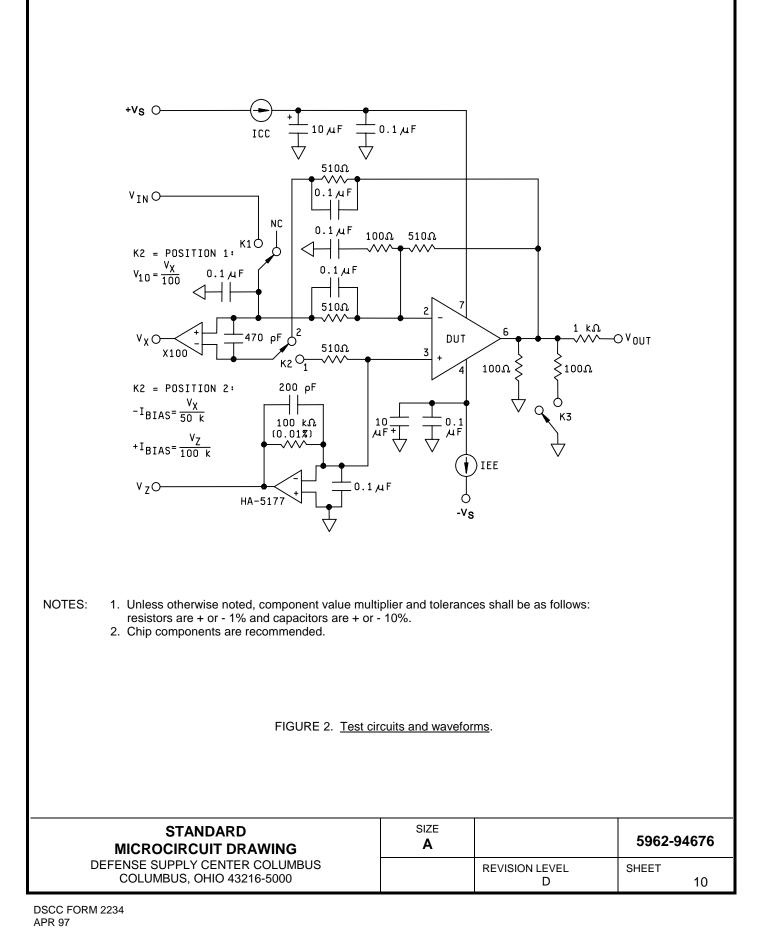
Test	Symbol	_ ···_		Group A	Limits		Unit
		$V_S = \pm 5 V$ unless otherwise specified	type	subgroups	Min	Max	
2nd harmonic distortion	HD2	$ f = 30 \text{ MHz}, \text{ A}_{\text{V}} = +2 \ \underline{5} / \\ V_{\text{OUT}} = 2 \ V_{\text{P-P}}, \text{ R}_{\text{F}} = 360 \ \Omega $	All	4		-48	dBc
		f = 50 MHz, A_V = +2 <u>5</u> / V _{OUT} = 2 V _{P-P} , R_F = 360 Ω		4		-45	
		f = 100 MHz, A_V = +2 <u>5</u> / V _{OUT} = 2 V _{P-P} , R_F = 360 Ω		4		-35	
3rd harmonic distortion	HD3	f = 30 MHz, A_V = +2 <u>5</u> / V _{OUT} = 2 V _{P-P} , R_F = 360 Ω	All	4		-65	dBc
		f = 50 MHz, A_V = +2 <u>5</u> / V _{OUT} = 2 V _{P-P} , R_F = 360 Ω		4		-60	
		f = 100 MHz, A_V = +2 <u>5</u> / V _{OUT} = 2 V _{P-P} , R_F = 360 Ω		4		-40	

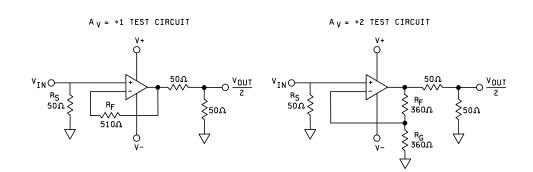
TABLE I. Electrical performance characteristics - Continued.

- <u>1</u>/ Unless otherwise specified, $A_V = +1$, fixed resistance (R_F) = 510 Ω , source resistance (R_S) = 0 Ω , load resistance (R_L) = 100 Ω , and $V_{OUT} = 0$ V. See figure 2.
- 2/ Device type 02 only, will meet all levels M, D, P, L, R, F of irradiation. However, this device is only tested at the 'F' level. When performing post irradiation electrical measurements for any RHA level, T_A = +25°C.
- <u>3</u>/ Guaranteed from +IN common mode rejection test, by: $+R_{IN} = 1/CMS_{IBP}$.
- <u>4</u>/ Guaranteed from V_{OUT} test with $R_L = 50 \Omega$, by: $I_{OUT} = V_{OUT}/50 \Omega$.
- 5/ If not tested, shall be guaranteed to the limits specified in table I herein.
- 6/ Measured between 10% and 90% points.
- <u>7</u>/ For 200 ps input transition times, overshoot decreases as input transition times increase, especially for $A_V = +1$.

