
®

ZSP™
SDK Software
Development Kit

USER’S
GUIDE

A p r i l 2 0 0 2

Revision 4.0

ii

This document contains proprietary information of LSI Logic Corporation. The
information contained herein is not to be used by or disclosed to third parties
without the express written permission of an officer of LSI Logic Corporation.

DB15-000126-06, Third Edition (April 2002)
This document describes Rev. 4.0 of LSI Logic Corporation’s ZSP™ SDK
Software Development Kit and will remain the official reference source for all
revisions/releases of this product until rescinded by an update.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LSI Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of
LSI Logic or third parties.

Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT
The LSI Logic logo design and ZSP are trademarks or registered trademarks of
LSI Logic Corporation. Microsoft, Microsoft Access, MS-DOS, Windows, and
Windows NT are registered trademarks of Microsoft Corporation. UNIX is a
registered trademark of X/Open Company, Ltd. Solaris is a trademark of Sun
Microsystems, Inc. All other brand and product names may be trademarks of
their respective companies.

For a current list of our distributors, sales offices, and design resource
centers, view our web page located at

http://www.lsilogic.com/contacts/na_salesoffices.html

Preface iii

Preface

This book is the primary reference and user’s guide for the ZSP™ SDK
Software Development Kit. The SDK supports digital signal processors
based on the ZSP400 core (for example, the LSI402ZX and LSI403Z)
and the next generation ZSP G2 architecture.

Audience

This document assumes that you have some familiarity with the C
language, and with the ZSP architecture and assembly language. Those
who will benefit from this book are

• Engineers and managers who are evaluating the ZSP processor for
possible use in a system

• Engineers who are designing products based on the ZSP
architecture and wish to perform cost and performance analysis

• Engineers who are developing software for systems based on the ZSP
architecture

Organization

This document has the following chapters and appendices:

• Chapter 1, Introduction, introduces the ZSP SDK software
development kit.

• Chapter 2, Installation, describes how to install the SDK.

• Chapter 3, C Cross Compiler, describes the SDK C compiler.

• Chapter 4, Assembler, describes the assembler in the SDK tool set.

• Chapter 5, Linker, describes the linker in the SDK tool set.

iv Preface

• Chapter 6, Utilities, describes miscellaneous utilities in the SDK tool
set.

• Chapter 7, ZISIM Simulator, describes the SDK functional-accurate
simulator.

• Chapter 8, ZSIM Simulator, describes the SDK cycle-accurate
simulator.

• Chapter 9, Debugger, describes the SDK debugger.

• Chapter 10, ZSP Integrated Development Environment (ZSP IDE),
describes the SDK Project Manager provided by LSI Logic with
Windows 95/98/NT versions of the SDK.

• Chapter 11, ZSP IDE Debugger, describes the GUI Debugger
provided by LSI Logic with Windows 95/98/NT versions of the SDK.

• Appendix A, Example Programs, provides a sample program for
use with the SDK.

• Appendix B, ZSP400 Control Registers, lists the ZSP400 control
registers.

• Appendix C, ZSPG2 Control Registers, lists the ZSPG2 control
registers.

• Appendix D, L-Intrinsic Functions, describes the L-Intrinsic
functions supported by the SDK compiler.

• Appendix E, Signal Processing Library, describes the libalg.a
library.

Related Publications

LSI402ZX Digital Signal Processor User’s Guide, LSI Logic Corporation,
order number R14021. Provides detailed information on the LSI402ZX
Digital Signal Processor.

LSI403Z Digital Signal Processor User’s Guide, LSI Logic Corporation,
order number R14025. Provides detailed information of the LSI403Z
digital Signal Processor.

ZSP400 Digital Signal Processor Architecture Technical Manual, LSI
Logic Corporation, order number I14036. Provides detailed information
on the registers and instruction set defined by the ZSP architecture and
implemented in the LSI4xx family of processors.

Preface v

Using and Porting GNU CC, by Richard M. Stallman, Free Software
Foundation, June 1996. Provides detailed information on how to use
GCC, which is the foundation of SDCC.

Using AS: The GNU Assembler, by Dean Elsner, et. al., Free Software
Foundation, January 1994. Provides detailed information on how to use
AS, which is the foundation of SDAS.

Using LD: The GNU Linker, by Steve Chamberlain, Free Software
Foundation, January 1994. Provides detailed information on how to use
LD, which is the foundation of SDLD.

Debugging with GDB: The GNU Source Level Debugger, by Richard
Stallman, et. al., Free Software Foundation, January 1994. Provides
detailed information on how to use GDB, which is the foundation of
SDBUG.

EB402 Evaluation Board Getting Started, LSI Logic Corporation, order
number DBO6-000264-01, September, 2000. Provides information on
using the EB402 Evaluation Board.

EB402 Evaluation Board User’s Guide, LSI Logic Corporation, order
number DB15-000143-00, September, 2000. Provides detailed
information on how to use the EB402 Evaluation Board.

PCMCIA-1149.1 Windows 95/NT Software Development Kit User’s
Guide, Corelis, Inc. Provides detailed information on using the JTAG
interface.

Man pages for ar, nm, objdump, string, size, objcopy, strip and
ranlib from the Free Software Foundation, available from the FTP site
prep.ai.mit.edu.

Conventions Used in This Manual

The first time a word or phrase is defined in this manual, it may be
italicized.

Hexadecimal numbers are indicated by the prefix “0x”, for example,
0x32CF. Binary numbers are indicated by the prefix “0b”, for example,
0b0011.0010.1100.1111.

vi Preface

The term ‘DOS’, unless otherwise noted, includes the MS-DOS operating
system and its Windows 3.1, Windows 95, Windows 98, and Windows
NT supersets.

The term ‘PC’, unless otherwise noted, includes the 386-, the 486-, and
the Pentium-based IBM-PC or compatible host computers.

Additional notational conventions used throughout this manual are listed
below.

Notation Example Meaning and Use

courier typeface .nwk file Names of commands, files, directories, and code are
shown in courier typeface

bold typeface fd1sp In a command line, command keywords are shown in
bold, nonitalic courier typeface. Enter them exactly as
shown, including case.

italics module In command lines and syntax descriptions, italics
indicate user-defined variables of a type defined by the
italicized noun. Italicized text must be replaced with
appropriate user-specified items.

italic underscore full_pathname When an underscore appears in an italicized string,
enter a user-supplied item of the type called for, without
spaces.

brackets [version]
[filename | register]

In command formats, you may, but need not, enter an
item enclosed within brackets. When vertical bars are
used within brackets, you may select one (but not more
than one) of the items separated by bars. Do not enter
the brackets or bar.

braces { directory }
{ filename | register }

In command formats, you must select one (but not
more than one) item enclosed within braces. Do not
enter the braces. When vertical bars are used within
braces, you may select one (but not more than one) of
the items separated by braces. Do not enter the braces
or bar.

ellipses option... In command formats, elements preceding ellipses may
be repeated any number of times. Do not enter the
ellipses. In menu items, if an ellipsis appears after an
item, clicking that item brings up a dialog box.

Preface vii

vertical dots .
.
.

Vertical dots indicate that a portion of a program or list-
ing has been omitted from the text.

semicolon, and other
punctuation

; Use as shown in the text.

Notation Example Meaning and Use

viii Preface

Contents ix

Contents

Chapter 1
Introduction

1.1 Overview of the SDK Tools 1-2
1.2 Overview of Software Development Using the SDK Tools 1-5

Chapter 2
Installation

2.1 Contents of the CD-ROM 2-1
2.2 Installation on Windows Systems 2-1

2.2.1 Installing SDK Tools 2-2
2.2.2 Restarting Windows 2-9

2.3 Uninstalling the SDK Tools on Windows Systems 2-9
2.4 Installation on Solaris Systems 2-10

Chapter 3
C Cross Compiler

3.1 Compiler Options 3-2
3.2 Compiler Conventions 3-4

3.2.1 Data Type Conventions 3-5
3.2.2 Register Usage 3-6
3.2.3 Conventions Used for Passing Parameters 3-9
3.2.4 Run Time Stack 3-10
3.2.5 Example Code for Function Prologue and Epilogue 3-11
3.2.6 Parameter Passing Examples 3-13

3.3 Run Time Environment 3-15
3.4 C Run Time Library Functions 3-15
3.5 N-Intrinsics 3-16

3.5.1 Vector N-Intrinsics 3-18
3.5.2 ETSI Functions 3-18

x Contents

3.6 Circular Buffers 3-20
3.7 Accessing Control Registers 3-21
3.8 Q15 Support 3-22
3.9 Inline Assembly 3-23

3.9.1 Syntax 3-23
3.9.2 Parameterized Assembly 3-23
3.9.3 Variables and Expressions 3-24
3.9.4 Explicitly Clobbered Registers 3-25
3.9.5 Examples of asm Directive 3-25
3.9.6 Optimization of Inline Assembly 3-28

3.10 Assembly Optimizer and Handwritten Assembly 3-28
3.11 Debugging Options 3-29
3.12 Code Statistics 3-29
3.13 Example Compilations 3-30

3.13.1 Example 1 3-30
3.13.2 Example 2 3-30
3.13.3 Example 3 3-30
3.13.4 Example 4 3-30

Chapter 4
Assembler

4.1 Assembly Language Syntax 4-1
4.1.1 Assembler Options 4-2
4.1.2 Assembler Directives 4-3
4.1.3 Assembler Special Cases 4-4

Chapter 5
Linker

5.1 Sections 5-1
5.1.1 Symbols 5-2
5.1.2 Linker command file 5-3
5.1.3 Linker options 5-3

Chapter 6
Utilities

6.1 sdar 6-2
6.2 sdstrip 6-5

Contents xi

6.3 sdranlib 6-7
6.4 sdnm 6-8
6.5 sdsize 6-9
6.6 sdstrings 6-11
6.7 sdobjdump 6-12
6.8 sdobjcopy 6-14

Chapter 7
ZISIM Simulator

7.1 Using ZISIM 7-1
7.1.1 Batch Mode 7-1
7.1.2 Interactive Mode 7-2

7.2 ZISIM Commands 7-4
7.2.1 alias 7-7
7.2.2 clear break 7-8
7.2.3 clear dmem 7-8
7.2.4 clear imem 7-8
7.2.5 clear stats 7-9
7.2.6 disable break 7-9
7.2.7 disable trace 7-9
7.2.8 dump dmem 7-9
7.2.9 dump imem 7-10
7.2.10 enable break 7-11
7.2.11 enable trace 7-11
7.2.12 exit 7-11
7.2.13 fill dmem 7-12
7.2.14 fill imem 7-12
7.2.15 help 7-12
7.2.16 load dmem 7-13
7.2.17 load exe 7-13
7.2.18 load imem 7-14
7.2.19 reset 7-14
7.2.20 run 7-15
7.2.21 script 7-15
7.2.22 set attr 7-16
7.2.23 set break 7-17
7.2.24 set reg 7-17

xii Contents

7.2.25 set size 7-17
7.2.26 show attr 7-18
7.2.27 show bits 7-19
7.2.28 show break 7-19
7.2.29 show dmem 7-20
7.2.30 show imem 7-20
7.2.31 show reg 7-21
7.2.32 show size 7-22
7.2.33 show stats 7-22
7.2.34 show trace 7-23
7.2.35 step 7-23
7.2.36 unalias 7-23

7.3 I/O Port Usage 7-24
7.4 Example Session Using ZISIM 7-24

Chapter 8
ZSIM Simulator

8.1 Using ZSIM 8-1
8.1.1 Batch Mode 8-1
8.1.2 Interactive Mode 8-2

8.2 ZSIM Commands 8-5
8.2.1 alias 8-11
8.2.2 clear break 8-11
8.2.3 clear dcache 8-11
8.2.4 clear dmem 8-12
8.2.5 clear icache 8-12
8.2.6 clear imem 8-12
8.2.7 clear stats 8-13
8.2.8 disable break 8-13
8.2.9 disable profile 8-13
8.2.10 disable trace 8-14
8.2.11 dump dmem 8-14
8.2.12 dump imem 8-14
8.2.13 enable break 8-15
8.2.14 enable profile 8-15
8.2.15 enable trace 8-16
8.2.16 exit 8-17

Contents xiii

8.2.17 fill dmem 8-17
8.2.18 fill imem 8-17
8.2.19 help 8-18
8.2.20 istep 8-18
8.2.21 load dmem 8-19
8.2.22 load exe 8-19
8.2.23 load imem 8-20
8.2.24 reset 8-20
8.2.25 run 8-21
8.2.26 script 8-21
8.2.27 set attr 8-22
8.2.28 set break 8-23
8.2.29 set delay 8-23
8.2.30 set latency 8-24
8.2.31 set reg 8-24
8.2.32 set size 8-24
8.2.33 show attr 8-25
8.2.34 show bits 8-26
8.2.35 show break 8-26
8.2.36 show dcache 8-26
8.2.37 show dmem 8-28
8.2.38 show icache 8-28
8.2.39 show imem 8-29
8.2.40 show pipe 8-29
8.2.41 show profile 8-30
8.2.42 show reg 8-30
8.2.43 show rule 8-31
8.2.44 show size 8-31
8.2.45 show stats 8-32
8.2.46 show trace 8-32
8.2.47 step 8-32
8.2.48 unalias 8-33

8.3 I/O Port Usage 8-33
8.4 Example Session Using ZSIM 8-34

xiv Contents

Chapter 9
Debugger

9.1 Using SDBUG 9-1
9.2 SDBUG Execution Environments 9-3

9.2.1 Functional-Accurate Simulator Connection 9-3
9.2.2 Cycle-Accurate Simulator Connection 9-4
9.2.3 UART Connection 9-7
9.2.4 JTAG Controller Connection 9-8

9.3 Debugger Commands – Special Cases 9-11
9.3.1 Generic Target-Specific Commands 9-11
9.3.2 Backtrace Command 9-11
9.3.3 Info Registers Command 9-12
9.3.4 Breakpoint Command 9-12
9.3.5 Print Command 9-12
9.3.6 Set Command 9-12
9.3.7 Cycle-Step Command 9-13
9.3.8 Accessing Memory with the Debugger 9-13

9.4 Dynamic Breakpoints 9-15
9.5 Example Debugging Sessions 9-15

9.5.1 Example 1 9-16
9.5.2 Example 2 9-19

Chapter 10
ZSP Integrated Development Environment (ZSP IDE)

10.1 ZSP IDE Overview 10-2
10.1.1 Introduction to Workspaces and Projects 10-2

10.2 Working With Workspaces and Projects 10-4
10.2.1 Working With Workspaces 10-4
10.2.2 Working With Projects 10-7

10.3 Project Settings 10-9
10.3.1 Build methodology and Project Tree Structure 10-10
10.3.2 Compiler/Assembler Settings 10-10
10.3.3 Linker Settings 10-14

10.4 ZSP IDE Detailed Description 10-17
10.4.1 Paned Window Controls 10-17
10.4.2 Project Tree 10-17
10.4.3 Main Menu 10-19

Contents xv

10.4.4 Toolbar 10-29
10.5 Shell Window 10-32
10.6 Disassembly Window 10-33
10.7 Parallel Debug Manager 10-33
10.8 Help Menu 10-34
10.9 Editor 10-34
10.10 ZSP IDE File Formats 10-35

Chapter 11
ZSP IDE Debugger

11.1 GUI Debugger Overview 11-3
11.1.1 Main Window 11-3
11.1.2 Title Bar - Project File Name Display 11-3
11.1.3 Window Area 11-3
11.1.4 Status Area 11-3
11.1.5 Main Menu 11-3
11.1.6 Main Toolbars 11-4
11.1.7 Debugging Windows (General) 11-6

11.2 Detailed Descriptions 11-11
11.2.1 Main Menu 11-11
11.2.2 Debugging Window Detailed Descriptions 11-19

Appendix A
Example Programs

A.1 Example Program: demo.c A-1
A.2 Example Program hw_dbg.s A-5

Appendix B
ZSP400 Control Registers

Appendix C
ZSPG2 Control Registers

Appendix D
L-Intrinsic Functions

xvi Contents

Appendix E
Signal Processing Library

E.1 API Specification Auto-correlation Library Function on G2 E-2
E.1.1 Auto-correlation E-2

E.2 API Specification for Convolutional Encoder Library Function
on G2 E-3
E.2.1 Convolutional Encoder E-3

E.3 API Specification for 16bit CRC Library Function on G2 E-5
E.3.1 CRC 16bit E-5

E.4 API Specification for 8bit CRC Library Function on G2 E-6
E.4.1 CRC 8bit E-6

E.5 API Specification for 32 bit Division Library Function on G2 E-7
E.5.1 32 bit Division E-7

E.6 API Specification for IIR Library Function on G2 E-8
E.6.1 IIR E-8

E.7 API Specification for IIR Biquad Library Function on G2 E-9
E.7.1 IIR Biquad E-9

E.8 API Specification for Inverse Square Root Library Function
on G2 E-10
E.8.1 Inverse Square Root E-10

E.9 API Specification for Synthesis Lattice Filter Library
Function on G2 E-11
E.9.1 Synthesis Lattice Filter E-11

E.10 API Specification for Real Block FIR Library Function on G2 E-12
E.10.1 Real Block FIR E-12

E.11 API Specification for 256 point FFT Library Function on G2 E-14
E.11.1 256 point FFT E-14

Index

Customer Feedback

xvii

Figures
1.1 Overview of Software Development 1-6
9.1 Debugger Memory Addressing (sdbug400, zdxbug) 9-14
9.2 Debugger Memory Addressing (zdbug) 9-15
10.1 ZSP IDE Tools Suite Implementation 10-2
10.2 ZSP IDE Workspace 10-2
10.3 ZSP IDE Main Window 10-3
10.4 Recent Workspaces List 10-5
10.5 File Selection Dialog 10-5
10.6 Project Menu 10-8
10.7 Compiler Settings 10-12
10.8 Assembler Settings 10-12
10.9 Paned Window Handles 10-17
10.10 ZSP IDE Project Tree 10-17
10.11 ZSP IDE File Menu 10-20
10.12 ZSP IDE Edit Menu 10-21
10.13 ZSP IDE View Menu 10-21
10.14 Customize Toolbar 10-23
10.15 ZSP IDE Project Menu 10-23
10.16 ZSP IDE Workspace Menu 10-24
10.17 ZSP IDE Build Menu 10-24
10.18 Build / Compile Output Window 10-25
10.19 Build Output Window Popup Menu 10-25
10.20 ZSP IDE Debug Menu 10-26
10.21 Debug Settings 10-27
10.22 Debug Window Settings 10-27
10.23 Object File Utility 10-29
10.24 Utility Output Window Showing Disassembled Code 10-29
10.25 Shell Window 10-32
10.26 Disassembly Window 10-33
10.27 Parallel Debug Manager Setup Window 10-33
10.28 Parallel Debug Manager Control Window 10-34
11.1 Menu Checkmarks For Debugging Windows 11-4
11.2 Tools Menu - Invoke Toolbars 11-5
11.3 Preferences - Use Images For Toolbar Buttons 11-5
11.4 Toolbar Buttons With Text Annotation 11-6
11.5 Toolbar Buttons With Image Annotation 11-6

xviii

11.6 Debugger Paned Window 11-7
11.7 Paned Window Handles 11-8
11.8 Preferences - Set Main Window Columns 11-8
11.9 Top Level Debugging Window 11-9
11.10 Top Level Window Focus Control 11-9
11.11 Preferences - Separate New Window 11-9
11.12 Display Controls for Paned Window 11-10
11.13 Display Controls for Top Level Window 11-10
11.14 Preferences - Autoload Windows 11-10
11.15 Breakpoint Menu 11-12
11.16 Source Code Window Current Selection Line 11-12
11.17 Source Code Window Breakpoints 11-13
11.18 Execute Menu 11-15
11.19 Program View Menu 11-18
11.20 Target View Menu 11-18
11.21 Tools Menu 11-19
11.22 Source Code Window 11-20
11.23 Progress Bar Window 11-21
11.24 Source Code Window (shown with Disassembly Window) 11-21
11.25 Example Source Code Popup Query Result 11-22
11.26 Breakpoint List Window 11-23
11.27 Debugging Symbols Window 11-24
11.28 Call Stack Window 11-24
11.29 Local Variables Window 11-25
11.30 Global Variables Window 11-25
11.31 .Expression Window 11-26
11.32 Watch Expressions Window 11-26
11.33 ZSIM Profile Window 11-27
11.34 ZSIM Statistics Window 11-27
11.35 Disassembly Window 11-28
11.36 Register Element Popup Format Menu 11-29
11.37 Register Window Format Menu 11-29
11.38 Register Window Columns Menu 11-30
11.39 Register Window Configure Menu 11-30
11.40 Control Register Window - Standard Mode 11-30
11.41 Control Register Bitfield Entry Annotation 11-31
11.42 Control Register Window - Bitfield Mode 11-31
11.43 Operand Register Window 11-32

xix

11.44 Address Register Window 11-32
11.45 Memory Window 11-32
11.46 ZSIM Grouping Rule Window 11-33
11.47 ZSIM Pipeline Window 11-33
11.48 Command Line Window 11-34
11.49 Preferences Window - Logging 11-34
11.50 Tools Menu - Session Log File 11-35
11.51 Session Log Window 11-35

xx

xxi

Tables
1.1 SDK Tools and GNU Counterparts 1-3
1.2 SDK Utilities and GNU Counterparts 1-4
3.1 Compiler Options 3-2
3.2 Output Options 3-4
3.3 Optimization Options 3-4
3.4 Compiler’s Representation of C Data Types 3-5
3.5 Effect of Mode Bits on Compiler-Generated Code 3-8
3.6 Stack Frame Layout 3-10
3.7 Stack Frame Example 3-11
3.8 N-Intrinsic Functions 3-17
3.9 Vector N-Intrinsics 3-18
3.10 ETSI to N-Intrinsic Mapping 3-19
3.11 Parameter Output Syntax 3-23
3.12 Argument Constraints 3-24
6.1 SDK Utilities and GNU Counterparts 6-1
6.2 sdar p Keyletter Options 6-3
6.3 sdar p Keyletter Modifiers 6-4
6.4 sdstrip Options 6-6
6.5 sdnm Options 6-8
6.6 sdsize Options 6-9
6.7 sdstrings Options 6-11
6.8 sdobjdump Options 6-13
6.9 sdobjcopy Options 6-15
7.1 ZISIM Command-line Options 7-3
7.2 ZISIM Command Summary 7-4
7.3 ZISIM400 specific commands 7-6
7.4 ZISIMG2 specific commands 7-7
7.5 Configurable ZISIM Attributes 7-16
7.6 Default Arguments for show dmem 7-20
7.7 Default Arguments for show imem 7-20
7.8 I/O Device Memory Map and Associated Files 7-24
8.1 ZSIM Command-line Options 8-3
8.2 Command-line Options for zsim400 8-4
8.3 Command-line Options for zsimg2 8-5
8.4 ZSIM Command Summary 8-5
8.5 ZSIM400 specific commands 8-9

xxii

8.6 ZSIMG2 specific commands 8-10
8.7 Configurable ZSIM Attributes 8-22
8.8 Default Arguments for show dmem 8-28
8.9 Default Arguments for show imem 8-29
8.10 I/O Device Memory Map and Associated Files 8-33
9.1 Debugger Names 9-2
9.2 SDBUG-Only Options 9-2
9.3 SDBUG Target ZISIM Simulator Commands 9-4
9.4 SDBUG Target ZSIM Commands 9-5
9.5 SDBUG UART Connection Commands 9-8
9.6 SDBUG JTAG Commands 9-9
9.7 Hardware-Assisted Debugging Commands 9-10
10.1 Compiler/Assembler Options 10-13
10.2 Linker options 10-16
10.3 ZSP IDE Toolbar 10-30
10.4 10-35
11.1 Command Line Debugger Executables 11-2
11.2 Debugger Targets 11-2
11.3 Keyboard Shortcuts 11-16
B.1 ZSP400 Control Registers B-1
C.1 G2 Control Registers C-1
D.1 Long Intrinsic Functions D-1

ZSP SDK Software Development Kit 1-1

Chapter 1
Introduction

The ZSP Software Development Kit (ZSP SDK) from LSI Logic supports
all aspects of software development for systems incorporating devices
based on the ZSP400 and ZSPG2 architectures. The ZSP SDK includes
an optimizing C cross compiler, assembler, and linker, both a functional-
accurate simulator and a cycle-accurate simulator, and a source- and
assembly-level debugger.

The ZSP SDK is available for Windows 95, Windows 98, Windows NT,
and Solaris platforms. For the Windows platforms only, the software
development tools can be used in the context of the SDK Integrated
Development Environment (IDE), which includes a project manager and
a GUI debugger. The GUI debugger provides a graphical environment for
developing and debugging your code, with interactive viewing and control
of project source files and run-time data.

1-2 Introduction

1.1 Overview of the SDK Tools

The ZSP SDK tools are all placed under one directory which is referred
to with the environment variable SDSP_HOME. The sdspI subdirectory
contains all tools related to the ZSP400 architecture. The zspg2
subdirectory contains all tools related to the ZSPG2 architecture. There
are no dependencies between the two directories. Users who only need
tools for the ZSP400 can delete the zspg2 subdirectory. Likewise, users
who only need tools for the ZSPG2 can delete the sdspI subdirectory.
The two subdirectories closely mirror one another. Both have the
following subdirectories: bin, lib, include, misc, tmp. The bin directories
contain the command-line tools. The lib directories contain the C
libraries. The include directories contain the C header files. The misc
directories contain auxilary files. The tmp directories are used by the
tools for temporary space. The GNU based tools for the ZSP400 all have
a “sd” prefix. The analgous tools for ZSPG2 all have a “zd” prefix. In
addition the assembly optimizer, sdopt/zdopt, also follows this prefix
convention. The simulators do not follow this convention. The ZSP400
simulators are: zsim400 and zisim400. The ZSPG2 simulators are:
zsimg2 and zisimg2.

The ZSP SDK also supports users who want to take assembly and C
code written for the ZSP400 architecture and run it without modification
on the ZSPG2 architecture. The compiler zdxcc compiles for a ZSPG2
target but uses the calling convention and pointer sizes designed for the
ZSP400. The zspg2 directory also contains a subdirectory libg1g2, which
contains C libraries for zdxcc. There is also a debugger, zdxbug, for
debugging code developed with zdxcc.

The ZSP SDK tools are based on the GNU tools from the Free Software
Foundation, Inc. The GNU project has well-proven software development
tools that have been successfully ported to many different target
machines and platforms. Documentation for the GNU project tools can
be obtained from the web site www.gnu.org and the FTP site
prep.ai.mit.edu. To gain access to the FTP site, log in as ‘anonymous’
and type your e-mail address as the password. The descriptions of the
tools in this document, for the most part, include only the differences
from their GNU counterparts (refer to Table 1.1).

Overview of the SDK Tools 1-3

The GNU tools have been enhanced so as to take advantage of the
many high-performance features of the ZSP LSI402ZX and LSI403Z
devices and ZSP400-based ASICs, such as single-cycle multiply-
accumulate instructions, fast context switching, circular buffer support,
single-cycle compare/select, and zero-overhead loops.

The SDK provides utilities for manipulating the files that are generated
by the tools during project creation. These SDK-specific utilities,
described in Table 1.2, replace their GNU counterparts.

Table 1.1 SDK Tools and GNU Counterparts

Tool
GNU
Equivalent Function

sdcc
zdcc
zdxcc

gcc Compiles

sdas
zdas

as Assembles

sdld
zdld

ld Links

sdbug400
zdbug
zdxbug

gdb Debugs

1-4 Introduction

The SDK Tools also includes the following non-GNU-based tools:

• The compiler’s optimizer, sdopt/zdopt/zdxopt, performs additional
optimizations to those performed by SDCC/ZDCC/ZDXCC.

• Both the functional-accurate and cycle-accurate simulators are
provided in a standalone form that support a simple command-line
interface and that can be provided in a dynamic linkable format that
can be used in conjuction with the debugger.

• For Windows platforms only, the GUI tools include an IDE and a GUI
Debugger.

For Solaris platforms, there are freely-available GUI front ends that do
not have all the capabilities of the GUI supplied by LSI Logic for Windows
platforms, but that can be configured for use with all the LSI Logic ZSP
SDK Tools.

Table 1.2 SDK Utilities and GNU Counterparts

Utility
GNU
Equivalent Function

sdar
zdar

ar Creates, modifies, and extracts files from an archive.

sdnm
zdnm

nm Lists symbols from object files.

sdobjdump
zdobjdump

objdump Displays information from object files.

sdranlib
zdranlib

ranlib Generates an index for an archive.

sdstrings
zdstrings

strings Prints the printable characters in the files.

sdsize
zdsize

size Lists section sizes and total size of object file.

sdstrip
zdstrip

strip Discards symbols from object files.

sdobjcopy
zdobjcopy

objcopy Copies and translates object files.

Overview of Software Development Using the SDK Tools 1-5

1.2 Overview of Software Development Using the SDK Tools

An overview of the software development process utilizing the SDK tools
is shown in Figure 1.1. As shown in the figure, the compiler accepts C
source files (.c) and produces a relocatable assembly language source
module (.s). The assembly source file is input to the assembler, which
translates the module into a relocatable object file in the Executable and
Linkable Format (ELF) file format (.obj (Windows) or .o (UNIX)). ELF
files are then linked with other ELF files (for example, library files) to
produce a single executable ELF load file (a.out). The load file can be
loaded into host memory for symbolic simulation/debugging, or it can be
downloaded to a ZSP architecture-based target system for real-time
debugging.

On Windows 95/98/NT and Solaris platforms, the tools can be accessed
using the standard GNU command-line interface, as described in
Chapter 3, "C Cross Compiler" through Chapter 9, “Debugger.” On
Windows 95/98/NT platforms, the tools can also be accessed using the
the ZSP Integrated Development Environment (ZSP IDE), (Chapter 10,
"ZSP Integrated Development Environment (ZSP IDE)"), and the ZSP
IDE Debugger (Chapter 11, "ZSP IDE Debugger").

1-6 Introduction

Figure 1.1 Overview of Software Development

C Source
Files

Assembler
Source Files

Listing
File

Assembler
Source Files

Libraries

ELF
Load File

ELF
Object File

Assembler

Linker

Macro-
preprocessor

C Compiler

Debugger Simulator

Optimizer

Archiver

ZSP SDK Software Development Kit 2-1

Chapter 2
Installation

This chapter describes how to install the ZSP Software Development Kit.

The SDK is available for Windows 95, Windows 98, Windows NT, and
Solaris. The media used to provide the tools is a CD-ROM.

2.1 Contents of the CD-ROM

The CD-ROM has the following five top-level directories:

• doc

Contains the complete documentation for the SDK tools and the
GNU tools.

• examples

Contains example code for the SDK tools.

• solaris

Contains initialization code and tools for installing the SDK on the
Solaris platform.

• windows

Contains the initialization code and tools for installing the SDK on
Windows 95/98/NT platforms, and examples that can be added to an
ZSPIDE project.

2.2 Installation on Windows Systems

The minimum system requirements for the SDK tools are

• a Pentium Pro-based PC

2-2 Installation

• 64 Mbytes of RAM

• 48 Mbytes of Disk Space

On Windows NT systems, you must have administrator privileges to
install the ZSP SDK Tools.

2.2.1 Installing SDK Tools

Before you install the SDK tools, make sure you have uninstalled any
older version. Refer to Section 2.3, “Uninstalling the SDK Tools on
Windows Systems.”

Step 1. Insert the CD-ROM in the CD drive, click Add/Remove Program
on the Control Panel, then click Install and select

D:\windows\Setup.exe.

Step 2. Follow the Setup Instructions.

Step 3. A dialog box will be displayed for entering the serial Number.

Step 4. Type the serial Number, and then click on the Next button. The
dialog box shown below will be displayed.

Installation on Windows Systems 2-3

Step 5. The default directory is C:\Program Files\SDK
Tools<Version Number>\. You can change the default
directory by clicking on the Browse button, specifying a
directory name, and then clicking OK.

The Setup program installs the SDK files in the selected
directory. When the setup is complete, a dialog box is displayed
confirming successful setup.

By default, the Setup program installs the files listed below in
C:\Installation_Directory\sdspI\bin, where
Installation_Directory is the directory specified in Step 5

.

Filename Function

elfread.exe Produces a simple dump of entire contents of an
object file

libzisim400.dll1 Dynamic link library used in sdbug400 for target
zisim

libzsim400.dll1 Dynamic link library used in sdbug400 for target
zsim

libzperiph.dll1 Dynamic link library used in sdbug400 for target
zsim

(Sheet 1 of 2)

2-4 Installation

1. These files are not intended to be used on the command line, but instead are
always called by other functions.

sdar.exe Archive utility

sdas.exe Assembler

sdbug400.exe Source-level debugger for ZSP400-based Devices

sdcc.exe Driver

sdcc1.exe1 Compiler

sdcpp.exe1 Preprocessor

sdld.exe Linker

sdnm.exe Symbol listing utility

sdobjcopy.exe Object file copying utility

sdobjdump.exe Object dump utility

sdopt.exe1 Optimizer

sdranlib.exe Ranlib utility

sdsize.exe Size utility

sdstrings.exe String print utility

sdstrip.exe Symbol discarding utility

zisim400.exe Functional-accurate simulator for ZSP400-based
devices

zsim400.exe Cycle-accurate simulator for ZSP400-based
devices

Filename Function

(Sheet 2 of 2)

Installation on Windows Systems 2-5

The libraries listed below are installed by default in the directory
C:Installation_Directory\sdspI\lib.

The header files listed below are installed by default in the directory
C:\Installation_Directory\sdspI\include.

Filename Function

crt0.obj Startup file

libc.a C library

libg.a C library with debug
information

liblongc.a C library with long calls.

Filename Function

cbuf.h Circular buffer

ctype.h Standard header file

creg.h Control registers

dsp.h L-Intrinsics

libsdsp.h SDSP-specific printing

limits.h Standard header file

N_Intrinsic.h N-Intrinsics

q15.h Support file

setjmp.h Standard header file

simios.h Standard header file

stdarg.h Standard header file

stddef.h Standard header file

stdio.h Standard header file

stdlib.h Standard header file

string.h Standard header file

2-6 Installation

By default, the Setup program installs the files listed below in
C:\Installation_Directory\zspg2\bin, where
Installation_Directory is the directory specified in Step 5

.

Filename Function

elfread.exe Produces a simple dump of entire contents of an
object file

libzisimg2.dll1 Dynamic link library used in zdbug and zdxbug for
target zisim

libzidlmssg2.dll1 Dynamic link library used in zdbug and zdxbug for
target zisim

zdar.exe Archive utility

zdas.exe Assembler

zdbug.exe Source-level debugger for ZSP500-based Devices

zdxbug.exe Source-level debugger for ZSP500-based devices
running code designed for ZSP400

zdcc.exe Compiler

zdxcc.exe Cross (“X”) compiler for ZSP400 to ZSP500

zdcc1.exe1 Compiler Driver for zdcc

zdxcc1.exe1 Compiler Driver for zdxcc

zdcpp.exe1 Preprocessor

zdxcpp.exe1 Preprocessor for zdxcc

zdld.exe Linker

zdnm.exe Symbol listing utility

zdobjcopy.exe Object file copying utility

zdobjdump.exe Object dump utility

zdopt.exe1 Optimizer

zdxopt.exe1 Optimizer for ZSP400 to ZSP500 code.

zdranlib.exe Ranlib utility

(Sheet 1 of 2)

Installation on Windows Systems 2-7

The libraries listed below are installed by default in the directory
C:Installation_Directory\zspg2\lib.

The libraries listed below are installed by default in the directory
C:Installation_Directory\zspg2\lib.g1g2

zdsize.exe Size utility

zdstrings.exe String print utility

zdstrip.exe Symbol discarding utility

zisimg2.exe Functional-accurate simulator for ZSP400-based
devices

Filename Function

crt0.obj Startup file

libc.a C library

libg.a C library with debug
information

Filename Function

crt0.obj Startup file

libc.a C library

libg.a C library with debug
information

libalg.a Basic signal processing
functionality

Filename Function

(Sheet 2 of 2)

2-8 Installation

The header files listed below are installed by default in the directory
C:\Installation_Directory\zspg2\include.

The files listed below are installed by default in the directory
C:Installation_Directory\ide\bin

Filename Function

cbuf.h Circular buffer

ctype.h Standard header file

creg.h Control registers

dsp.h L-Intrinsics

libsdsp.h SDSP-specific printing

limits.h Standard header file

N_Intrinsic.h N-Intrinsics

q15.h Support file

setjmp.h Standard header file

simios.h Standard header file

stdarg.h Standard header file

stddef.h Standard header file

stdio.h Standard header file

stdlib.h Standard header file

string.h Standard header file

Filename Function

en.rc IDE menu resource

guidebug.exe GUI debugger frontend.

zspide.exe IDE for the ZSP family of
processors.

Uninstalling the SDK Tools on Windows Systems 2-9

2.2.2 Restarting Windows

The Setup program installs system files and updates some shared files
that are required for running the SDK tools. The system prompts you to
reboot after you have installed the SDK tools.

Click Finish to exit from the Setup program.The system will be restarted
according to the option selected in the above dialog box.

2.3 Uninstalling the SDK Tools on Windows Systems

Perform the following steps to uninstall the SDK tools:

Step 1. Open the Control Panel window. (The Control Panel is
accessed by clicking on the Start menu, then selecting
Settings, then selecting Control Panel.

Step 2. In the Control Panel window, double-click on Add/Remove
Program.

Step 3. Then select the LSI LOGIC SDK tools and click on
Add/Remove. In the dialog box shown below, click on Remove
to uninstall the tools.

2-10 Installation

2.4 Installation on Solaris Systems

The ZSP SDK may be hosted on the Solaris 2.6 operating system and
later versions.

Step 1. If your Solaris system has vold, it will automatically mount the
CD-ROM after it has been inserted. To access the CD-ROM,
change the directory to /cdrom/SDK.

Step 2. If vold is not running, mount the CD-ROM and enter the
following command:

mount /dev/sr0 /mnt/cdrom

Step 3. Use one of the following commands to invoke the installation
script under /cdrom/SDK/solaris or /mnt/cdrom/solaris:

/cdrom/SDK/solaris/sdsp_install

or

/mnt/cdrom/solaris/sdsp_install

Step 4. Follow the directions given in the script.

Installation on Solaris Systems 2-11

Step 5. Specify an installation directory for the SDK tools. Assign the
installation path to the SDSP_HOME environment variable,
followed by a forward slash (/).

For example, if you install the tools in MyInstallDirectory,
assign the directory to the SDSP_HOME variable:

SDSP_HOME = MyInstallDirectory/

Step 6. Export the SDSP_HOME variable.

Step 7. If you want to be able to invoke the SDK tools from any
directory, add the installation directory to the path.

Step 8. In order to use the sdbug400 debugger, the environment
variable LD_LIBRARY_PATH must be included in the
installation path. Use the following command:

setenv LD_LIBRARY_PATH
${LD_LIBRARY_PATH}:$SDSP_HOME/sdspI/bin

The Setup program installs the SDK files.

The following files containing the tools are installed in the directory
$SDSP_HOME/sdspI/bin.

Filename Function

elfread Produces a simple dump of entire contents of an
object file

sdar Archive utility

sdas Assembler

sdbug400 Source-level Debugger for
ZSP400

sdcc Driver

sdcc1 Compiler

sdcpp Preprocessor

sdld Linker

sdnm Symbol listing utility

sdobjcopy Object file copying utility

2-12 Installation

The libraries listed below are installed in the directory
$SDSP_HOME/sdspI/lib.

The header files listed below are installed in the directory
$SDSP_HOME/sdspI/include.

sdobjdump Object dump utility

sdopt Optimizer

sdranlib Random library (ranlib) utility

sdsize Size utility

sdstrings String print utility

sdstrip Symbol discarding utility

zisim400 Functional-accurate simulator for ZSP400-based
Devices

zsim400 Cycle-accurate simulator for ZSP400-based
Devices

Filename Function

crt0.o Startup file

libc.a C library

libg.a C library with debug information

Filename Function

cbuf.h Circular buffer

ctype.h Standard header file

dsp.h L-Intrinsics

libsdsp.h SDSP-specific printing

limits.h Standard header file

Filename Function

Installation on Solaris Systems 2-13

For both the Windows and Solaris setups, there are additional files and
directories installed by the Setup program that are required for running
the tools. For this reason, do not delete or modify any of the files or
directories in the installation directory.