4. QUALITY ASSURANCE PROVISIONS

4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.

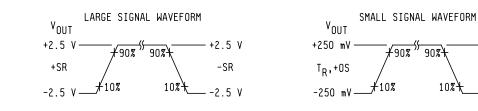

4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

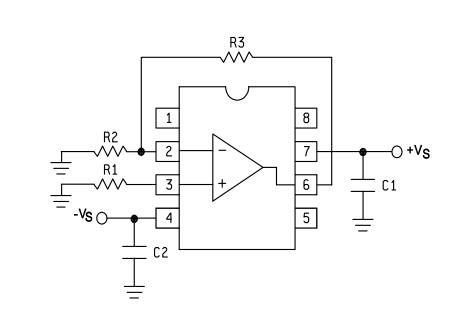

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-94676
		REVISION LEVEL D	SHEET 8

Device types	01 and 02
Case outline	Р
Terminal number	Terminal symbol
1	NC
2	-INPUT
3	+INPUT
4	-V _S
5	NC
6	OUTPUT
7	+Vs
8	NC

FIGURE 1. Terminal connections.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	9




FIGURE 2. Test circuits and waveforms - Continued.

+250 mV

T_F,-OS

-250 mV

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	11

NOTES: $\begin{array}{ll} R_1 = R_2 = 1 \ k\Omega, \pm 5 \ \% \\ R_3 = 10 \ k\Omega, \pm 5 \ \% \\ C_1 = C_2 = 0.1 \ \mu F \\ + V_S = +5.5 \ V \pm 0.5 \ V \\ - V_S = -5.5 \ V \pm 0.5 \ V \end{array}$

FIGURE 3. Irradiation circuit.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-94676
		REVISION LEVEL D	SHEET 12

Test requirements	Subgroups (in accordance with MIL-STD-883, TM 5005, table I)	Subgroups (in accordance with MIL-I-38535, table III)	
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)	1	1	1
Final electrical parameters (see 4.2)	1,2,3 <u>1</u> /	1,2,3 <u>1</u> /	1,2,3 <u>1</u> / <u>2</u> /
Group A test requirements (see 4.4)	1,2,3,4,9 <u>3</u> /	1,2,3,4,9 <u>3</u> /	1,2,3,4,9 <u>3</u> /
Group C end-point electrical parameters (see 4.4)	1	1	1,2,3 <u>2</u> /
Group D end-point electrical parameters (see 4.4)	1	1	1
Group E end-point electrical parameters (see 4.4)	1	1	1

TABLE IIA. Electrical test requirements.

<u>1</u>/ PDA applies to subgroup 1. For class V to subgroups 1 and Δ.
<u>2</u>/ Delta limits as specified in table IIB shall be required where specified, and the delta limits shall be completed with reference to the zero hour electrical parameters (see Table I).
<u>3</u>/ Subgroups 4 and 9 are guaranteed if not tested.

Table IIB. Burn-in and operating	life test Delta parameters (+25°C).

Parameters	Symbol	Delta Limits
Input offset voltage	Vio	±3.0 mV
Positive input bias current	+l _{IB}	±8.0 μΑ
Negative input bias current	-Ів	±8.0 μΑ

STANDARD	SIZE		5962-94676
MICROCIRCUIT DRAWING	A		
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL D	SHEET 13

- 4.2.1 Additional criteria for device class M.
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.

4.2.2 Additional criteria for device classes Q and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.
- c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B or as modified in the device manufacturer's Quality Management (QM) plan.

4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 or as specified in QM plan including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-PRF-38535 permits alternate in-line control testing. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection.

- a. Tests shall be as specified in table IIA herein.
- b. Subgroups 5, 6, 7, 8, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.
- 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - b. $T_A = +125^{\circ}C$, minimum.
 - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	14

4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.

4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes M, Q, and V shall be as specified in MIL-PRF-38535. End-point electrical parameters shall be as specified in table IIA herein.

4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019 Condition A and as specified herein.

4.4.4.1.1 <u>Accelerated aging test.</u> Accelerated aging tests shall be performed on all devices requiring a RHA level greater than 5k rads(SI). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limit at 25° C ± 5° C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.