The ZSP SDK tools use the tmp directory, which is created during setup,
to store temporary files.

The misc directory contains a file called mapfile. This file contains
information about the scan chain of the target processor that is used for
hardware-assisted debug with the JTAG port (on Windows platforms
only). The correct map file is required for hardware-assisted debugging.
The map file supplied with the ZSP SDK tools corresponds to the
LSI402ZX rev2. If you are using a different ZSP400-based part, you must
replace the map file installed during setup with the proper map file for
your device.

N_Intrinsic.h N-Intrinsics

q15.h Support file

setjmp.h Standard header file

simios.h Standard header file

stdarg.h Standard header file

stddef.h Standard header file

stdio.h Standard header file

stdlib.h Standard header file

string.h Standard header file

Filename Function

2-14 Installation

ZSP SDK Software Development Kit 3-1

Chapter 3
C Cross Compiler

This chapter describes the SDK C Cross Compiler and the compilation
process.

The SDK C Cross Compilers; SDCC, ZDCC, and ZDXCC; are based on
the GNU C compiler (GCC) from the Free Software Foundation. SDCC
is the compiler for the ZSP400 architecture. ZDCC is the compiler for the
ZSPG2 architecture. ZDXCC is targeted for the ZSPG2 architecture, but
it uses the same calling convention and pointer size as SDCC. This
allows C/assembly programs written for the ZSP400 architecture to be
easily ported to the ZSPG2 architecture. CC will be used to refer to all
three compilers. GCC is described in Using and Porting GNU CC, by
Richard M. Stallman, Free Software Foundation, June 1996. The
description of CC in this chapter, for the most part, includes only the
differences from GCC.

The compiler is invoked from the shell using the following command:

cc [options] sourcefile

The command-line options and source file name extension determine the
type of compilation. In the simplest case, with no options and a .c source
file, the compiler will produce an executable, a.out.

3-2 C Cross Compiler

3.1 Compiler Options

The CC compiler supports all GCC compiler options in addition to the
SDK-specific options described in Table 3.1.

The -mlong_call option is frequently necessary with SDCC because
call-immediates on the ZSP400 architecture have a 13-bit range, and its
use is therefore recommended for applications that are larger than the
range of a call-immediate. The ZSPG2 architecture has a larger call
immediate range (16-bits), so this option is not as critical for it. Better
performance and code size can be obtained by selectively using the -
mlong_call option, but this may require repetitive trial and error to
determine which files can safely be converted to use call-immediates.
One important exception is a file which does not call a function external

Table 3.1 Compiler Options

Option Description Availability

-mlong_call The compiler generates code for a call instruction using
a register operand. Use this option to resolve the
limitation of the call immediate range.

SDCC
ZDCC
ZDXCC1

-mno_sdopt The compiler disables the assembly optimizer,
sdopt/zdopt/zdxopt. By default, the optimizer is
automatically invoked at optimization levels -O1, -O2 and
-O3.

SDCC
ZDCC
ZDXCC

-mlong_cond_branch2 The compiler generates code for a conditional branch by
using a register operand.

SDCC
ZDXCC

-mlong_uncond_branch3 The compiler generates code for an unconditional
branch by using a register operand.

SDCC
ZDXCC

-minfer_mac Enable the compiler to generate mac and macn
instructions without using intrinsics. Use this option only
if the code generated will be run with the sat, q15, sre
and mre bits of %fmode turned off.

SDCC
ZDXCC

-mlarge_data Use large data model. ZDCC

1. Since the range of a call immediate on ZSPG2 is 16-bits versus 13-bits on ZSP400, the -mlong_call
option will be less frequently needed for ZDXCC and ZDCC.

2. This option is preserved for backward compatibility with previous versions of the SDK, but it is no
longer needed, since the compiler will automatically use register based branches when needed.
This option will be removed in a future version of the SDK.

3. (same as 2.)

Compiler Options 3-3

to the file; in this case, the necessity of -mlong_call does not depend
on other files or on the link order—this kind of file will either always
require -mlong_call or it will never require it. Note that with SDCC, the
use of -mlong_call does not guarantee that all calls will be long calls;
that is, the assembly optimizer, sdopt, will convert long calls to call
immediates if it can determine that such a conversion is safe. The
assembly optimizer can be disabled by specifying the -mno_sdopt
option; otherwise, it is automatically invoked when optimization is
selected. Note that to debug optimized code, the -mno_sdopt option
should be used, because the assembly optimizers perform optimizations
that make debugging extremely difficult.

sdopt takes in assembly generated by the compiler proper and
optimizes it to produce improved assembly. The optimizations that sdopt
performs include simplification of constant generation, conversion of
loops to use loop registers, dead code elimination, loop invariant code
motion, conversion of long calls to call-immediate, instruction scheduling,
and improved register utilization.

zdopt takes in assembly generated by ZDCC and optimizes it to
produce improved assembly. The optimizations that zdopt performs
include dead code elimination, loop invariant code motion, instruction
scheduling, and improved register utilization.

ZDCC supports two models of memory. The default small memory model
requires that data and bss sections be placed in the first 64K words of
data memory. The large data model has no requirements on the size or
placement of the data and bss sections. The large data model is selected
with the “-mlarge_data” option. For both models, the pointer size is 32-
bits. Both models allow stack and heap space to use all addressable
memory. Code generated with the small data model will be more
compact and have better performance than code generated with the
large data model. The small data model allows a shorter instruction
sequence to be used to access memory in the data or bss sections.

3-4 C Cross Compiler

Some of the key options that control the compiler’s output are shown in
Table 3.2.

The optimization levels supported by GCC are described in Table 3.3.

3.2 Compiler Conventions

This section describes the software conventions defined by the SDK
assembler and compiler. You must follow these conventions when writing
assembly-language routines that will be called by your C program.

Table 3.2 Output Options

-c Compile or assemble source files but do not link. Output file is named by
replacing the suffix of the source file with ‘.o’.

-o file Place output in file. This option is applicable whether the output is preprocessed
C, assembly, an object file, or an executable.

-E Stop after preprocessing. Output is sent to standard output.

-S Stop after compilation. Do not assemble. Output file is named by replacing the
‘.c’ suffix with ‘.s’.

-save-temps Store the intermediate preprocessed C, assembly, and object files permanently.
The names used for these intermediate files will be based on the name of the
input file: compiling foo.c with -save-temps will produce foo.i, foo.s, and
foo.o.

-g Generate debugging information for use by the debugger.

Table 3.3 Optimization Options

Option Description

-O0 No optimization is performed. All variables are placed on the stack.

-O1 Only those optimizations that allow the debugger to behave as expected are
performed.

-O2 Only those optimizations that do not greatly increase code size are performed.
These optimizations include dead-code elimination, constant propagation, common
subexpression elimination, and loop invariant code motion.

-O3 All optimizations performed at level -O2 are performed, as well as function inlining
and loop unrolling.

Compiler Conventions 3-5

3.2.1 Data Type Conventions

The compiler’s representation of C data types is summarized in Table
3.4. The q15 data type can be printed by the fprintf and printf
functions. The %q format specifier will print a 16-bit value in fixed-point
notation. For example, the call:

printf("%q\n",0x6000);

will print:

0.75000

Use the accum_a and accum_b data types to select a specific register for
variable storage: variables declared as type accum_a or accum_b are
placed in registers r1r0 and r3r2 respectively with SDCC/ZDXCC. They
are placed in r13r12 and r15r14 respectively with ZDCC. This change
was necessary with ZDCC because registers r0-r3 are clobbered by the
ZSPG2 calling convention. The accum_a and accum_b data types can be

Table 3.4 Compiler’s Representation of C Data Types

C Data Type Representation

char 16 bits

unsigned char 16 bits

int 16 bits

short int 16 bits

unsigned short int 16 bits

q15 16 bits

enum 16 bits

pointer 16 bits with SDCC/ZDXCC
32 bits with ZDCC

long 32 bits

unsigned long 32 bits

accum_a 32 bits

accum_b 32 bits

3-6 C Cross Compiler

used to declare local variables; global accumulators are not supported.
From the compiler’s point of view, accum_a and accum_b are 32-bit
variables that must be stored in a specified register. On the ZSP400, the
accum_a and accum_b data types are placed in r1r0 and r3r2,
respectively, to allow the use of accumulator-specific operations.
Although the compiler treats accum_a and accum_b as 32-bit variables,
the accumulator instructions (for example, mac.a, mac2.a, macn.a ...)
operate on a 40-bit accumulator. The high-order 8 bits for each
accumulator are in the %guard register. If 40-bit accumulators are
needed, the high-order bits can be accessed through inline assembly
instructions that read or modify the %guard register. In ZSPG2, since
every GPR pair supports accumulator operations, other accumulators
can be used by declaring them with:

register long acc_c asm(“rX”);

In fact, accum_a and accum_b declarations are equivalent to:

register long x asm (“rX”);

where “X” is the appropriate register.

It should be remembered that only accumulators r12-r15 have their guard
bits preserved across calls.

3.2.2 Register Usage

3.2.2.1 SDCC/ZDXCC Register Usage

Register usage SDCC/ZDXCC is summarized below. Registers r0
through r15 are general-purpose registers, and registers beginning with
‘%’ are control registers.

• Registers used by the compiler: r0–r15, %fmode, %smode, %amode,
%hwflag, %loop0, %loop1, %loop2, %loop3, %rpc, %pc, %cb0_beg,
%cb0_end, %cb1_beg, %cb1_end, %guard.

• Stack pointer: r12

• Parameter registers: r4-r6

• Callee preserved registers: r0-r3, r7-r12, r14, r15, %guard

• There are no caller saved registers.

Compiler Conventions 3-7

• Return registers: r4 for 16-bit return values, and r5r4 for 32-bit return
values.

The mode registers are never modified by SDCC/ZDXCC except through
inline assembly. The circular buffer registers are never accessed or
modified except through predefined macros in the header file cbuf.h.
The file cbuf.h also has predefined macros to set and clear the cb0 and
cb1 bits in %smode.

3.2.2.2 ZDCC Register Usage

Register usage by ZDCC is summarized below. Registers r0-r15 are
general-purpose registers, a0-a7 are address registers, n0-n7 are index
registers, g0-g7 are guard registers and registers beginning with ‘%’ are
control registers.

• Registers used by the compiler: r0–r15, a0-a7, n0-n7, g0-g7,
%fmode, %smode, %amode, %hwflag, %loop0-%loop3, %rpc, %pc,
%cb0_beg-%cb3_beg, %cb0_end-%cb3_end.

• Stack pointer: a7

• Parameter registers: r2-r7, a0, a1, a6

• Callee preserved registers: r8-r15, g6, g7, a2-a5, a7, n4-n7, %loop2,
%loop3

• Scratch registers: r0, r1, g0-g5, n0-n3, %loop0, %loop1

• Return registers: a0 for pointer values, r4 for 16-bit return values, and
r5r4 for 32-bit non-pointer values.

The mode registers are never modified by ZDCC except through inline
assembly. The circular buffer registers are never accessed or modified
except through predefined macros in the header file cbuf.h. The file
cbuf.h also has predefined macros to set and clear the cb0-cb3 bits in

3-8 C Cross Compiler

%amode. Table 3.5 shows the mode bits that may affect the behavior of
compiler-generated code.

Table 3.5 Effect of Mode Bits on Compiler-Generated Code

Mode
Register

Mode
Register Bit

Affects Non-
intrinsic Code

Required Entry
Value (before C

function call)

May be Modified
Within Function

SDCC
ZDXC

C

ZDCC SDCC
ZDXCC

ZDCC SDCC
ZDXCC

ZDCC

%amode ld yes 0 no

st yes 0 no

cbX n/a yes n/a 0 n/a yes

%fmode sat1 yes no 0 x yes yes

q152 no x yes

sre3 yes x yes

mre4 no x yes

%smode shd5 yes n/a x n/a no n/a

lis yes yes 0 x no no

sis yes yes 0 x no no

cbX6 yes yes 0 0 yes no

dir7 yes x no

ddr8 yes x no

1. Wtih SDCC/ZDXCC, the sat bit of %fmode can affect nonintrinsic code because of
the add and subtract instructions. Nonintrinsic code expects unsaturated arithmetic. If
you require saturated arithmetic for some intrinsics, it is safest to enable saturation
over as small a region of code as possible, because the sat bit also affects adds and
subtracts that must not be saturated (e.g. address arithmetic, stack pointer manipula-
tion, counters, etc.). If you use the -minfer_mac option, the compiler also generates
mac and macn instructions, which are also affected by the sat bit.

2. With SDCC/ZDXCC, the q15 mode bit affects nonintrinsic code if the -minfer_mac
option is used.

3. The sre bit of %fmode affects nonintrinsic code because of the shra and shra.e
instructions. Only perform right shifts of signed variables when the sre bit is cleared.

Compiler Conventions 3-9

3.2.3 Conventions Used for Passing Parameters

SDCC/ZDXCC’s conventions for passing parameters are described
below.

• The first three (16-bit) word parameters (scalar type) are passed in
registers r4–r6.

• All other parameters are passed on the stack.

• A 16-bit value is returned in r4; a 32-bit value is returned in r5r4.

• A structure is returned using a hidden pointer, which is passed by
the caller in r4.

• A structure is passed using two arguments. The first argument is a
pointer to the structure, and the second argument is the structure to
be passed. The pointer to the structure is a 16-bit value and can be
passed in a register if it is one of the first three word-sized
arguments. The second argument, the structure, is passed on the
stack. For structures with a size of one or two words, the pointer
argument is eliminated.

ZDCC’s conventions for passing parameters are described below.

Parameters are examined from first to last

• A pointer value will be passed in the first unused register in the
following list: a0, a1, a6, r5r4, r7r6, r3r2.

• A 32-bit non-pointer value will be passed in the first unused register
in the following list: r5r4, r7r6, r3r2, a0, a1, a6.

4. With SDCC/ZDXCC, the mre mode bit affects nonintrinsic code if the -minfer_mac
option is used.

5. This bit is ZSP400 specific and selects/unselects the use of shadow registers. Com-
piled code operates correctly with either shadow registers or nonshadow registers.

6. For ZSPG2, these bits affect the behavior of r14 and r15. They exist for compatibility
with ZSP400. They should never be set in code compiled with the ZDCC. When using
SDCC/ZDXCC, to prevent these bits from affecting nonintrinsic code, clear these bits
when the portion of code requiring circular buffers is exited.

7. This bit controls whether instructions are fetched from internal or external memory.
Compiled code operates correctly when it resides in internal or external memory,
though normally it resides in internal memory.

8. This bit controls whether data is fetched from internal or external memory. Compiled
code operates correctly when data resides in internal or external memory, though nor-
mally data resides in internal memory. Note that data includes the stack, and that
compiled code does not operate correctly if global data resides in one memory and
the stack resides in another memory.

3-10 C Cross Compiler

• A 16-bit value will be passed in the first unused register in the
following list: r4, r5, r6, r7, r2, r3.

• All other parameters are passed on the stack.

• A pointer value is returned in a0. A non-pointer 32-bit value is
returned in r5r4. A 16-bit value is returned in r4.

• A structure is returned using a hidden pointer, which is passed by
the caller in a0.

Note that registers that were skipped so that a 32-bit parameter could be
passed can be used later when passing a 16-bit parameter. For example,
a function with prototype:

void f(int, long, int)

will expect its’ arguments to be in: r4, r6r7, and r5 respectively.

3.2.4 Run Time Stack

The C run time stack grows towards lower addresses in memory. The
stack pointer (r12 with SDCC/ZDXCC, a7 with ZDCC) decrements when
items are pushed on the stack. The initial memory location of the stack
is specified in the initialization file crt0.o.

Table 3.6 shows the layout of a function’s stack frame.

Table 3.6 Stack Frame Layout

Callee saved registers

%rpc

Local variables and temporaries

Outgoing arguments
(The stack allocates enough space to
accommodate any call by the function.)

Compiler Conventions 3-11

Table 3.7 shows the two example stack frames for the functions foo and
bar, after foo calls bar.

Note that within the body of a function, the stack pointer points to the
beginning of the next stack frame. When a function is called, the compiler
places arguments into registers, if possible, and puts the remaining
arguments in the outgoing arguments of the caller’s stack frame. The
compiler places any required arguments on the stack from lower to
higher addresses. Thus the first argument placed on the stack is the one
closest to the callee’s stack frame. The function call is made after all the
arguments have been properly placed.

3.2.5 Example Code for Function Prologue and Epilogue

3.2.5.1 SDCC/ZDXCC

The following is a sample prologue that saves r0-r3, r7-r9, and %rpc
and reserves 30 words of space on the stack. Note that with optimization,
this code will be reordered with non-prologue code for better scheduling
by sdopt.

Table 3.7 Stack Frame Example

high address

low address

Callee saved registers of foo foo’s stack frame

locals/temps of foo

max args of all functions called by foo

callee saved registers of bar bar’s stack frame

locals/temps of bar

max args of all functions called by bar

3-12 C Cross Compiler

stdu r0, r12, -2
stdu r2, r12, -2
stu r7, r12, -1
stdu r8, r12, -2
mov r13, %rpc
stu r13, r12, -1
mov r13, 30
sub r12, r13

The appropriate epilogue code for the above prologue is shown below.
ZSP interrupt routines expect the stack pointer to point to a writable
location. This requirement prevents the use of the stack pointer to directly
restore the saved registers. Instead, the stack pointer is copied to r6, and
r6 is used to restore the saved registers. After all the registers are
restored, r6 is copied back to the stack pointer.

mov r6, r12
mov r13, 31
add r6, r13
ldu r13, r6, 1
mov %rpc, r13
lddu r8, r6, 2
ldu r7, r6, 1
lddu r2, r6, 2
lddu r0, r6, 2
add r6, -1
mov r12, r6
ret

3.2.5.2 ZDCC

The following is a sample epilogue that saves r8, r9, a2, and %rpc and
reserves 20 words of space on the stack. Note that with optimization, this
code will be reordered with non-prologue code for better scheduling

pushd r8, a7
mov.e r8, %rpc
pushd r8, a7
pushd a2, a7
add a7, -20

The appropriate epilogue code for the above prologue is shown below.

add a7, 20
popd a2, a7
popd r8, a7

Compiler Conventions 3-13

mov.e %rpc, r8
popd r8, a7
ret

3.2.6 Parameter Passing Examples

3.2.6.1 SDCC/ZDXCC

In the example below, function foo calls function bar, passing two long
(32-bit) arguments from r1r0 and r3r2. The first argument is placed in the
stack at r12 + 1, and the second argument is placed at r12 + 3.

Function bar has a frame size of 16 and accesses the passed
arguments in function foo’s outgoing argument stack space.

mov r13, 1 !! The first argument location on the stack
add r13, r12
stdu r0, r13, 2 !! Store r0 at r12+1 and r1 at r12+2.
mov r13, 3
add r13, r12 !! Compute r12+3 and store in r13.
stdu r2, r13, 2 !! Store r2 in r12+3 and r3 in r12+4.

The function bar retrieves arguments from foo’s stack space by loading
the values from foo’s outgoing argument space. The first word of foo’s
outgoing arguments is located at r12+(bar’s stack space)+1, or
r12+(16)+1.

mov r13, 17
ldx r0, r12
mov r13, 18
ldx r1, r12
mov r13, 19
ldx r2, r12
mov r13, 20
ldx r3, r12

3.2.6.2 ZDCC

The following C code:

void callee(int i1, long l1, int i2, long l2, long l3, long *p1, long l4, long l5,
long l6) {

global = l5+l6;

3-14 C Cross Compiler

}

void caller() {
 long a=7;

 callee(1,2,3,4,5,&a,7,8,9);
}

The arguments will be passed in the following locations:

i1 - r4
l1 - r7r6
i2 - r5
l2 - r3r2
l3 - a0
p1 - a1
l4 - a6
l5 - stack+1
l6 - stack+3

The above code will produce the following calling code sequence:

 mov a1, 8
 std a1, a7, 1 !l5, fifth 32-bit non-pointer parameter passed on stack
 mov a0, 7
 mov a1, 9
 std a0, a7, 5
 std a1, a7, 3 !l6, sixth 32-bit non-pointer parameter passed on stack
 mov a6, a0 !l4, fourth 32-bit non-pointer parameter passed in a6
 mov r4, 0x1 !i1, first 16-bit parameter passed in r4
 mov r6, 2 !l1, first 32-bit non-pointer parameter passed in r7r6
 mov r7, 0
 mov r5, 0x3 !i2, second 16-bit parameter passed in r5
 mov r2, 4 !l2, second 32-bit non-pointer parameter passed in r3r2
 mov r3, 0
 mov a0, 5 !l3, third 32-bit non-pointer parameter passed in a0
 mov a1, a7 !p1, first pointer parameter passed in a1
 add a1, 5
 call _callee

The function callee retrieves l5 and l6 from caller’s stack space by
loading the values from caller’s outgoing argument space. The first
word of caller’s outgoing arguments is located at a7+(callee’s stack
space)+1, or a7+(0)+1.

 mov a0, a7
 add a0, 1
 ldd r4, a0
 ldd r6, a7, 3

Run Time Environment 3-15

3.3 Run Time Environment

The compiler run time environment is initialized in the startup file crt0.o
on Solaris platforms or crt0.obj on Windows platforms. By default, the
startup file is automatically linked by the compiler. The initialization file
will fill the bss section with zeroes.

The run-time memory map contains three main sections: text, data, and
bss, in that order. The heap grows from lower addresses to higher
addresses and starts after the bss section. The stack grows from higher
to lower addresses, and starts at the address specified by the predefined
variable __stack_start − 4, which has a default value of 0xF7FB for
SDCC/ZDXCC and 0xFFEFFF for ZDCC. This can be modified as shown
below.

sdcc -Wl,-defsym,__stack_start=0xd000 test.c

3.4 C Run Time Library Functions

The libc.a libraries supplied with the C compiler contain the run time
library functions. These functions are equivalent to those found in other
C programming environments, having the same names and parameter
lists. Thus existing programs that use these functions may be recompiled
without any changes. The compiler provides a debugging form of the
library, libg.a, which allows you to debug standard library functions.

3-16 C Cross Compiler

The library functions are grouped into the following categories:

• String functions (string.h)

bcmp, bcopy, bzero, index, memchr, memcmp, memcpy, memmove,
memset, rindex, strcat, strchr, strcmp, strcpy, strcspn, strlen,
strncat, strncmp, strncpy, strpbrk, strrchr, strspn, strstr,
strtok.

• I/O functions (stdio.h)

fopen, fclose, fwrite, fread, fgetc, fputc, fprintf,
printf, sprintf, vfprintf, vprintf, vsprintf, getc, putc,
getchar, putchar

The fprintf and printf functions have been extended to allow
printing of the q15 data type. A “%q” format specifier will print a 16-bit
value in fixed-point notation.

• The filehandles stdin, stdout, and stderr are available for use with
fwrite, fread, fgetc, fputc, and fprintf.

• Memory allocation functions (stdlib.h)

malloc, free, mbtowc

• Interprocedural control flow functions (setjmp.h)

setjmp, longjmp

In the case of I/O functions, the SDK performs file I/O by sending a
message to the program running on the host (sdbug400, zsim400,
zisim400, zdbug, zdxbug, zsimg2 or zisimg2). These messages will
cause the host program to perform the requested file I/O operation. All
host programs and all zdbug targets support file I/O.

3.5 N-Intrinsics

SDCC N-Intrinsics provide support for DSP instructions. N-Intrinsics are
implemented as macros in the header file N_Intrinsic.h. The name
of an N-Intrinsic begins with an N_ , followed by a suffix that indicates the
operation’s data type: _s for int, _l for long, and _h for high-order int
of a long.

N-Intrinsics 3-17

To use N-intrinsics, add the following line in each of your C files:

#include <N_Intrinsic.h>

N-intrinsics are implemented by the compiler using the assembly
instructions shown in Table 3.8. The older L-intrinsics are still supported
and are described in Appendix D, “L-Intrinsic Functions.”

Table 3.8 N-Intrinsic Functions

Intrinsic Function Generated Code Analogous L-Intrinsic

N_mac(accum acc, int x, int y) mac.acc x, y L_maca, L_macb

N_macn(accum acc, int x, int y) macn.acc x, y L_macna, L_macnb

N_mac2(accum acc, long x, long y) mac2.acc x,y L_mac2a, L_mac2b

N_mul(accum acc, int x, int y) mul.acc x, y L_mula, L_mulb

N_muln(accum acc, int x, int y) muln.acc x, y None

N_norm_l(int ret, long a) norm.e ret, a norm_l

N_norm_s(int ret, int a) norm ret, a norm_s

N_extract_h(int ret, long a) ret = a[31:16] extract_h

N_deposit_h(long ret, int a) ret[31:16] = a
ret[15:0] = 0

L_deposit_h

N_abs_l(long ret, long a) abs.e ret, a L_abs

N_abs_s(int ret, int a) abs ret, a abs_s

N_round_l(long ret, long a) round.e ret, a round

N_shla_l(long ret, int a) shla.e ret, a L_shla

N_shla_s(int ret, int a) shla ret, a shla

3-18 C Cross Compiler

3.5.1 Vector N-Intrinsics

The ZDCC compiler also provides N-Intrinsics for common vector
operations. They are shown in Table 3.9. The vector N-Instrinsics will
produce more efficient code than the equivalent non-vector code.

Important: If you use vector N-Intrinsics at optimization level 3 (-O3),
you must also use the -fno-inline option. Functions with
vector N-Intrinsics must not be inlined, since these intrin-
sics create labels. If these labels are inlined, they are dupli-
cated and cause an error.

3.5.2 ETSI Functions

The SDCC’s N-Intrinsics also allow access to processor-supported ETSI
functionality, although the interface is different. For example, the ETSI
code:

y = norm_l(x);

can be rewritten with N-Intrinsics as:

N_norm_l(y,x);

Table 3.9 Vector N-Intrinsics

N-Intrinsic 1 Functionality 2

N_vc_mac(accum acc, int *vec1, int inc1,
int cnst, int len)

for (i=0; i<len; i++) {
N_mac(acc,cnst,vec1[i*inc1]);
}

N_vc_macn(accum acc, int *vec1, int inc1,
int cnst, int len)

for (i=0; i<len; i++) {
N_macn(acc,cnst,vec1[i*inc1]);
}

N_vv_mac(accum acc, int *vec1, int inc1,
int *vec2, int inc2, int len)

for (i=0; i<len; i++) {
N_mac(acc,vec1[i*inc1],vec2[i*inc2])
}

N_vv_macn(accum acc, int *vec1, int inc1,
int *vec2, int inc2, int len)

for (i=0; i<len; i++) {
N_macn(acc,vec1[i*inc1],vec2[i*inc2]);
}

1. All increment values (inc1, inc2) must be −2, −1, 1, or 2.
2. The actual code generated will be more efficient than the functionally-equivalent code in this column.

N-Intrinsics 3-19

Another approach that preserves the ETSI defined interface would be to
use N_norm_l to implement the ETSI function. For example, norm_l
could be implemented as:

static inline int norm_l(long src) {

int ret;

N_norm_l(ret,src);

return(ret);

}

You may implement some ETSI functions can be implemented using N-
Intrinsics, but you must set mode bits in %fmode accordingly. For
example, you can implement the ETSI function L_mac using N_mac, but
you must also set the SAT and Q15 mode bits in %fmode. This
correspondence between N-Intrinsics and ETSI functions is shown in
Table 3.10.

Table 3.10 ETSI to N-Intrinsic Mapping

ETSI Function N-Intrinsic

fmode1 Register Bits

sat q15 sre mre

abs_s N_abs_s x x x x

extract_h N_extract_h x x x x

L_abs N_abs_l x x x x

L_deposit_h N_deposit_h x x x x

L_mac N_mac 1 1 x 0

L_macN N_mac 0 1 x 0

L_msu N_macn 1 1 x 0

L_msuN N_macn 0 1 x 0

L_mult N_mul x 1 x 0

L_shl N_shla_l 1 x x x

mac_r N_mac 1 1 x 1

3-20 C Cross Compiler

3.6 Circular Buffers

The cbuf.h header file provides the interface to the circular buffers. The
header file’s macros generate the necessary assembly instructions.

To use a circular buffer, a pointer must be declared, the circular buffer
boundaries must be set, and the circular buffer must be enabled. With
SDCC/ZDXCC the pointer must be in r14 or r15.

register int *pt asm("r14");
set_r14_cbuf(low,high);
enable_r14_cbuf;

With ZDCC, the pointer must be in a0 - a3.

register int *pt asm("a2");
set_cbuf(CBUF_ID,low,high);
enable_cbuf(CBUF_ID);

CBUF_ID must beA0_CBUF, A1_CBUF, A2_CBUF or A3_CBUF.

A circular buffer must have at least 4 ints or 2 longs.

Circular buffers can be disabled using the following macros with
SDCC/ZDXCC:

disable_rn_cbuf;

msu_r N_macn 1 1 x 1

mult N_mul x 1 x 0

mult_r N_mul 1 1 x 1

norm_l N_norm_l x x x x

norm_s N_norm_s x x x x

round N_round_l x x x x

1. 1 = Set, 0 = Cleared, x = Don’t Care

Table 3.10 ETSI to N-Intrinsic Mapping (Cont.)

ETSI Function N-Intrinsic

fmode1 Register Bits

sat q15 sre mre

Accessing Control Registers 3-21

For ZDCC the macro is:

disable_cbuf(CBUF_ID);

There are special macros defined within cbuf.h to access the elements
in a circular buffer. These macros are the same for all compilers.

load_int_cbuf(dst,pt,inc)
store_int_cbuf(src,pt,inc)

load_long_cbuf(dst,pt,inc)
store_long_cbuf(src,pt,inc)

The inc parameter determines the number of elements to increment the
pointer pt. The inc parameter must be a constant rather than a variable.
For load_int_cbuf and store_int_cbuf, inc must be in the range
1–50. For load_long_cbuf and store_long_cbuf, inc must be in the
range 1–25.

It is legal to access a value pointed to by pt using *pt, so an increment
value of 0 is not needed.

The dst and src parameters are variables used for the destination and
source values, respectively. Note that these parameters are not pointers
to a location where the destination/source will be stored/accessed, but to
the variables that will actually be stored/accessed.

Note: You must disable circular-buffer arithmetic immediately after
the final use of pt, because the compiler may reuse the
register containing pt for other purposes. The code
generated in this case would not expect the register to have
circular arithmetic.

Because the registers supporting circular-buffer functionality are not
saved and restored by function calls/returns, circular buffers should not
be used with code containing function calls.

3.7 Accessing Control Registers

Macros have been defined in the header file <creg.h> to simplify
accessing control registers.

3-22 C Cross Compiler

read_creg(creg,var) - Puts the value of a control register into
var.

write_creg(creg,val) - Puts a value, which can be a variable or
an immediate, into a control register. The val argument can be made by
or-ing together the following masks for the following registers:

Macros have also been defined to manipulate specific bits of control
registers.

bitset_creg(creg,bitnum)

bitclear_creg(creg,bitnum)

bitinvert_creg(creg,bitnum)

The bitnumber and value arguments can be filled with macros which
have been defined to the approiate value. The bitnumber and mask to
access a specific bit has been defined to “bit name”_[MASK|BIT]. For
example, to set the Q15 bit of %fmode, use the following macro:

bitset_creg(%fmode,Q15_BIT);

3.8 Q15 Support

CC supports the Q15 data type. To use Q15 arithmetic, the q15 mode
bit in the %fmode register must be set, as follows:

bitset_creg(%fmode,Q15_BIT);

The q15 mode bit affects Q15 multiplies and the N-Instrinsics N_mul,
N_mac, N_macn, N_mac2, and the vector intrinsics.

Q15 arithmetic can be disabled as follows:

bitclear_creg(%fmode,Q15_BIT);

This release of the SDK does not support Q15 division.

The code produced for the Q15 data type is equivalent to that produced
for the int data type, except for the following three cases:

• The product of two Q15s is calculated with a mul instruction rather
than an imul instruction.

Inline Assembly 3-23

• The 16-bit result of a Q15 product is the high-order 16 bits of the
result produced by a mul instruction. The 16-bit result of an int
product is the low-order 16 bits of the result produced by an imul
instruction.

• The product of two Q15 constants is not simplified by the compiler.

The fprintf and printf functions have been extended to allow
printing of the q15 data type. A “%q” format specifier will print a 16-bit
value in fixed point notation.

3.9 Inline Assembly

Inline assembly that references C variables can be generated by using
the asm directive.

3.9.1 Syntax

The basic syntax of the asm directive is:

asm(“parameterized assembly” :

output variable, ... :
input expression, ... :
explicitly clobbered register, ...);

3.9.2 Parameterized Assembly

The parameterized assembly consists of a text string containing the
desired assembly output with parameters that will be replaced with
registers or constants according to the arguments in output variable
and input expression. The syntax of a parameter is shown in Table
3.11.

Table 3.11 Parameter Output Syntax

Format Output

%n register name or constant

%mn accumulator name

%on high register name

3-24 C Cross Compiler

In the table above, n is the index of the desired argument in output
variable or input expression. The three formats—%, %m, and %o—
control the way an argument is printed in the generated assembly. For
example, a variable of long type that the compiler has placed in r1 and
r0 will be printed as r0 when the % format is specified, as a when the
%m format is specified, or as r1 when the %o format is specified.

3.9.3 Variables and Expressions

The syntax for an output variable and input expression is:

“constraint” (expression|variable)

A constraint is used to describe the requirements that an instruction
places on an argument. For example, an instruction that requires an
argument to be in a particular register would put a constraint on that
argument to ensure that the argument is placed in an allowed register.

In example 3 in Section 3.9.5, “Examples of asm Directive”, the acc
variable is constrained to be in an accumulator register. The supported
constraints are shown in Table 3.12.

Note that a constant argument can be used with an r constraint. The
SDK copies the constant to a register and uses the register as the
argument. You can combine constraints, which can be useful for
instructions that allow different types of arguments. For example, the
shla instruction can accept either a register or an immediate argument.

Table 3.12 Argument Constraints

Constraint Effect Availability

= output variable All compilers

r general-purpose register All compilers

e address register ZDCC

h index register ZDCC

c accumulator register All compilers

n constant All compilers

<n> same as indexed argument All compilers

Inline Assembly 3-25

The appropriate constraint for this argument would be rn. In example 4
in Section 3.9.5, “Examples of asm Directive”, the input parameter is
constrained to be either a register or an immediate. Sometimes it is
necessary for two arguments to be in the same register. This requirement
can be described by constraints. The first argument should be described
with whatever constraint is appropriate, and the second argument’s
constraint must be the index of the first argument. For example, the first
argument of the add instruction is an output/input argument. You must
list this argument as an output variable and an input
expression. The constraint of this argument when it appears as an
input expression should be the index of the argument when it
appears as an output variable. In example 3 in Section 3.9.5,
“Examples of asm Directive”, the output argument and the first argument
illustrate this technique.

3.9.4 Explicitly Clobbered Registers

The syntax for an explicitly clobbered register is:

“register name”

This entry tells the compiler that the assembly code generated will
clobber the specified register. Thus the generated assembly code may
use the specified register for scratch purposes.

3.9.5 Examples of asm Directive

The examples in the subsections below illustrate the usage of the asm
directive.

3.9.5.1 Example 1

asm(“norm.e %0, %1”:

“=r” (ret) :

“r” (a));

The example shown above has one output argument, ret, and one input
expression, a. If the variable ret is in r0 and the variable a is in r4, this
directive produces:

norm.e r0, r4

3-26 C Cross Compiler

3.9.5.2 Example 2

asm(“abs r5, %1\n\tst r5, %0” : :

“e” (addr), “r” (val) :

“r5”);

The example shown above stores the absolute value of val at addr.
Two instructions are generated by this directive. There are two input
expressions and no output arguments. Note that register r5 is clobbered
by this directive. If addr is in a0 and val is in r15, this directive
produces:

abs r5, r15

st r5, a0

Inline Assembly 3-27

3.9.5.3 Example 3

asm(“mac.%m0 %2, %o2” :

“=c” (acc) :

“0” (acc), “r” (val));

The example above adds the 32-bit product of the high and low 16 bits
of val to acc. Note that the high part of val is obtained with the %o2
operand and that the accumulator is printed with the %m0 operand. Also
note that acc is both an input and an output argument, and that the
constraint for acc when it appears as an output argument is c, an
accumulator, and when it appears as an input argument is 0, which tells
the compiler that these two arguments must be in the same location. If
acc is in r0 and val is in r3r2, the following code is generated:

mac.a r2, r3

3.9.5.4 Example 4

asm(“mov %%smode, %0” : :

“rn” (val));

The example shown above sets %smode to val. Note that %smode is not
specified as a clobbered register, because %smode has no meaning to the
compiler. If val is a symbolic constant with the value 3, the following
code is generated:

mov %smode, 3

You can find additional examples of using the asm directive in the header
file N_Intrinsic.h.

3.9.5.5 Example 5

asm(“bits %smode, 7”);

The example shown above sets bit 7 in %smode. This example illustrates
the general rule that if the assembly statement contains an argument (as
in Example 4, which contains the argument %0), a reference to a register
must contain an additional per cent (%) sign. Example 5 contains no
argument, so a single % preceding smode is used.

3-28 C Cross Compiler

3.9.6 Optimization of Inline Assembly

For purposes of optimization, the compiler assumes that inline assembly
has no effect except to modify the output variables. Thus inline assembly
can be removed by optimization if none of the output variables is
subsequently used. Inline assembly that must not be deleted or
significantly moved should contain the keyword volatile following the
asm directive, as shown below.

asm volatile(“bits %smode, 7”);

The volatile keyword is implicit for inline assembly with no output
variables. Thus, the use of volatile in the above example is redundant.

3.10 Assembly Optimizer and Handwritten Assembly

The assembly optimizers can be used to automatically generate the
prologue and epilogue for an assembly function and then to schedule the
entire function.

sdopt -asm assemblyfile

The output will be placed in standard output. The assembly optimizers
expect input of the following format:

!PROLOGUE(<function name>)
<function body>

!EPILOGUE

This will be transformed by the assembly optimizer to:

.set REGSAVE_SIZE_<function name> <stack space used>
<function name>:
__FUNC_START_<function name>:
<optimized assembly code with prologue/epilogue>
__FUNC_END_<function name>:
ret

All registers that must be preserved according to the C calling convention
will be preserved. Note that the name REGSAVE_SIZE_<function
name> can be used if the size of the stack space used by the
prologue/epilogue is needed. Any input in the assembly file outside of the

Debugging Options 3-29

!PROLOGUE and !EPILOGUE markers will be copied without
modification.

3.11 Debugging Options

You can debug code compiled using the GCC-supplied -g option, which
generates debugging information. You can attempt debugging with
optimization turned on, though optimization makes debugging difficult.
When debugging optimized code, use the -mno_sdopt option, because
sdopt, zdxopt and zdopt do not preserve the location of debugging
information.

Using the -g option with optimization modifies the code generated in two
ways. First, the debugging version of the C library is linked, rather than
the optimized version. Second, leaf functions save and restore %rpc
(without the -g option, this save and restore is removed by optimization).
The -g option saves and restores this register, because the debugger
requires it to examine the call stack.

3.12 Code Statistics

CC creates four labels and symbols that are useful in analyzing the code
generated by the compiler.

Every function will have a label placed on its first instruction and after its
last instruction with the following formats:

__FUNC_START_<function name>

__FUNC_END_<function name>

The difference of these two labels will give the code size of a function.
A function will also have a label placed on its return instruction:

__FUNC_EXIT_<function name>

This label is used for function profiling. Every function will also have an
absolute symbol that shows the number of words of stack space used
per invocation of the function.

__FUNC_FRAME_SIZE_<function name>

3-30 C Cross Compiler

3.13 Example Compilations

3.13.1 Example 1

cc test.c -Tdata=0x1

This command invokes the C compiler, assembler, and linker and
produces an executable file with the default name a.out.
The -Tdata=0x1 command places the data at address 0x1 to prevent a
NULL pointer from being a valid pointer.

3.13.2 Example 2

cc -c test.c

This command invokes the C compiler and assembler only, producing an
object file with the default name test.obj (Windows) or test.o (UNIX).

3.13.3 Example 3

cc -S test.c

This command invokes the C compiler only, producing an assembly file
with the default name test.s.