4.4.4.2 <u>Neutron testing</u>. Neutron testing shall be performed in accordance with test method 1017 of MIL-STD-883 and herein (See 1.5). All device classes must meet the post irradiation end-point electrical parameter limits as defined in table I, for the subgroups specified in table IIA herein at $T_A = +25^{\circ}C \pm 5^{\circ}C$ after an exposure of 2 X 10¹² neutrons/cm² (minimum).

4.4.4.3 <u>Dose rate induced latchup testing</u>. Dose rate induced latchup testing shall be performed in accordance with test method 1020 of MIL-STD-883 and as specified herein (See 1.5). Tests shall be performed on devices, SEC, or approved test structures at technology qualification and after any design or process changes which may effect the RHA capability of the process.

4.4.4.4 <u>Dose rate burnout</u>. When required by the customer, test shall be performed on devices, SEC, or approved test structures at technology qualifications and after any design or process changes which may effect the RHA capability of the process. Dose rate burnout shall be performed in accordance with test method 1023 of MIL-STD-883 and as specified herein.

5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

6. NOTES

6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.

6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.

6.1.2 <u>Substitutability</u>. Device class Q devices will replace device class M devices.

6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.

6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525.

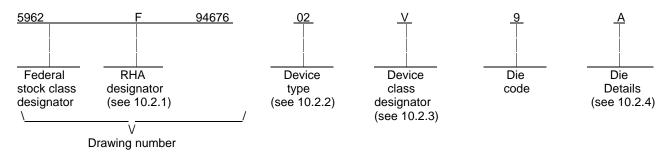
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL D	SHEET 15

6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA , Columbus, Ohio 43216-5000, or telephone (614) 692-0674.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.

6.6 Sources of supply.

6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.


6.6.2 <u>Approved sources of supply for device class M</u>. Approved sources of supply for class M are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	16

10. SCOPE

10.1 <u>Scope</u>. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QML plan for use in monolithic microcircuits, multichip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device Class V) are reflected in the Part or Identification Number (PIN). When available a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

10.2 PIN. The PIN is as shown in the following example:

10.2.1 <u>RHA designator</u>. Device classes Q and V RHA identified die shall meet the MIL-PRF-38535 specified RHA levels. A dash (-) indicates a non-RHA die.

10.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	Generic number	Circuit function
02	HS-1100RH	Radiation hardened, ultra high speed current feedback amplifier

10.2.3 Device class designator.

Device class	Device requirements documentation
Q or V	Certification and qualification to the die requirements of MIL-PRF-38535

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL D	SHEET 17

10.2.4. <u>Die Details</u>. The die details designation shall be a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix.

10.2.4.1 Die physical dimensions.	
Die type	Figure number
02	A-1
10.2.4.2. Die bonding pad locations and electrical functions.	
Die type	Figure number
02	A-1
10.2.4.3. Interface materials.	
Die type	Figure number
02	A-1
10.2.4.4. Assembly related information.	
Die type	Figure number
02	A-1

10.3. <u>Absolute maximum ratings</u>. See paragraph 1.3 within the body of this drawing for details.

10.4 <u>Recommended operating conditions</u>. See paragraph 1.4 within the body of this drawing for details.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-946	76
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL D	SHEET 1	8

20. APPLICABLE DOCUMENTS.

20.1 <u>Government specifications, standards, and handbooks</u>. Unless otherwise specified, the following specification, standard, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.

HANDBOOK

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings (SMD's).

(Copies of the specification, standard, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity).

20.2. <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

30. REQUIREMENTS

30.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit or function as described herein.

30.2 <u>Design, construction and physical dimensions</u>. The design, construction and physical dimensions shall be as specified in MIL-PRF-38535 and the manufacturer's QM plan, for device classes Q and V and herein.

30.2.1 <u>Die physical dimensions</u>. The die physical dimensions shall be as specified in 10.2.4.1 and on figure A-1.

30.2.2 Die bonding pad locations and electrical functions. The die bonding pad locations and electrical functions shall be as specified in 10.2.4.2 and on figure A-1.

30.2.3 Interface materials. The interface materials for the die shall be as specified in 10.2.4.3 and on figure A-1.

30.2.4 Assembly related information. The assembly related information shall be as specified in 10.2.4.4 and figure A-1.

30.2.5 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be as defined within paragraph 3.2.4. of the body of this document.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		D	19

30.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table I of the body of this document.

30.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table I.

30.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in 10.2 herein. The certification mark shall be a "QML" or "Q" as required by MIL-PRF-38535.

30.6 <u>Certification of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 60.4 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein.

30.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing.

40. QUALITY ASSURANCE PROVISIONS

40.1 <u>Sampling and inspection</u>. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modifications in the QM plan shall not effect the form, fit or function as described herein.