3.13.4 Example 4

cc -O3 test.c

This command invokes the C compiler with the highest level of
optimization, that is, including all level -O2 optimizations, as well as
function inlining and loop unrolling. The assembler and linker are also
invoked, and the output is an executable file with the default name a.out.

ZSP SDK Software Development Kit 4-1

Chapter 4
Assembler

The SDK Assembler (SDAS/ZDAS) is based on the GNU assembler, AS,
from the Free Software Foundation. It is described in Using AS: The
GNU Assembler, by Dean Elsner, et. al., Free Software Foundation,
January 1994. The description of SDAS/ZDAS in this chapter, for the
most part, includes only the differences from AS. SDAS is the assembler
for the ZSP400 architecture. ZDAS is the assembler for the ZSPG2
architecture. In this chapter, unless otherwise noted, SDAS refers to both
the ZSP400 and ZSPG2 assemblers.

The assembler is invoked from the shell using the following command:

sdas [options] sourcefile

SDAS processes an assembly source file with the .s file extension and
produces a relocatable object file in ELF format with the default file
extension .obj (Windows) or .o (UNIX).

4.1 Assembly Language Syntax

The basic format of a SDK assembly language statement is:

[label:] [statement] [!comment]

Labels are identifiers that start at the beginning of a line, with no leading
spaces or tabs, and end with a colon. Identifiers begin with a letter (case
is significant) or an underscore, and can continue with more letters,
digits, and underscores. Assembly language instructions can be on the
same line as a label.

Examples:

Start: !“Start” is a label
start: !“start” is another (different) label

4-2 Assembler

bnz start !“start” is a label reference
loop: add r0, r1 !“loop” is a label

bnz Start: ! Illegal reference (extra colon)
End ! Illegal label (missing colon)

Symbols beginning with ‘L’ are locally resolved, and are therefore not
visible to the linker or to other modules.

Assembler statements can be assembler directives or assembly
language instructions. Assembler directives start with a period (‘.’).

Comments start with an exclamation mark (!) and continue until the end
of the line. The symbol ‘#’ at the beginning of the line indicates that it is
a comment.

Note that files with the .S extension can be assembled using sdcc, which
causes the C preprocessor to run before the assembler. This enables
users to use C-style comments and #defines in their assembly code.
However using a -g option will not cause any debug symbol generation,
since the source file is an assembly program. To turn on debug
information for an assembly program with a .S extension, you can use
sdcc with the -Wa and -dbg options (the -dbg option is described in
Section 4.1.1.4, “Debugging Option (-dbg),” page 4-3).

All assembly programs must be contained within a section.

Putting .section “.text”, “ax” before any assembly code ensures
that the code gets assembled into the .text section. Please refer to the
GNU assembler manual for more information on the section syntax and
flag definitions.

4.1.1 Assembler Options

Please refer to the GNU assembler manual for a full description of all
options available to the assembler. A few of the more frequently-used
options as well as the options specific for the SDK are described below.

4.1.1.1 Suppress warnings (-W)

This options prevents warnings from the assembler from being displayed
on the screen.

Assembly Language Syntax 4-3

4.1.1.2 Output file (-o)

Using -o objfile assembles the output into the object file specified. By
default, if you do not use the -o option, the resulting object file is named
a.out.

4.1.1.3 Include path (-I)

The -I dir option is used to add the specified directory to the search
list used by .include directives.

4.1.1.4 Debugging Option (-dbg)

The -dbg option adds debugging information to the executable file, which
allows you to debug the source file rather than the disassembled text.
The usage is:

sdas -dbg test.s

where test.s is the name of the assembly file.

4.1.2 Assembler Directives

The following subsections describe some frequently-used assembler
directives, as well as those that are specific to the SDK assembly
language.

4.1.2.1 .walign

The .walign directive aligns the location counter on the next word
boundary specified by an integer argument. If the location counter is
already aligned, no action is taken. Intervening words are filled with nop
instructions. For example,

.walign 32 ! Align to the next 32-word boundary.

4.1.2.2 .wspace

The .wspace directive allocates space in a segment as specified by an
integer argument. The location counter is incremented, regardless of
alignment. For example,

.wspace 7 ! Increment the location counter by seven.

4-4 Assembler

An optional fill value can also be given. If no fill value is given, the space will be filled
with zeroes.

.wspace 7, 0xd800! Create 7 words of 0xd800

4.1.2.3 .word

The .word directive allows a user to specify zero or more comma
separated values to be assembled into memory.

4.1.2.4 .global

The .global directive is used to declare a global symbol. If this directive
is not used, a symbol defined in a partial program is visible only within
its scope. The .global directive makes the symbol visible to the linker.

4.1.2.5 .section

The .section directive assembles the code following it into the section
name specified.

Example: .section, “.text”, “ax”

This defines a section named “.text” - the characters following it tell the
assembler that the code following the directive is allocatable and is a part
of the instruction memory. Please refer to the GNU assembler manual for
more information.

Although GNU assembler documentation says unnamed sections go to
the default .text section, it is necessary to specify sections explicitly for
the ZSP SDK tools.

4.1.3 Assembler Special Cases

For all instructions that require a register pair, the even register must be
specified as the operand. For the ZSP400 assembler only, If an odd
register is specified, the even register of the register pair is used as the
actual operand in the instruction, and the assembler displays a warning
message. With the ZSPG2 assembler, zdas, an odd register will not be
converted to an even register and an error will be message will be
shown.

Assembly Language Syntax 4-5

For the ZSP400 architecture, a target function must be placed at an even
address. If the value is odd, an error message is displayed. A function
can be forced to start on an even address by using the .walign 2
directive. For the ZSPG2 architecture, there are no alignment
requirements for call targets.

4-6 Assembler

ZSP SDK Software Development Kit 5-1

Chapter 5
Linker

The SDK Linker (SDLD/ZDLD) is based on the GNU linker, LD, from the
Free Software Foundation. LD is described in Using LD: The GNU Linker,
by Steve Chamberlain, Free Software Foundation, January 1994. SDLD
is the linker for the ZSP400 architecture. ZDLD is the linker for the
ZSPG2 architecture. Unless otherwise noted, SDLD refers to both the
ZSP400 and ZSPG2 linkers.

The linker processes the object files generated by the assembler
(designated with the .obj extension on Windows or .o extension on
UNIX) and produces an executable file in ELF format with the default
name a.out.

The linker is invoked from the shell using the following command:

sdld [options] sourcefile

5.1 Sections

By default, the linker generates .text, .data and .bss sections. The .text
sections contains code, .data contains data, and .bss contains
uninitialized data. If there are additional user-defined sections specified
in the linker script file, the linker will generate them also.

By default, .bss follows .data in Data memory unless relocated using a
linker script command.

The following section names have special meaning only on the ZSP400
linker:

• .exttext_0 through .exttext_15

• .extdata_0 through .extdata_15

5-2 Linker

Code or data in these sections is placed in the appropriate external
instruction or data memory, with the particular external page selected by
the number in the section name.

On the ZSP400 architecture, the offset of a call immediate instruction
must be even. If the assembler cannot resolve this offset, the linker will.
If the offset is odd, the linker displays an error message. Because the
assembler will automatically align call immediate instructions on an
even address, this error occurs only if the call target was on an odd
address. To resolve this error, align the call target on an even address,
using the .walign 2 directive.

5.1.1 Symbols

By default, program execution begins at __start. The entry point can be
altered by specifying an alternate address, using the -e option. For
example, the following command will cause execution to begin at address
0xabcd:

sdld -e 0xabcd

The C stack region will always be set to the internal data memory. The
linker uses four symbols for stack-range checking:

• __stack_start: beginning of C stack, default setting is 0xF7FF with
SDLD and 0xFFEFFF with ZDLD.

• __stack_end: ending address of C stack

• __stack_size.linker_defined: stack size calculated by linker

• __stack_size.user_required: user required stack size set in
command line option

You can inspect the values of these symbols in the map file.

The value of the symbol __stack_start or __stack_end can be set in
a linker script file or by using the command-line option defsym
sym=Value.

The user-required stack size can be set using the command-line option
stack_size=Value. The linker will report an error when the stack size is
inadequate.

Sections 5-3

5.1.2 Linker command file

A linker command file (also called a linker script file) is a file containing
linker commands that explicitly define symbols and locate sections in
memory. A linker command file can be specified when the linker is
invoked. An example linker command file is shown below.

SECTIONS
{
.text 0x2000: {*(.text)}
.data 0x3000: {*(.data)}
vectors 0x0000: {*(vectors)}
}

The example above declares the output sections .text, .data, and vectors.
Each output section is formed by the corresponding input sections from
all files (as indicated by the ‘*’).

Refer to the GNU ld man page for more information.

5.1.3 Linker options

The following subsections describe some frequently-used linker options,
as well as those that are specific to the SDK assembly language.

Option Description

-T linkercommandfile Replaces the linker’s default script file with the
specified linkercommandfile.

-o outputfile Names the output file. By default, the output
file name is a.out.

-l archive Adds archive file archive to the list of files to
link. The linker will search for files
libarchive.a for every archive specified
using this option.

-L searchdir Adds searchdir to the list of directories to
search for archive libraries and linker scripts.
Multiple paths can be specified by using the -
L option multiple times.

-M Prints the link map to stdout. A link map
contains information on the mapping of
symbols.

5-4 Linker

--defsym symbol=expression Creates a global symbol in the output file
containing the absolute address specified by
the expression. This option can be used
multiple times to create multiple symbols. Valid
formats for expression are hexadecimal
constants or the names of existing symbols.

-Tbss addr Locate the .bss section at the address
specified by addr.

-Ttext addr Locate the .text section at the address
specified by addr.

-Tdata addr Locate the .data section at the address
specified by addr.

Option Description

ZSP SDK Software Development Kit 6-1

Chapter 6
Utilities

This chapter describes the SDK utility programs.

The SDK provides additional utilities for manipulating files that are
generated by the tools during project creation. These SDK-specific
utilities, described in Table 6.1, replace their GNU counterparts. Tools for
the ZSP400 architecture start with an “sd” prefix. Tools for the ZSPG2
architecture start with a “zd” prefix. Unless otherwise specified, the
description of a utility applies to both the ZSP400 and ZSPG2 versions
of the tools.

Table 6.1 SDK Utilities and GNU Counterparts

Utility
GNU
Equivalent Function

sdar
zdar

ar Creates, modifies, and extracts files from an archive.

sdnm
zdnm

nm Lists symbols from object files.

sdobjdump
zdobjdump

objdump Displays information from object files.

sdranlib
zdranlib

ranlib Generates an index for an archive.

sdstrings
zdstrings

strings Prints the printable characters in the files.

sdsize
zdsize

size Lists section sizes and total size of object file.

sdstrip
zdstrip

strip Discards symbols from object files.

sdobjcopy
zdobjcopy

objcopy Copies and translates object files.

6-2 Utilities

6.1 sdar

Format

sdar [-]p[mod [relpos]] archive [member...]

Description

sdar creates, modifies, and extracts from archives. An archive is a single
file holding a collection of other files in a structure that allows you to
retrieve the original individual files (called members of the archive). The
original files’ contents, mode (permissions), timestamp, owner, and group
are preserved in the archive, and can be restored on extraction.

When you specify the modifier s, sdar creates an index to the symbols
defined in relocatable object modules in the archive. Once created, this
index is updated in the archive whenever sdar makes a change to its
contents (save for the ‘q’ update operation). An archive with such an
index speeds up linking to the library, and allows routines in the library
to call each other without regard to their placement in the archive.

You may use ‘sdnm -s’ or ‘sdnm --print-armap’ to list this index table.
If an archive lacks the table, another form of ar called sdranlib can be
used to add just the table.

Options

sdar 6-3

The p keyletter specifies what operation to execute. It may be any of the
following, but you must specify only one of them:

A number of modifiers (mod) may immediately follow the p keyletter, to
specify variations on an operation’s behavior:

Table 6.2 sdar p Keyletter Options

Option Description

d Deletes modules from the archive. Specify the names of modules to be deleted as
member...; the archive is untouched if you specify no files to delete. If you specify the
‘v’ modifier, ar lists each module as it is deleted.

p Prints the specified members of the archive, to the standard output file. If the ‘v’ modifier
is specified, show the member name before copying its contents to standard output. If
you specify no member arguments, all the files in the archive are printed.

r Inserts the files member... into archive (with replacement). This operation differs from ‘q’
in that any previously existing members are deleted if their names match those being
added. If one of the files named in member... does not exist, ar displays an error
message, and leaves undisturbed any existing members of the archive matching that
name. By default, new members are added at the end of the file; but you may use one
of the modifiers ‘a’, ‘b’, or ‘i’ to request placement relative to some existing member. The
modifier ‘v’ used with this operation elicits a line of output for each file inserted, along
with one of the letters ‘a’ or ‘r’ to indicate whether the file was appended (no old member
deleted) or replaced.

t Displays a table listing the contents of archive, or those of the files listed in member...
that are present in the archive. Normally only the member name is shown; if you also
want to see the modes (permissions), timestamp, owner, group, and size, you can
request that by also specifying the ‘v’ modifier. If you do not specify a member, all files
in the archive are listed. If there is more than one file with the same name (say, ‘fie’) in
an archive (say ‘b.a’), ‘ar t b.a fie’ lists only the first instance; to see them all, you
must ask for a complete listing--in our example, ‘ar t b.a’.

x Extracts members (named member) from the archive. You can use the ‘v’ modifier with
this operation, to request that ar list each name as it extracts it. If you do not specify a
member, all files in the archive are extracted.

6-4 Utilities

Table 6.3 sdar p Keyletter Modifiers

Option Description

f Truncates names in the archive. GNU ar will normally permit file names of any length.
This will cause it to create archives which are not compatible with the native ar program
on some systems. If this is a concern, the ‘f’ modifier may be used to truncate file names
when putting them in the archive.

o Preserves the original dates of members when extracting them. If you do not specify this
modifier, files extracted from the archive are stamped with the time of extraction.

u Normally, ‘ar r’... inserts all files listed into the archive. If you would like to insert only
those of the files you list that are newer than existing members of the same names, use
this modifier. The ‘u’ modifier is allowed only for the operation ‘r’ (replace). In particular,
the combination ‘qu’ is not allowed, since checking the timestamps would lose any speed
advantage from the operation ‘q’.

q Quick append at end of files

sdstrip 6-5

6.2 sdstrip

Format

sdstrip

[-R sectionname | --remove-section=sectionname]

[-s | --strip-all]

[-S | -g | --strip-debug]

[-N symbolname | --strip-symbol=symbolname]

[-o file]

[-p |--preserve-dates]

[--help]

objfile ...

Description

sdstrip discards all symbols from the object files objfile. The list of
object files may include archives. At least one object file must be
specified. sdstrip modifies the files named in its argument, rather than
writing modified copies under different names.

Options

6-6 Utilities

Table 6.4 sdstrip Options

Option Description

--help Shows a summary of the options to strip and exit.

-R sectionname |
--remove-section=sectionname

Removes the named section from the file. You may give this
option more than once. Note that using this option
inappropriately may make the object file unusable.

-R sectionname |
--remove-section=sectionname

Removes any section named sectionname from the
output file. You may give this option more than once. Note that
inappropriate use of this option inappropriately may make the
output file unusable.

-s | --strip-all Removes all symbols.

-S | -g | --strip-debug Removes debugging symbols only.

-N symbolname |
--strip-symbol=symbolname

Removes symbol symbolname from the source file. You may
give this option more than once, and may be combined with
other strip options.

-o file Puts the stripped output in file, rather than replacing the
existing file. If you use this argument, you can specify only
one objfile argument.

sdranlib 6-7

6.3 sdranlib

Format

sdranlib archive

Description

The sdranlib utility generates an index to the contents of an archive and
stores it in the archive. The index lists each symbol defined by a member
of an archive that is a relocatable object file.

You may use ‘sdnm -s’ or ‘sdnm --print-armap’ to list this index.

An archive with such an index speeds up linking to the library and allows
routines in the library to call each other without regard to their placement
in the archive.

6-8 Utilities

6.4 sdnm

Format

sdnm [-g | -s | -A | -o | -u | -l] objfile

Description

The sdnm utility lists the symbols from object files objfile. If no object
files are given as arguments, sdnm assumes the file a.out.

Options

Table 6.5 sdnm Options

Option Description

-A | -o | --print-file-name Precedes each symbol by the name of the input file where it was
found, rather than identifying the input file once only before all of its
symbols.

-g | --extern-only Displays only external symbols.

-p | --no-sort Prints the symbols in the order they are encountered rather than
sorting them first.

-s | --print-armap When listing symbols from archive members, includes the index,
which is a mapping (stored in the archive by ar or ranlib) of what
modules contain definitions for what names.

-t radix | --radix=radix Uses radix as the radix for printing the symbol values. It must be
‘d’ for decimal, ‘o’ for octal, or ‘x’ for hexadecimal.

-u | --undefined-only Displays only undefined symbols (those external to each object
file).

-l | --line-numbers Uses debug information to display filename and line number for
symbols.

sdsize 6-9

6.5 sdsize

Format

sdsize [-A |B | --format=compatibility][-x | --
radix=number][objfile...]

Description

The sdsize utility lists the section sizes, and the total size, for each of the
object or archive files objfile in its argument list. By default, one line
of output is generated for each object file or each module in an archive.

objfile... are the object files to be examined. If none are specified, the
file a.out will be used.

Options

Example

Here is an example of formatting the output from sdsize closer to
System V conventions:

sdsize --format=SysV file1

file1 :

Table 6.6 sdsize Options

Option Description

-A | -B | --format=compatibility Using one of these options, you can choose whether the
output from sdsize resembles output from System V UNIX
size (using ‘-A’, or ‘--format=sysv’), or Berkeley Software
Distribution (BSD) size (using ‘-B’, or ‘--
format=berkeley’). The default is the one-line format
similar to BSD format.

--help Shows a summary of acceptable arguments and options.

-d | -o | -x | --radix=number Using one of these options, you can control whether the
size of each section is given in decimal (‘-d’, or ‘--
radix=10’); octal (‘-o’,
or ‘--radix=8’); or hexadecimal (‘-x’, or ‘--radix=16’). In
‘--radix=number’, only the three values (8, 10, 16) are
supported.

6-10 Utilities

 section size addr
 .text 294880 8192
 .data 81920 303104
 .bss 11592 385024
 Total 388392

sdstrings 6-11

6.6 sdstrings

Format

sdstrings [-min-len] [-n min-len] [-t radix]
[--print-file-name] [--bytes=min-len][--radix=radix]
file...

Description

For each file given, the sdstrings utility prints the printable character
sequences that are at least 4 characters long (or the number given with
the options below) and are followed by an unprintable character. By
default, only strings from the initialized and loaded sections of object files
are printed; for other types of files, it prints the strings from the entire file.

sdstrings is mainly useful for determining the contents of nontext files.

Options

Table 6.7 sdstrings Options

Option Description

-f | --print-file-name Prints the name of the file before each string.

-min-len | -n min-len |
--bytes=min-len

Prints sequences of characters that are at least min-len
characters long, instead of the default 4.

-t radix | --radix=radix Prints the offset within the file before each string. The single
character argument specifies the radix of the offset:‘o’ for octal,
‘x’ for hexadecimal, or ‘d’ for decimal.

6-12 Utilities

6.7 sdobjdump

Format

sdobjdump

[-d | --disassemble]

[-f | --file-headers]

[-j section | --section=section]

[-t | --syms]

[-h | --section-headers]

[--start-address=address]

[--stop-address=address]

[--help]

objfile...

Description

The sdobjdump utility displays information about one or more object files.
The options control what particular information to display. This
information is most useful to programmers who are working on the
compilation tools, as opposed to programmers who just want their
program to compile and work.

objfile... are the object files to be examined. When you specify
archives, objdump shows information on each of the member object files.

Options

The long and short forms of options, shown here as alternatives, are
equivalent. At least one option from the list must be given.

sdobjdump 6-13

Table 6.8 sdobjdump Options

Option Description

-d | --disassemble Displays the assembler mnemonics for the machine instructions from
objfile. This option only disassembles those sections which are
expected to contain instructions.

-f | --file-header Displays summary information from the overall header of each of the
objfile files.

-h | --section-header |
--header

Displays summary information from the section headers of the object
file. You may relocate file segments to nonstandard addresses, for
example by using the -Ttext, -Tdata, or -Tbss options to ld.

--help Prints a summary of the options to objdump and exit

-j name | --section=name Displays information only for named section.

--start-
address=address

Starts displaying data at the specified address. This affects the output
of the -d, -r and -s options.

--stop-address=address Stops displaying data at the specified address. This affects the output
of the -d, -r and -s options.

-t | --syms Prints the symbol table entries of the file. This is similar to the
information provided by the ‘nm’ program.

6-14 Utilities

6.8 sdobjcopy

Format

sdobjcopy

[-O bfdname | --output-target=bfdname]

[-b byte | --byte=byte]

[-i interleave | --interleave=interleave]

[--gap-fill=val]

[--pad-to=address]

[--set-start=val] [--adjust-start=incr]

infile [outfile]

Description

The sdobjcopy utility copies the contents of an object file to another
object file. It uses the GNU BFD Library to read and write the object files.
It can write the destination object file in a format different from that of the
source object file. The exact behavior of sdobjcopy is controlled by
command-line options.

sdobjcopy generates S-records if you specify an output target of ‘srec’
(use ‘-O srec’).

sdobjcopy generates binary output if you specify an output target of
‘binary’ (use ‘-O binary’).

sdobjcopy generates a raw binary file if you specify an output target of
‘binary’ (e.g., use ‘-O binary’). When sdobjcopy generates a raw binary
file, it will essentially produce a memory dump of the contents of the
input object file. All symbols and relocation information will be discarded.
The memory dump will start at the load address of the lowest section
copied into the output file.

When generating an S-record or a raw binary file, it may be helpful to
use ‘-S’ to remove sections containing debugging information. In some

sdobjcopy 6-15

cases ‘-R’ will be useful to remove sections which contain information
which is not needed by the binary file.

infile

outfile

The source and output files, respectively. If you do not specify outfile,
objcopy creates a temporary file and destructively renames the result
with the name of infile.

Options

Table 6.9 sdobjcopy Options

Option Description

-O bfdname |
--output-target=bfdname

Write the output file using the object format bfdname.

-b byte | --byte=byte Keep only every byteth byte of the input file (header data is not
affected). byte can be in the range from 0 to interleave-1, where
interleave is given by the -i or --interleave option, or the default
of 4. This option is useful for creating files to program ROM. It is
typically used with an srec output target.

-i interleave | --
interleave=interleave

Copy only one out of every interleave bytes. Select which byte to copy
with the -b or --byte option. The default is 4. objcopy ignores this
option if you do not specify either -b or --byte.

--gap-fill val Fill gaps between sections with val. This operation applies to the load
address (LMA) of the sections. It is done by increasing the size of the
section with the lower address, and filling in the extra space created
with val.

--pad-to address Pad the output file up to the load address address by increasing the
size of the last section. The extra space is filled in with the value
specified by --gap-fill (default zero).

--set-start val Set the address of the new file to val. Not all object file formats
support setting the start address.

6-16 Utilities

ZSP SDK Software Development Kit 7-1

Chapter 7
ZISIM Simulator

This chapter describes the SDK ZSP architecture simulator.

The ZSP SDK functional-accurate simulator, ZISIM, simulates the
behavior of the LSI40xZ series of ZSP devices, ZSP400, and ZSPG2
architecture-based designs at the architectural level, including the
memory model, the operand register file, and the control register file.

7.1 Using ZISIM

ZSIM can be accessed as a target through the debugger or as a stand-
alone program. This chapter describes the interface to ZISIM as a stand-
alone program. ZISIM can be used in batch mode or interactively, as
described in the following subsections. The commands supported in both
modes of operation are described in Section 7.2, “ZISIM Commands,”
page 7-4.

7.1.1 Batch Mode

The simulator can be invoked in batch mode from the command line
using the -exec option, as shown below.

% zisim400 executeable_file -exec [options] for ZSP400
architecture

% zisimg2 executable_file -exec [options] for ZSPG2
architecture

The simulator can also be invoked in batch mode using a script file
containing ZSIM commands that load, execute, and gather results for a
specified executable. Script files may contain any valid ZISIM commands.
Comments must be preceded by the comment specifier (#). ZISIM
ignores all commands between the # character and the end of line.
ZISIM also ignores empty lines.

7-2 ZISIM Simulator

A simple script file that turns-on instruction tracing and then executes the
program test.exe is shown below.

load test.exe
enable trace write
run 100000
exit

Assuming the file batch.scr contains the commands shown above, you
can generate a trace file for test.exe as follows:

% zisim400 -s batch.scr > test.trace (Unix for ZSP400
architecture)

% zisimg2 -s batch.scr > test.trace (Unix for ZSPG2
architecture)

C:\zisim400 -s batch.scr > test.trace (Windows for ZSP400
architecture)

C:\zisimg2 -s batch.scr > test.trace (Windows for ZSPG2
architecture)

Refer also to Section 7.2.21, “script,” page 7-15.

7.1.2 Interactive Mode

In interactive mode, ZISIM is invoked from the shell using the following
command:

zisim400 [executable_file] [options]

zisimg2 [executable_file] options

An executable file may or may not be specified, followed by zero or more
command-line options separated by spaces The executable file is a ZSP
binary file generated using the SDK compiler, assembler, and linker tools,
as explained in other chapters of this document. ZISIM processes the
source file according to the specified command-line options (refer to
Table 7.1). If no options are specified, ZISIM initializes itself, then
prompts the user with the ZISIM prompt:

zisim{1}>

The simulator is now ready to accept and respond to ZISIM commands,
which are described in Section 7.2, “ZISIM Commands,”. An executable
file may be loaded from within ZISIM using the load exe command.

Using ZISIM 7-3

An example interactive simulation session is described in Section 7.4,
“Example Session Using ZISIM”. Refer also to the description of using
ZISIM use as the target of the SDK’s Debugger in Section 9.2.1,
“Functional-Accurate Simulator Connection.”

Table 7.1 ZISIM Command-line Options

Option Description

-c NUM Limits number of executed instructions to NUM. By default, NUM =
2000000000. Execution continues until a breakpoint is reached or the
number of executed instructions hit the limit. Use this option to ensure
termination of an algorithm.

-h Prints brief usage summary.

-i mode_register=value Initializes an architectural control (mode) register with specified value.
Note that the control register is written without its usual percent (%)
sign, and there are no spaces around the equal sign (=). For example,
the option to set %SMODE control register is:
-i smode=0x1234.
The option to set r0 register is
-i r0=0x9876.
Refer to Appendix B, "ZSP400 Control Registers" for information on
ZSP400 core-based device control registers.

-m Enables memory trace. ZISIM prints a trace of the execution program
to standard output whenever a write to a memory occurs. The format
of this output is similar to option -t.

-noiboot Fetches instructions from external ROM space. If you do not specify
this option, instructions are fetched from internal ROM space. ROM is
mapped from 0xf800 to 0xffff. This option is specific to zisim400.

-radix {dec|hex} Displays data in specified radix, either decimal or hexadecimal.

-reg Enables register trace. All the architectural registers will be displayed
after executing an instruction.

-s sourcefile Reads all the simulator commands from file.

-t Enables flow trace. ZISIM prints a trace of the executing program to
standard output. The information printed includes the instruction
sequence number, instruction address, the disassembled instruction
and operands, and the resulting architectural state. Example output for
the -t option is shown in Section 7.4, “Example Session Using ZISIM,”
page 7-24.

-exec Invokes the simulator in noninteractive mode.

-v Prints version number and exit.

7-4 ZISIM Simulator

7.2 ZISIM Commands

This section describes commands recognized by the ZISIM command
line. Table 7.2 provides a brief summary of commands. The output of any
ZISIM command can be sent to a file using the standard redirection
identifier (>). For example, the command show attr > filename dumps
the output of the show command to filename.

Table 7.2 ZISIM Command Summary

Command Modifier Argument Description

alias – [tag command_sequence] Creates alias (tag) for command
sequence.

clear break breakpoint_number Clears specified breakpoint.

dmem {int | ext} addr size Clears internal or external data memory.

imem {int | ext} addr size Clears internal or external instruction
memory.

stats – Clears statistics information.

disable break breakpoint Disables specified breakpoint.

trace {mem | reg | write} Disables run-time instruction tracing.

dump dmem {int | ext} filename addr size Dumps internal or external data memory
range to a text file.

imem {int | ext} filename addr size Dumps internal or external instruction
memory range to a text file.

enable break breakpoint_number Enables breakpoint.

trace {mem | reg | write} Enables run-time instruction tracing.

exit – – Exits simulation session.

fill dmem {int | ext} addr size value Fills internal/external data memory
range with value.

imem {int | ext} addr size value Fills internal/external instruction memory
range with value.

(Sheet 1 of 3)

ZISIM Commands 7-5

help – {category | command} Prints list of commands in a category or
command usage.

load dmem {int | ext} filename addr size Loads internal/external data memory
from file.

exe filename Loads ZSP executable into instruction
memory from file.

imem {int | ext} filename addr size Loads internal/external instruction
memory from file.

reset – {hard | soft} Resets simulator.

run – [number_of_instructions] Runs for specified number of simulation
instructions.

script – filename Loads and execute ZISIM script file.

set attr {history | radix | run} value Assigns value to specified attribute.

break pc addr Creates a new breakpoint at the
specified PC address.

break symbol label Creates a new breakpoint at the
specified label.

reg register value Assigns value to specified register.

Table 7.2 ZISIM Command Summary (Cont.)

Command Modifier Argument Description

(Sheet 2 of 3)

7-6 ZISIM Simulator

show attr {run | history | radix | version} Shows value of the specified attribute.

bits register Displays the bit-level states for the
specified register.

break – Displays list of defined breakpoints.

dmem {int | ext} addr size Shows contents of a region of
internal/external data memory.

imem {int | ext} addr size Shows contents of a region of
internal/external instruction memory.

reg {category | reg}... Shows contents of register or register
set.

stats [opcode] Shows current run-time statistics.

trace – Shows trace information during
simulation.

step – – Advances simulation by one instruction.
Same as run 1.

unalias – alias Deletes alias.

Table 7.2 ZISIM Command Summary (Cont.)

Command Modifier Argument Description

(Sheet 3 of 3)

Table 7.3 ZISIM400 specific commands

Command Modifier Argument Description

set size [dmem|imem] size Set internal instruction or internal data
memory size starting from 0. Default
size is maximum value of 0xf800 words.

show size [dmem|imem] Show size of internal instruction or data
memory

ZISIM Commands 7-7

7.2.1 alias

The alias command allows the user to create ZISIM commands by
aliasing new commands to existing commands or sequences of
commands. Sequences of commands must be contained in quotes and
separated by semicolons. Issuing the alias command without
arguments shows all current aliases.

Format

alias tag command_sequence

Table 7.4 ZISIMG2 specific commands

Command Modifier Argument Description

set size [dmem|imem] [int|ext] beg_value
end_value

Set the size of internal/external
instruction or data memory starting
from beg_value to end_value including
the boundary. Each memory block
could overlap one another. Default
value for each of them is from 0 to
0x00ffffff words.

show size [dmem|imem] [int|ext] Show the current size of internal/exter-
nal instruction or data memory.

7-8 ZISIM Simulator

Examples

zisim{32} alias r0 show reg r0
zisim{32} alias adv “step ; show pipe ; show reg gpr”
zisim{32} alias
adv step ; show pipe ; show reg gpr
r0 show reg r0
zisim{33}

7.2.2 clear break

This command deletes a breakpoint from the current list of defined
breakpoints. The breakpoint number is assigned when a breakpoint is
set. Use the show break command to display a list of breakpoints.

Format

clear break breakpoint_number

Example

zisim{32} clear break 5

7.2.3 clear dmem

This command clears the contents of internal or external data memory.
User specifies internal or external memory, the starting address, and the
size of the region to clear.

Format

clear dmem {int|ext} addr size

Example

zisim{32} clear dmem int 0x1000 0x0100

7.2.4 clear imem

This command clears the contents of internal or external instruction
memory. User specifies internal or external memory, the starting
address, and the size of the region to clear.

Format

clear imem {int|ext} addr size

ZISIM Commands 7-9

Example

zisim{32} clear imem ext 0x7000 0x1000

7.2.5 clear stats

This command clears all run-time statistic information.

Format

clear stats

7.2.6 disable break

This command disables a breakpoint from the list of active breakpoints.
Use the show break command to display a list of current breakpoints.

Format

disable break breakpoint_number

Example

zisim{32} disable break 4

7.2.7 disable trace

This command disables specified trace. See the enable trace command
for a description of the trace types.

Format

disable trace {mem|reg|write}

Examples

zisim{32} disable trace pipe
zisim{32} disable trace reg

7.2.8 dump dmem

This command generates a text file representing the contents of the
specified address range of internal or external data memory. The user
specifies internal or external memory, the starting address, and the size
of the region to dump.

7-10 ZISIM Simulator

Format

dump dmem {int|ext} filename addr size

Example

zisim{32} dump dmem ext data.dat 0x0000 0xffff
% cat data.dat
0000 /* 0x0000 */
0000 /* 0x0001 */
0000 /* 0x0002 */
0000 /* 0x0003 */
0000 /* 0x0004 */
0000 /* 0x0005 */
0000 /* 0x0006 */
...
28e2 /* 0x00fd */
2f6a /* 0x00fe */
325d /* 0x00ff */
%

7.2.9 dump imem

This command generates a text file representing the contents of the
specified address range of internal or external instruction memory. The
user specifies internal or external memory, the starting address, and the
size of the region to dump.

Format

dump imem {int|ext} filename addr size

Example

zisim{32} dump imem int imem.dat 0x1000 0x30

% cat imem.dat
0000 /* 0x1000 */
0000 /* 0x1001 */
0000 /* 0x1002 */
0000 /* 0x1003 */
...
0000 /* 0x102c */
0000 /* 0x102d */
0000 /* 0x102e */
0000 /* 0x102f */
%

ZISIM Commands 7-11

7.2.10 enable break

This command enables a breakpoint from the current list of defined
breakpoints. Use the show break command to display a list of current
breakpoints.

Format

enable break breakpoint_number

Example

zisim{32} enable break 1

7.2.11 enable trace

This command enables a predefined trace type. There are three types of
predefined run-time tracing. Run-time traces generate text output
instruction by instruction. The three trace types are:

• mem

Displays address and data for any memory location which is
updated. Information is generated after the instruction is executed.

• reg

Displays all registers and register values every instruction.

• write

Displays architectural state changes associated with memory or
registers for each instruction.

Format

enable trace {mem|reg|write}

Example

zisim{32} enable trace write

7.2.12 exit

This command terminates the current simulation session.

Format

exit

7-12 ZISIM Simulator

7.2.13 fill dmem

This command fills internal or external data memory range with specified
value. User specifies internal or external memory, the starting address,
and the size of the region to fill.

Format

fill dmem {int|ext} addr size value

Example

zisim{32} fill dmem ext 0x1000 0xff 0x0505

7.2.14 fill imem

This command allows you to specify internal or external memory, the
starting address, and the size of the region to fill.

Format

fill imem {int|ext} addr size value

Example

zisim{32} fill imem ext 0x1000 0xff 0x0505

7.2.15 help

This command displays help information. Help is available for individual
commands as well as for command categories. Specifying a command
displays the description and usage for that command. Requesting help
for a specified category displays the instructions associated with that
category. Commands are categorized according to their function (for
instance, all show commands).

Issuing the help command with no other specifiers displays help on the
command categories.

Format

help [category|command]

Examples

zisim{32} help

ZISIM Commands 7-13

zisim{32} help all
zisim{32} help show
zisim{32} help show reg

7.2.16 load dmem

This command loads internal or external data memory from specified text
file. User specifies internal or external memory, the starting address, and
the size of the region to load. The format of the text file should be the
same as the file produced by the dump command. The first column
contains the data that will be loaded, with each data on a single line.
Data must be in hex format with out 0x prefix. Comments must be
enclosed by ‘/* */ ’.

Format

load dmem {int|ext} filename addr size

Example

zisim{32} load dmem int data.dat 0x1000 0x0fff

The output format of the file is:

%cat data.dat
2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a00f /* 0x0004 */
80c0 /* 0x0005 */
...

7.2.17 load exe

This command loads a valid ZSP executable into instruction memory.
This command performs the same function as specifying the executable
filename when ZISIM is invoked. Without the filename specified, this
command reloads the previous executable program into memory.

Format

load exe {filename}

7-14 ZISIM Simulator

Example

zisim{32} load exe test.exe
or

zisim{32} load test.exe

7.2.18 load imem

This command loads internal or external instruction memory from
specified text file. You must specify internal or external memory, the
starting address, and the size of the region to load. You must ensure that
the format of the text file is the same as the file produced by the dump
command. The first column contains the data that will be loaded, with
each data on a single line. Data must be
in hex format without the 0x prefix. Comments must be enclosed
by ‘/* */ ’.

Format

load imem {int|ext} filename addr size

Example

% cat inst.txt
2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a00f /* 0x0004 */
80c0 /* 0x0005 */
bc4c /* 0x0006 */
6f4c /* 0x0007 */

zisim{32} load imem int inst.txt 0x1000 8

7.2.19 reset

This command resets the state of the simulator. A soft reset initializes all
aspects of the simulator except the memory. A hard reset also initializes
memories. Issuing the reset command without options performs a soft
reset.

Format

reset [soft|hard]

ZISIM Commands 7-15

Examples

zisim{32} reset soft
zisim{32} reset hard

Note that the reset command does not reload the program into memory.
In order to restart the program, perform one of the following sequence of
commands:

zisim{32} reset
zisim{32} set reg pc <start_address>

or

zisim{32} reset hard; load
zisim{33} load

Note: zisimg2 doesn’t support reset soft feature.

7.2.20 run

This command advances the simulator the specified number of
instructions. The simulator uses the value of the run attribute if no
instruction count is specified. Simulation halts if instruction count is
reached, the maximum instruction count is reached, or a system halt
occurs.

Format

run [number_of_instructions]

Examples

zisim{32} run
zisim{32} run 100

7.2.21 script

This command loads and processes the script file. Script files may
contain any valid ZISIM commands. Comments are allowed in the script
file; the comment specifier is the # character. ZISIM ignores all
commands between the # character and the end of line. Empty lines are
also ignored.

Format

7-16 ZISIM Simulator

script filename

Example

zisim{32} script standard.scr

Sample Script File

A simple script is shown below.

This example script demonstrates how to turn on
instruction tracing using a command.
load test.exe
enable trace write
run
exit

7.2.22 set attr

The set attr command allows you to set three internal ZISIM variables.
Table 7.5 shows the configurable ZISIM attributes.

Format

set attr [history|radix|run] value

Examples

zisim{32} set attr run 1000
zisim{32} set attr radix hex

Table 7.5 Configurable ZISIM Attributes

Attribute Value Description

history any integer Number of commands to maintain in history
buffer.

radix [int | hex] Radix (integer or hexadecimal) used to generate
output.

run any integer Default instruction count for the run command
(when issuing the run command with no
argument). If undefined, the default value of the
run attribute is 2000000000.

ZISIM Commands 7-17

7.2.23 set break

This command creates and enables a new breakpoint at specified
address. Execution halts when the PC reaches the specified address.
When a new breakpoint is created, ZISIM tags it with a breakpoint
number which is used for other breakpoint commands (use the show
break command to view a list of current breakpoints).

Format

set break pc addr
set break symbol label

Example

zisim{2} set break pc 0x0010
Breakpoint 1 on PC at address 0x0010
zisim{3} set break symbol main
Breakpoint 2 on PC at address 0xf9b9 of main

7.2.24 set reg

This command assigns a value to the specified register.

Format

set reg register value

Example

zisim{32} set reg r0 0x1234

7.2.25 set size

7.2.25.1 zisim400

This command sets the size of internal data memory or instruction
memory. The default size of internal data or instruction memory is 63488
words (62K words), which is also the maximum size that can be set.

This command does not apply to external memory. (The simulator has
1M words for each external instruction and external data memory.)

Format

set size {dmem|imem} size

7-18 ZISIM Simulator

Examples

zisim{32} set size dmem 0x4000

This command sets the size of internal data memory to 16 Kwords.

zisim{32} set size imem 0x4000

This command sets the size of internal instruction memory to 16 Kwords

7.2.25.2 zisimg2

This command sets the size of internal/external data memory or
instruction memory. The default size of internal/external data or
instruction memory is 0xffffffwords (16M words) starting from 0, which is
also the maximum size that can be set.