40.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum it shall consist of:

- a) Wafer lot acceptance for Class V product using the criteria defined within MIL-STD-883 test method 5007.
- b) 100% wafer probe (see paragraph 30.4).
- c) 100% internal visual inspection to the applicable class Q or V criteria defined within MIL-STD-883 test method 2010 or the alternate procedures allowed within MIL-STD-883 test method 5004.

40.3 Conformance inspection.

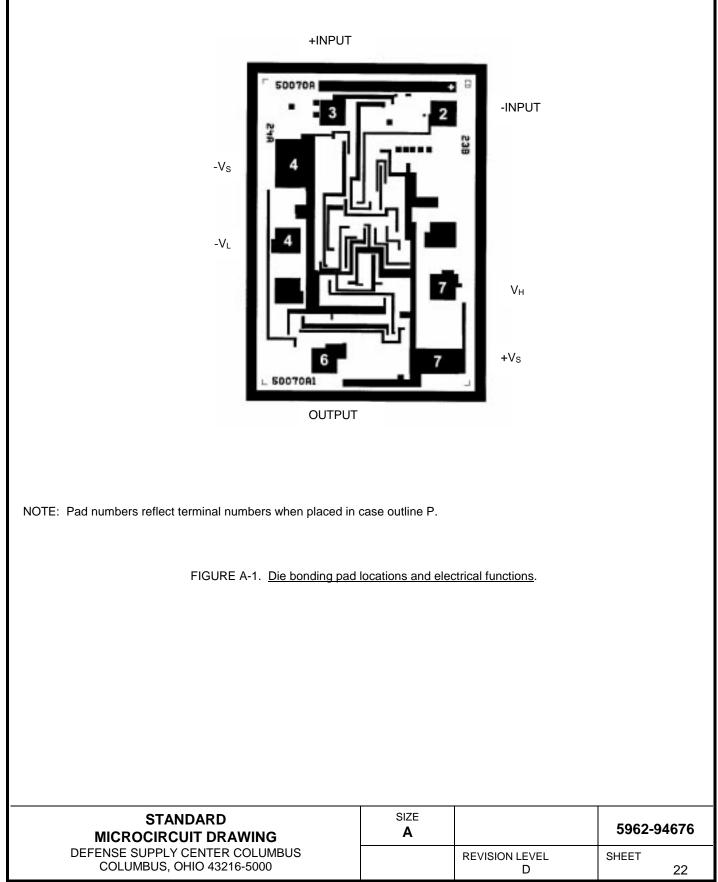
40.3.1 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be identified as radiation assured (see 30.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table IIA herein. Group E tests and conditions are as specified within paragraphs 4.4.4.1, 4.4.4.1.1, 4.4.4.2, 4.4.4.3, and 4.4.4.4.

50. DIE CARRIER

50.1 <u>Die carrier requirements</u>. The requirements for the die carrier shall be in accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL D	SHEET 20

60 NOTES


60.1 <u>Intended use</u>. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications and logistics purposes.

60.2 <u>Comments</u>. Comments on this appendix should be directed to DSCC-VA, Columbus, Ohio, 43216-5000 or telephone (614)-692-0536.

60.3 <u>Abbreviations, symbols and definitions</u>. The abbreviations, symbols, and definitions used herein are defined within MIL-PRF-38535 and MIL-STD-1331.

60.4 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see 30.6 herein) to DSCC-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL D	SHEET 21

Die physical dimensions. Die size: 1600 x 1130 microns Die thickness: 14 mils \pm 1 mils

Interface materials. Top metallization: AlCu (2%) 16 kÅ \pm 0.8 kÅ Backside metallization: None

Glassivation. Type: Nitride Thickness: 4 kÅ ± 0.5 kÅ

Substrate: UHF-1, bonded wafer, DI (dielectrically isolated)

Assembly related information. Substrate potential: Floating

- Special assembly instructions: 1. $-V_S$ and $+V_S$ must be double bonded. 2. $-V_S$ and $-V_L$ must be bonded to the same post. 3. $+V_S$ and V_H must be bonded to the same post.

FIGURE A-1. Die bonding pad locations and electrical functions - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-94676
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL D	SHEET 23

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 00-07-17

Approved sources of supply for SMD 5962-94676 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard microcircuit drawing PIN <u>1</u> /	Vendor CAGE number	Vendor similar PIN <u>2</u> /
5962-9467601MPA	34371	HFA1100MJ/883
5962F9467602VPA	34371	HS7-1100RH-Q
5962F9467602VPC	34371	HS7B-1100RH-Q
5962F9467602V9A	34371	HS0-1100RH-Q

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2</u>/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE <u>number</u> Vendor name and address

34371

Intersil Corporation P.O. Box 883 Melbourne, FL 32902-0883

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.