This command does not apply to external memory. (The simulator has
1M words for each external instruction and external data memory.)

Format

set size {dmem|imem} {int|ext} beg_value end_value

Examples
zisim{32} set size dmem int 0 0xffff

This command sets the size of internal data memory to 16 Kwords.

zisim{32} set size imem int 0 0xffff

This command sets the size of internal instruction memory to 16 Kwords.

.

7.2.26 show attr

This command shows the value of the specified attribute. You can view
the value of the three attributes which are configurable with the set attr
command as well as view version information for ZISIM.

Format

show attr {run|history|radix|version}

Example

ZISIM Commands 7-19

zisim{1} show attr run
zisim{2} show attr history
zisim{3} show attr radix
zisim{4} show attr version

7.2.27 show bits

This command displays the bit field values for the specified register. Do
not use the % specifier for control registers.

Format

show bits register

Example

zisim{32} show bits hwflag
hwflag = 0x0000

 er: 0
 ex: 0
 ir: 0
 z: 0
 gt: 0
 ge: 0
 c: 0
 gsv: 0
 sv: 0
 gv: 0
 v: 0

7.2.28 show break

This command displays the list of currently defined breakpoints.

Format

show break

Example

zisim{32} show break
Num ID Address Status

 2 PC 0x2000 Active
 1 PC 0xf9b9 Active

7-20 ZISIM Simulator

7.2.29 show dmem

This command displays a range of internal or external data memory. You
must specify internal or external memory, the starting address, and the
size of the region to display. The default settings for the show dmem
command are shown in Table 7.6.

Format

show dmem {int|ext} addr size

Example

zisim{32} show dmem int 0xf000 0x10

For zisimg2, user can use a symbol instead of an absolute
address value.

zisim{1} show dmem int array1 20

7.2.30 show imem

This command displays a range of internal or external instruction
memory. User specifies internal or external memory, the starting
address, and the size of the region to show. The size and addr fields may
be omitted, in which case defaults are used. The default settings for the
show imem command are shown in Table 7.7.

Table 7.6 Default Arguments for show dmem

Argument Value

{int | ext} int

addr 0x0

size 16

Table 7.7 Default Arguments for show imem

Argument Value

{int | ext} int

addr 0x0

size 16

ZISIM Commands 7-21

Format

show imem {int|ext} [addr] [size]

Example

zisim{32} show imem int 0xf000 0x10

For zisimg2, user can use a symbol instead of an absolute
address value.

zisim{1} show imem int foo_function 20

7.2.31 show reg

This command displays the value of a specified register or the value of
a category of registers. More than one category and/or register can be
specified. The register categories are:

• gpr

All general purpose registers, r0–r15.

• cfg

All control registers (such as %smode and %hwflag). Do not include
the percent sign (%) in the register name.

• addr

All address and index registers for the ZSPG2 architecture. Thus, it
is specific for zisimg2.

Format

show reg {category|register} ...

Examples

zisim{32} show reg
zisim{32} show gpr
zisim{32} show cfg r0
zisim{32} show gpr hwflag smode

7-22 ZISIM Simulator

7.2.32 show size

7.2.32.1 zisim400

This command shows the size of internal data or instruction memory. The
output is not affected by the radix attribute.

Format

show size {dmem|imem}

Examples

zisim{32} show size dmem
zisim{32} show size imem

7.2.32.2 zisimg2

This command shows the size of internal/external data or instruction
memory. The output is not affected by the radix attribute.

Format

show size {dmem|imem}{int|ext}

Examples

zisim{32} show size dmem int
zisim{32} show size imem int

7.2.33 show stats

This command displays run-time statistics collected by ZISIM. If no
argument is specified, ZISIM displays overall statistical information. If the
opcode argument is specified, ZISIM displays instruction opcode
statistics.

Format

show stats [opcode]

Examples

zisim{32} show stats
zisim{32} show stats opcode

ZISIM Commands 7-23

7.2.34 show trace

This command shows currently enabled/disabled trace information.
Traces currently set to ON are enabled during simulation.

Format

show trace

Example

zisim{32} show trace
***(info) Supported trace information:
 - Instruction trace: OFF
 - Register trace: OFF
 - Memory trace: OFF
zisim{33}> enable trace write
***(info) Instruction trace is ON.
zisim{34}> show trace
***(info) Supported trace information:
 - Instruction trace: ON
 - Register trace: OFF
 - Memory trace: OFF

7.2.35 step

This command single-steps the simulator. Issuing the step command is
equivalent to issuing the command run 1.

Format

step

Example

zisim{32} step

7.2.36 unalias

This command deletes an alias. (Use the alias command to display a
list of currently defined aliases.)

Format

unalias alias

Example

7-24 ZISIM Simulator

zisim{32} unalias adv

7.3 I/O Port Usage

ZISIM400 models serial I/O as a memory-mapped device. Programs
perform terminal I/O by reading from and writing to the appropriate
address locations. The simulator defines two serial ports and one host
processor interface (HPI) port. Each port has a transmit buffer and a
receive buffer. Table 7.8 shows the memory addresses and
corresponding files for the I/O ports for the LSI402ZX, LSI403Z, and
ZSP400-core based devices.

The format of input and output files is the same. Data must be in decimal
digits, with each data on a single line. If the input file is not present in
the current running directory at the time of the request, the simulator will
print an error message to standard output and exit.

7.4 Example Session Using ZISIM

This section contains an example simulation session using ZISIM in
interactive mode.

In the example simulation, demo.exe is invoked using the -t (enable
trace) command-line option. Trace information is displayed in five fields:

(0) 0x2000 2cfb movl r12, 0xfb ! r12 = 0x00fb

• The first field is the instruction sequence number (in parenthesis).

Table 7.8 I/O Device Memory Map and Associated Files

I/O Port

Read Write

Address File Address File

Serial Port 0 0xF901 sp0in 0xF900 sp0out

Serial Port 1 0xFA01 sp1in 0xFA00 sp1out

Host Interface Port 0xFB01 hpiin 0xFB00 hpiout

Example Session Using ZISIM 7-25

• The second field is the program counter (PC) of the executed
instruction.

• The third field is the instruction opcode.

• The fourth field is the disassembled instruction, including operands.

• The fifth field describes the result of the executed instruction.

The trace shown in this example is for the ZSP400 core. The text is
linked and loaded at 0x2000.

7-26 ZISIM Simulator

(shell prompt) zisim400 demo.exe -t

 ZISIM 1.206
 ZSP400
 Instruction Set Simulator

 LSI Logic

***(info) Starting address: 0x2000
.text : Loading to INT-INST memory ... 0x2000 -> 0x2950 (0x0951)
.data : Loading to INT-DATA memory ... 0x0001 -> 0x005f (0x005f)
Loading "demo.exe" successfully.
zisim{1}_

If you do not specify a test for initialization, you can load a test from the
ZISIM command line. Check the contents of the instruction memory to
confirm proper loading of the test. These steps are demonstrated below.

zisim{1}show imem int 0x2000 4
0x2000 0x2cfb movl r12, 0xfb
0x2001 0x3cf7 movh r12, 0xf7
0x2002 0xa6d0 mov r13, 0x0
0x2003 0x2460 movl r4, 0x60
zisim{2}> _

Instruction fetch begins at the entry point you specify in an executable
program. You can change this before execution begins by setting the PC
to the desired value using the set reg command.

The simulator output below demonstrates use of the PC breakpoint: a
breakpoint is set for address 0x10 and the simulator advances until the
PC reaches address 0x10.

Example Session Using ZISIM 7-27

zisim{3}> set break pc 0x2050
Breakpoint 1 on PC at address 0x2050
zisim{4}> set break symbol main
Breakpoint 2 on PC at address 0x2010 of main
zisim{5}> run
(0) 0x2000 2cfb movl r12, 0xfb ! r12 = 0x00fb
(1) 0x2001 3cf7 movh r12, 0xf7 ! r12 = 0xf7fb
(2) 0x2002 a6d0 mov r13, 0x0 ! r13 = 0x0000
(3) 0x2003 2460 movl r4, 0x60 ! r4 = 0x0060
(4) 0x2004 3400 movh r4, 0x0 ! r4 = 0x0060
(5) 0x2005 bc54 mov r5, r4 ! r5 = 0x0060
(6) 0x2006 a051 add r5, 0x1 ! hwflag = 0x0030
(6) 0x2006 a051 add r5, 0x1 ! r5 = 0x0061
(7) 0x2007 6054 st r5, r4, 0 ! INT-DATA[0x0060] = 0x0061
(8) 0x2008 bb1d mov rpc, r13 ! rpc = 0x0000
(9) 0x2009 2510 movl r5, 0x10 ! r5 = 0x0010
(10) 0x200a 3520 movh r5, 0x20 ! r5 = 0x2010
(12) 0x200c a750 call r5 ! rpc = 0x200d
(PC BREAKPOINT #2)................ Instruction Count=000013 PC=0x2010
zisim{6}> show reg gpr
 r0 = 0x0000 r1 = 0x0000
 r2 = 0x0000 r3 = 0x0000
 r4 = 0x0060 r5 = 0x2010
 r6 = 0x0000 r7 = 0x0000
 r8 = 0x0000 r9 = 0x0000
 r10 = 0x0000 r11 = 0x0000
 r12 = 0xf7fb r13 = 0x0000
 r14 = 0x0000 r15 = 0x0000
zisim{7}> disable trace write

After the final command, the simulator will no longer print the instruction
flow trace.

zisim{8}> run
Hello World!
(SYSTEM HALT)..................... Instruction Count=000673 PC=0x200e

Execution halts when a breakpoint is reached, a system halt occurs, or
the maximum instruction count is reached. A system halt refers to setting
halt mode as defined by the %smode control register. Execution statistic
information can be seen by using show stats command.

zisim{9}> show stats
 673 instructions executed
 88 load instructions (13.08%)
 65 - single (9.66%)
 23 - double (3.42%)
 56 store instructions (8.32%)
 37 - single (5.50%)
 19 - double (2.82%)

7-28 ZISIM Simulator

 104 discontinuities (15.45%)
 15 - calls (2.23%)
 63 - conditional (9.36%)
 10 - agnx (1.49%)
 25 mispredicts (39.68% of conditional branch)

Terminate the simulation session with the exit command.

zisim{10}> exit
***(info) Exiting ZISIM.

ZSP SDK Software Development Kit 8-1

Chapter 8
ZSIM Simulator

This chapter describes the ZSP SDK cycle-accurate architecture
simulator.

The ZSP SDK simulator ZSIM is a cycle-accurate simulator for ZSP400
and ZSPG2 architecture-based devices. ZSIM models the architectural
features necessary for cycle-by-cycle tracing of architectural state,
including the execution pipeline, instruction and data caches, internal and
external instruction/data memories, and register files.

8.1 Using ZSIM

ZSIM can be accessed as a target through the debugger or as a stand-
alone program. This chapter describes the interface to ZSIM as a stand-
alone program. ZSIM can be used in batch mode or interactively, as
described in the following subsections. The commands supported in both
modes of operation are described in Section 8.2, “ZSIM Commands,”
page 8-5.

8.1.1 Batch Mode

The simulator can be invoked in batch mode from the command line
using the -exec option, as shown below.

% zsim[400/g2] executeable_file -exec [options]

The simulator can also be invoked in batch mode using a script file
containing ZSIM commands that load, execute, and gather results for a
specified executable. Script files may contain any valid ZSIM commands.
Comments are allowed and must be preceded by the comment specifier
(#). ZSIM ignores all commands between the # character and the end of
line. ZSIM also ignores empty lines.

8-2 ZSIM Simulator

A simple script file that turns on instruction tracing and then executes the
program test.exe is shown below.

load test.exe
enable trace write
run 100000
exit

Assuming the file batch.scr contains the commands shown above, a
trace file for test.exe could be generated as follows:

% zsim400 -s batch.scr > test.trace (Unix for ZSP400
architecture)

% zsimg2 -s batch.scr > test.trace (Unix for ZSPG2
architecture)

C:\zsim400 -s batch.scr > test.trace (Windows for ZSP400
architecture)

C:\zsimg2 -s batch.scr > test.trace (Windows for ZSPG2
architecture)

Refer also to Section 8.2.26, “script,” page 8-21.

8.1.2 Interactive Mode

In interactive mode, ZSIM is invoked from the command line using the
following command:

For ZSP400 architecture:

zsim400 [executable_file] [options]

For ZSPG2 architecture:

zsimg2 [executeable_file] [options]

You may optionally specify an executable file, followed by zero or more
command-line options, which must be separated by spaces

The executable file is a ZSP binary file generated using the SDK
compiler, assembler, and linker tools, as explained in other chapters of
this document. ZSIM processes the source file according to the specified
command-line options (refer to Table 8.1).

If no options are specified, ZSIM initializes itself, then prompts the user
with the ZSIM prompt:

Using ZSIM 8-3

zsim{1}>

The simulator is now ready to accept and respond to ZSIM commands,
which are described in Section 8.2, “ZSIM Commands” on page 8-5. An
executable file may be loaded from within ZSIM using the load exe
command.

An example interactive simulation session is described in Section 8.4,
“Example Session Using ZSIM” on page 8-34. Refer also to the
description of using ZSIM use as the target of the SDK’s Debugger in
Section 9.2.2, “Cycle-Accurate Simulator Connection,” page 9-4.

Table 8.1 ZSIM Command-line Options

Option Description

-exec Invokes the simulator in noninteractive mode.

-c num Specifies maximum cycle count. Execution aborted after num cycles.

-h Prints brief usage summary.

-i mode_register=value Initializes an architectural control (mode) register with specified value.
The control register is written without its usual percent (%) sign, and
there are no spaces around the equal sign (=). For example, the option
to set %smode control register is:
-i smode=0x1234.
The option to set r0 register is
-i r0=0x9876.
Refer to Appendix B, "ZSP400 Control Registers" for information on
ZSP400 core-based device control registers or Appendix D“ZSPG2
Control Registers”

-m Turns on memory trace.

-p Turns on pipeline trace.

-pf Turns on all profile information.

-pfiu Turns on instruction unit profile information.

-pfpipe Turns on pipeline unit profile information.

(Sheet 1 of 2)

8-4 ZSIM Simulator

-q Suppresses startup banner.

-radix {dec | hex} Displays data in the specified radix, either decimal (dec) or
hexadecimal (hex).

-reg Turns on register trace.

-s sourcefile Executes the specified script file following initialization.

-t Turns on instruction trace.

-v Prints ZSIM version number.

Table 8.2 Command-line Options for zsim400

Options Description

-wed num Sets EXT-DATA memory wait state to be num. Default is 1.

-wei num Sets EXT-INST memory wait state to be num. Default is 1.

-sid num Sets INT-DATA memory size to be num. Default is 63488 words.

-sii num Sets INT-INST memory size to be num. Default is 63488 words.

-mempcr num Sets the MEMPCR address to be num. Default is 0xf807.

-nomempcr Indicates that the system does not have MEMPCR.

-noiboot Sets the IBOOT signal LOW to boot from external ROM. If this option is not specified,
instructions are fetched from internal ROM space. ROM is mapped from 0xf800 to
0xffff.

-pfdu Turns on data unit profile information.

Table 8.1 ZSIM Command-line Options (Cont.)

Option Description

(Sheet 2 of 2)

ZSIM Commands 8-5

8.2 ZSIM Commands

The ZSIM commands are described briefly in Table 8.4 and in detail in
the following subsections.

The output of any ZSIM command can be sent to a file using the
standard redirection identifier (>). For example, the command
show attr > mydisplay writes the output of the show command in the
file mydisplay.

Table 8.3 Command-line Options for zsimg2

Options Description

-pflsu Turn on Load Store Unit profile information

-tic Turn on instruction cache trace every cycle

-svtadd ADDR Set system vector table address to be ADDR

-idealmss Use ideal memory subsystem with zero delay for internal memory and no check-
ing for banking conflict between 2 data access ports.

-bimlib LIBNAME Use bus interface library LIBNAME to run in co-simulation enviroment such as
SWIFT or CVE Seamless.

-cpilib LIBNAME Use co-processor library LIBNAME. SDK tools comes with an example G711 co-
processor library called libzcpig711.so on Solaris or libzcpig711.dll on Windows
platform.

Table 8.4 ZSIM Command Summary

Command Modifier Argument Description

alias – [tag command_sequence] Creates alias (tag) for command
sequence.

(Sheet 1 of 4)

8-6 ZSIM Simulator

clear break breakpoint_number Clears specified breakpoint.

dmem {int | ext} addr size Clears internal or external data memory.

icache – Clears instruction cache.

imem {int | ext} addr size Clears internal or external instruction
memory.

stats – Clears statistic information.

disable break breakpoint_number Disables specified breakpoint.

profile [du | iu | pipe] Disables profile information.

trace {pipe | reg} Disables run-time tracing.

dump dmem {int | ext} filename addr size Dumps internal or external data memory
to a text file filename.

imem {int | ext} filename addr size Dumps internal or external instruction
memory to a text file filename.

enable break breakpoint_number Enables breakpoint.

profile {iu | pipe} Enables module profile information.

trace {mem | pipe | reg | write| icache} Enables run-time cycle tracing.

exit – – Exits simulation session.

fill dmem {int | ext} addr size value Fills internal/external data memory
segment with value.

imem {int | ext} addr size value Fills internal/external instruction
memory segment with value.

help – {category | command} Prints list of commands in a category or
command usage.

istep – - Advances the simulator by one
instruction.

Table 8.4 ZSIM Command Summary (Cont.)

Command Modifier Argument Description

(Sheet 2 of 4)

ZSIM Commands 8-7

load dmem {int | ext} filename addr Loads internal/external data memory
from file.

exe filename Loads ZSP executable into instruction
memory.

imem {int | ext} filename addr Loads internal/external instruction
memory from file.

reset hard {hard | soft} Reset simulator (hard or soft).

run – [number_of_cycles] Runs for specified number of simulation
cycles.

script – filename Loads and executes ZSIM script file.

set attr {history | radix | run} value Assigns value to specified attribute.

break pc addr Creates a new breakpoint at the
specified PC address.

break symbol label Creates a new breakpoint at the
specified label.

reg register value Assigns value to specified register.

Table 8.4 ZSIM Command Summary (Cont.)

Command Modifier Argument Description

(Sheet 3 of 4)

8-8 ZSIM Simulator

show attr {history | radix | run | version} Shows value of the specified attribute.

bits register Displays the bit-level states for the
specified register.

break – Shows list of defined breakpoints.

dmem { int | ext} addr size Shows contents of a region of
internal/external data memory.

icache – Shows current instruction cache
contents.

imem {int | ext} addr size Shows contents of a region of
internal/external instruction memory.

pipe – Shows contents and state of execution
pipeline.

profile – Displays supported profile information.

reg {category | reg}... Shows contents of register or register
set.

rule – Shows the affected grouping rule in the
current cycle.

size {dmem | imem} Shows size of internal data or
instruction memory.

stats – Shows current run-time statistics.

trace – Shows the current status of all tracing
attributes.

step – – Advances simulation by one cycle.
Same as run 1.

unalias – alias Deletes alias.

Table 8.4 ZSIM Command Summary (Cont.)

Command Modifier Argument Description

(Sheet 4 of 4)

ZSIM Commands 8-9

Table 8.5 ZSIM400 specific commands

Command Modifier Argument Description

clear dcache - Clear data cache.

set delay [edata|einst] num Sets wait state for external memory.
Default for both external data and
instruction memory is 1.

set size [dmem|imem] size Set internal instruction or internal data
memory size starting from 0. Default
size is maximum value of 0xf800
words.

show size [dmem|imem] Show size of internal instruction or
data memory

show dcache - Show data cache contents.

enable profile du Enable profile information on Data
Unit.

disable profile du Disable profile information on Data
Unit.

8-10 ZSIM Simulator

Table 8.6 ZSIMG2 specific commands

Command Modifier Argument Description

set latency [dmem|imem] [int|ext] num Set wait state latency for inter-
nal/external instruction or data
memory. Default value for internal
memory is 2 and external memory is
5.

show latency [dmem|imem] [int|ext] Show wait state latency for inter-
nal/external instruction or data
memory.

set size [dmem|imem] [int|ext] beg_value
end_value

Set the size of internal/external
instruction or data memory starting
from beg_value to end_value includ-
ing the boundary. Each memory block
could overlap one another. Default
value for each of them is from 0 to
0x00ffffff words.

show size [dmem|imem] [int|ext] Show the current size of inter-
nal/external instruction or data
memory.

show operands instruction_number Show operand values of an instruction
number. Instruction number can be
obtained by looking at the output of
“show pipe” command.

show stats grouping Display the statistic of grouping rule.

enable profile lsu Turn on profile information of Load
Store Unit.

disable profile lsu Turn off profile information of Load
Store Unit.

ZSIM Commands 8-11

8.2.1 alias

This command creates an alias for a ZSIM command. This command
allows you to customize the ZSIM commands by aliasing new commands
to existing commands or sequences of commands. Sequences of
commands must be contained in quotes and separated by semicolons.
Issuing the alias command without arguments displays all current
aliases.

Format

alias [tag] [command_sequence]

Examples

zsim{32} alias r0 show reg r0
zsim{32} alias adv “step ; show pipe ; show reg gpr”
zsim{32} alias
adv step ; show pipe ; show reg gpr
r0 show reg r0
zsim{33}

8.2.2 clear break

This command deletes a breakpoint from the current list of defined
breakpoints. The breakpoint number is assigned when a breakpoint is
set. Use the show break command to display a list of breakpoints.

Format

clear break breakpoint_number

Example

zsim{32} clear break 5

8.2.3 clear dcache

This command invalidates the contents of the data cache.

Format

clear dcache

8-12 ZSIM Simulator

Example

zsim{32} clear dcache

8.2.4 clear dmem

This command clears the contents of internal or external data memory.
User specifies internal or external memory, the starting address, and the
size of the region to clear.

Format

clear dmem {int|ext} addr size

Example

zsim{32} clear dmem int 0x1000 0x0100

8.2.5 clear icache

This command clears the contents of the instruction cache.

Format

clear icache

Example

zsim{32} clear icache

8.2.6 clear imem

This command clears the contents of internal or external instruction
memory. User specifies internal or external memory, the starting
address, and the size of the region to clear.

Format

clear imem {int|ext} addr size

Example

zsim{32} clear imem ext 0x7000 0x1000

ZSIM Commands 8-13

8.2.7 clear stats

This command clears all the run-time statistical information, which
includes the cycle count, the number of executed instructions, and the
number of instructions that are being grouped in the pipe.

Format

clear stats

Example

zsim{32} clear stats

8.2.8 disable break

This command disables a breakpoint from the current list of active
breakpoints. (Use the show break command to display current list.)

Format

disable break breakpoint_number

Example

zsim{32} disable break 4

8.2.9 disable profile

This command disables specified type of profile information. If no profile
type is specified, the command will disable all types. Profile types are
described in Section 8.2.14, “enable profile,” page 8-15.

Format

disable profile [du|iu|pipe]

Examples

zsim{32} disable profile du
zsim{32} disable profile iu
zsim{32} disable profile pipe
zsim{32} disable profile

8-14 ZSIM Simulator

8.2.10 disable trace

This command disables specified type of trace. Trace types are
described in Section 8.2.15, “enable trace,” page 8-16.

Format

disable trace type

Examples

zsim{32} disable trace pipe
zsim{32} disable trace reg

8.2.11 dump dmem

This command generates a text file representing the contents of the
specified address range of the internal or external data memory. The
user specifies internal or external memory, the starting address, and the
size of the region to dump.

Format

dump dmem {int|ext} filename addr size

Example

zsim{32} dump dmem ext data.dat 0x0000 0x100

% cat data.dat
0000 /* 0x0000 */
0000 /* 0x0001 */
0000 /* 0x0002 */
0000 /* 0x0003 */
0000 /* 0x0004 */
0000 /* 0x0005 */
0000 /* 0x0006 */
...
28e2 /* 0x00fd */
2f6a /* 0x00fe */
325d /* 0x00ff */
%

8.2.12 dump imem

This command generates a text file representing the contents of the
specified address range of the internal or external instruction memory.

ZSIM Commands 8-15

The user specifies internal or external memory, the starting address, and
the size of the region to dump.

Format

dump imem {int|ext} filename addr size

Example

zsim{32} dump imem int imem.dat 0x1000 0x30

% cat imem.dat
0000 /* 0x1000 */
0000 /* 0x1001 */
0000 /* 0x1002 */
0000 /* 0x1003 */
...
0000 /* 0x102c */
0000 /* 0x102d */
0000 /* 0x102e */
0000 /* 0x102f */
%

8.2.13 enable break

This command enables a breakpoint from the current list of defined
breakpoints. See Section 8.2.28, “set break,” page 8-23, for a description
of how to create a breakpoint.

Format

enable break breakpoint_number

Example

zsim{32} enable break 1

8.2.14 enable profile

This command enables a predefined trace type. Run-time traces
generate text output representing the state of the architecture on a cycle-
by-cycle basis. There are three types of predefined run-time tracing:

• du

Displays information from the data unit of the ZSP400 architecture,
such as data cache hits and the du_imem_read signal.

8-16 ZSIM Simulator

• iu

Displays information from the instruction unit, such as instruction
cache hits and the iu_imem_read signal.

• pipe

Displays information from the pipeline unit, such as cycle-by-cycle
grouping rule information.

• lsu

Displays information from the load/store unit of ZSPG2 architecture..

Format

enable profile {du|iu|pipe|lsu}

Examples

zsim{1} enable profile du
***(info) Data Unit profile information is ON.

zsim{2} enable profile iu
***(info) Instruction Unit profile information is ON.

zsim{3} enable profile pipe
***(info) Pipeline Unit profile information is ON.

8.2.15 enable trace

This command enables a predefined trace type. Run-time traces
generate text output representing the state of the architecture on a cycle-
by-cycle basis. There are four types of predefined run-time tracing:

• mem

Displays address and data for any memory location which is
updated. Information is generated in the cycle in which the write
occurs.

• pipe

Displays the entire pipeline in every cycle.

• reg

Displays all registers and values in every cycle.

• write

ZSIM Commands 8-17

Displays architectural state changes associated with memory or
registers for each cycle.

Format

enable trace {mem|pipe|reg|write}

Example

zsim{32} enable trace write

8.2.16 exit

This command terminates the current simulation session.

Format

exit

Example

zsim{32} exit

8.2.17 fill dmem

This command fills internal or external data memory range with specified
value.

Format

fill dmem {int|ext} addr size value

Example

zsim{32} fill dmem ext 0x1000 0xff 0x0505

8.2.18 fill imem

This command fills internal or external instruction memory range with
specified value.

Format

fill imem {int|ext} addr size value

Example

zsim{32} fill imem ext 0x1000 0xff 0x0505

8-18 ZSIM Simulator

8.2.19 help

This command displays help information about commands. Commands
are categorized according to their function. Requesting help without
specifiers displays help on the command categories; requesting help for
a specified category displays the instructions associated with that
category. Specifying a particular command displays the description and
usage for that command.

Format

help [category|command]

Examples

zsim{32} help
zsim{32} help all
zsim{32} help show
zsim{32} help show reg

8.2.20 istep

This command steps the program instruction by instruction. By default,
this command is aliased to is.

For zsimg2, user can specify a number to indicate number of instructions
to be executed.

Format

istep

or

is

Examples

zsim{22}> istep
CYCLE=000012 PC=0x200c
0x2008 mov rpc, r13
zsim{23}> is
CYCLE=000012 PC=0x200c
0x2009 movl r5, 0x10
zsim{24}>
CYCLE=000013 PC=0x200c
0x200a movh r5, 0x20

ZSIM Commands 8-19

zsim{25}>
CYCLE=000013 PC=0x200c
0x200b nop
zsim{26}>
CYCLE=000015 PC=0x200d
0x200c call r5
zsim{27}>
CYCLE=000020 PC=0x2014
0x2010 mov r13, rpc

8.2.21 load dmem

This command loads internal or external data memory from the specified
text file. You must specify internal or external memory, the starting
address, and the size of the region to load. You must ensure that the
format of the text file is the same as the file produced by the dump
command. The first column contains the data that will be loaded, with
each data on a single line. Data must be in hex format without the 0x
prefix. Comments must be enclosed by ‘/* */ ’.

Format

load dmem {int|ext} filename addr size

Example

zsim{32} load dmem int data.dat 0x1000 20

The output format of the file is:

%cat data.dat
2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a00f /* 0x0004 */
80c0 /* 0x0005 */
...

8.2.22 load exe

This command loads a valid ZSP executable into instruction memory.
This command performs the same function as specifying the executable
filename when ZSIM is invoked.

Format

8-20 ZSIM Simulator

load exe filename

Example

zsim{32} load exe test.exe

or

zisim{32} load test.exe

8.2.23 load imem

This command loads internal or external instruction memory from
specified text file. You must specify internal or external memory, the
starting address, and the size of the region to load. You must ensure that
the format of the text file is the same as the file produced by the dump
command. The first column contains the data that will be loaded, with
each data on a single line. Data must be in hex format without the 0x
prefix. Comments must be enclosed by ‘/* */ ’.

Format

load imem {int|ext} filename addr size

Example

% cat inst.txt
2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a00f /* 0x0004 */
80c0 /* 0x0005 */
bc4c /* 0x0006 */
6f4c /* 0x0007 */

zsim{32} load imem int imem.txt 0x1000 8

8.2.24 reset

This command resets the state of the simulator. The default is a soft
reset, which initializes all aspects of the simulator except the instruction
memory. A hard reset performs full initialization.

Format

ZSIM Commands 8-21

reset [soft|hard]

Examples

zsim{32} reset
zsim{32} reset hard

Important: The reset command does not reload the program into
memory. In order to restart the program, perform one of the
following sequence of commands:

zsim{32} reset
zsim{32} set reg pc <start_address>

or

zsim{32} reset hard; load

Note: zsimg2 doesn’t support soft reset feature any more.

8.2.25 run

This command advances the simulator for the specified number of
cycles. If no cycle count is specified, the default cycle count defined for
the run attribute is used (refer to Section 8.2.27, “set attr,” page 8-22).
Simulation halts if cycle count is reached, the maximum cycle count is
reached, or a system halt occurs.

Format

run [number_of_cycles]

Examples

zsim{32} run
zsim{32} run 100

8.2.26 script

This command loads and processes script file. The script file may contain
any valid ZSIM commands. Comments are allowed in the script file,
preceded by the hash (#) character. ZSIM ignores all commands
between the # character and the end of line. Empty lines are also
ignored.

Format

8-22 ZSIM Simulator

script filename

Example

zsim{32} script standard.scr

Example Script File

This example script demonstrates how to turn on
instruction and pipeline tracing using a command.
load test.exe
enable trace write
enable trace pipe
run
exit

8.2.27 set attr

The set attr command allows you to set three internal ZSIM attributes.
These configurable attributes are shown in Table 8.7.

Format

set attr attribute value

Examples

zsim{32} set attr run 1000
zsim{32} set attr radix hex

Table 8.7 Configurable ZSIM Attributes

Attribute Value Description

history any integer Number of commands to maintain in history
buffer.

radix {dec | hex} Radix (decimal or hexadecimal) used to
generate output.

run any integer Default cycle count for the run command (when
issuing the run command with no argument). If
undefined by the set attr command, the
default run value is 100000 cycles.

ZSIM Commands 8-23

8.2.28 set break

This command creates and enables a new breakpoint at specified
address. Breakpoints can be set for the program counter. Execution halts
at the cycle when the instruction at the specified address is in the set of
instructions which are about to be executed in the pipeline’s E stage.

When a new breakpoint is created, it is tagged with a breakpoint number
which is used by other breakpoint commands. Use the show break
command to display a list of current breakpoints.

Format

set break pc addr
set break symbol label

Example

zsim{1} set break pc 0x0010
Breakpoint 1 on PC at address 0x0010

zsim{2} set break symbol main
Breakpoint 2 on PC at address 0xf9b9 of main

8.2.29 set delay

This command sets the delay wait state of external data memory or
instruction memory. The default delay value is 1 for both external data
and instruction memory.

The wait state is the number of cycles between requesting data and
having it returned. For example, wait state equals 1 means that data is
returned 1 cycle after it is requested.

Format

set delay {edata | einst} num

Example

zsim{1} set delay edata 10

zsim{2} set delay einst 20

Note: This command is specific to zsim400

8-24 ZSIM Simulator

8.2.30 set latency

This command sets the delay wait state of internal/external data memory
or instruction memory. The default delay value is 2 for both internal data
and instruction memory. The default delay value is 5 for both external
data and instruction memory.

The wait state is the number of cycles between requesting data and
having it returned. For example, wait state equals 2 means that data is
returned 2cycles after it is requested.

Format

set latency {imem | dmem} {int | ext} num

Example

zsim{1} set latency dmem int 10

zsim{2} set latency dmem ext 20

Note: This command is specific to zsimg2

8.2.31 set reg

This command assigns a new value to the specified register.

Format

set reg register value

Example

zsim{32} set reg r0 0x1234

8.2.32 set size

8.2.32.1 zsim400

This command sets the size of internal data memory or instruction
memory. The default size of internal data or instruction memory is 63488
words (62K words), which is also the maximum size that can be set.

ZSIM Commands 8-25

Important: This command does not apply to external memory. (The
simulator has 1M words for each external instruction and
external data memory.)

Format

set size {dmem|imem} size

Examples

zsim{1} set size dmem 0x4000
zsim{2} set size imem 0x3000

8.2.32.2 zsimg2

This command sets the size of internal/external instruction or data
memory from a begin value to an end value. The boundary is inclusive.
The default size for each of the 4 memory types is the maximum value
from 0 to 0x00ffffff words (16M words). A word is a 16-bit value for the
ZSPG2 architecture.

Format

set size {dmem|imem} {int|ext} beg_value end_value

Examples

zsim{1} set size dmem int 0 0xffff
zsim{2} set size imem int 0 0xffff
zsim{3} set size dmem ext 0 0x00fffff
zsim{4} set size imem ext 0 0x00fffff

8.2.33 show attr

This command displays the value of the specified attribute. See set attr
for a list of defined attributes. Note that the version attribute can only be
used with the show attr command; it cannot be used with the set attr
command.

Format

show attr {history|radix|run|version}

Example

8-26 ZSIM Simulator

zsim{32} show attr run

8.2.34 show bits

This command displays the bit field values for the specified register.
When specifying control registers, do not include the percent (%) sign.

Format

show bits register

Example

zsim{32} show bits hwflag
hwflag = 0x0000

 er: 0
 ex: 0
 ir: 0
 z: 0
 gt: 0
 ge: 0
 c: 0
 gsv: 0
 sv: 0
 gv: 0
 v: 0

8.2.35 show break

This command displays the list of currently defined breakpoints.

Format

show break

Example

zsim{32} show break

8.2.36 show dcache

This command displays the current contents of the data cache.

Format

show dcache

Example

ZSIM Commands 8-27

For zsim400 simulator

zsim{1}> show dcache
R13 - D$[0]: ------ I ------ ------ ------ ------
R13 - D$[1]: ------ I ------ ------ ------ ------
R13 - D$[2]: ------ I ------ ------ ------ ------
R14 - D$[3]: ------ I ------ ------ ------ ------
R14 - D$[4]: ------ I ------ ------ ------ ------
R14 - D$[5]: ------ I ------ ------ ------ ------
R15 - D$[6]: ------ I ------ ------ ------ ------
R15 - D$[7]: ------ I ------ ------ ------ ------
R15 - D$[8]: ------ I ------ ------ ------ ------
UL - D$[9]: ------ I ------ ------ ------ ------
UL - D$[10]: ------ I ------ ------ ------ ------
UL - D$[11]: ------ I ------ ------ ------ ------
UL - D$[12]: ------ I ------ ------ ------ ------
UL - D$[13]: ------ I ------ ------ ------ ------
UL - D$[14]: ------ I ------ ------ ------ ------
UL - D$[15]: ------ I ------ ------ ------ ------
UL - D$[16]: ------ I ------ ------ ------ ------

The first 9 lines are dedicated for linked load of r13, 14,
and 15 register respectively. The next 8 lines are used for
any unlinked load. The first “------” column is showing the
address of the line. The next column indicates the line
invalid ‘I’ or valid. The next 4 columns are showing the
data contains in that line.

For zsimg2
> zsim{1}> show dcache
D$[0] 0x000001 ------ ------ ------ ------ ------ ------
------ ------ lru[0]
D$[1] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
D$[2] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
D$[3] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
D$[4] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
D$[5] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
D$[6] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
D$[7] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
D$[8] 0x000001 ------ ------ ------ ------ ------ ------
------ ------

8-28 ZSIM Simulator

D$[9] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
D$[10] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
D$[11] 0x000001 ------ ------ ------ ------ ------ ------
------ ------
The first column shows the address and the next 8 columns
contain data.

8.2.37 show dmem

This command displays a range of internal or external data memory. The
user specifies internal or external memory, the starting address, and the
size of the region to display. The default settings for the show dmem
command are shown in Table 8.9.

Format

show dmem {int|ext} addr size

Example

zsim{32} show dmem int 0xf000 0x10

For zsimg2, user can use a symbol instead of an absolute
address.

zsim{1} show dmem int array1 20

8.2.38 show icache

This command displays the current contents of the instruction cache.

Format

show icache

Table 8.8 Default Arguments for show dmem

Argument Value

{int | ext} int

addr 0x0

size 16

ZSIM Commands 8-29

Example

zsim{32} show icache

8.2.39 show imem

This command displays a range of internal or external instruction
memory. The size and addr fields may be omitted, in which case defaults
are used. The default settings for the show imem command are shown in
Table 8.9.

Format

show imem {int|ext} [addr] [size]

Example

zsim{1} show imem int 0xf000 0x10

For zsimg2, user can use symbol instead of absolute address
value.

zsim{1} show imem int foo_function 20

8.2.40 show pipe

This command shows the contents of all stages of the pipeline.

Format

show pipe

Example

zsim{32} show pipe

Table 8.9 Default Arguments for show imem

Argument Value

{int | ext} int

addr 0x0

size 16

8-30 ZSIM Simulator

8.2.41 show profile

This command shows the current status (enabled/disabled) for each
profile type.

Format

show profile

Example

zsim{32} show profile
***(info) Supported profile information:

 - Instruction Unit: OFF
 - Data Unit: OFF
 - Pipeline Unit: OFF

8.2.42 show reg

This command displays the values of a category of registers or the value
of the specified register. You can list more than one category and/or
register. The register categories are:

• gpr

All general purpose registers, r0–r15.

• cfg

All control registers (such as %smode and %hwflag). Do not include
the percent (%) sign in the control register name.

• addr

All address and index registers for the ZSPG2 architecture. Thus, it
is specific for zsimg2.

Format

show reg [category|register] ...

Examples

zsim{32} show reg
zsim{32} show reg r0
zsim{32} show reg hwflag smode (Do not include the percent

(%) sign.)

ZSIM Commands 8-31

8.2.43 show rule

This command displays the affected grouping rule for the current cycle.

Format

show rule

Examples

zsim{32} show pipe
CYCLE: 8

 -- F(4:2)
 (13)000d:5448:0:mac2.a r4.e, r8.e
 (12)000c:788f:0:lddu r8.e, r15, 2
 (11)000b:784e:1:lddu r4.e, r14, 2
 (10)000a:9a00:1:xor.e r0.e, r0.e
 -- G(4:2)
 (9)0009:2d18:0:movl r13, 0x18
 (8)0008:3f00:0:movh r15, 0x0
 (7)0007:3d01:1:movh r13, 0x1
 (6)0006:3e00:1:movh r14, 0x0
 -- R(0:0)
 -- E(1:1)
 (5)0005:ad02:1:bits fmode, 2
 -- W(1:1)
 (4)0004:d700:1:movl guard, 0x0

zsim{33} show rule
Active grouping rule in current cycle: 23. Only two
instructions requiring an alu or one instruction that
requires both the alus can be grouped.

8.2.44 show size

Show size of internal data or instruction memory. The output is not
affected by the radix attribute.

Format

show size {dmem|imem}{int|ext}

Examples

zsim{32} show size dmem int
The size of internal data memory is 0xf800 words.
zsim{32} show size imem int
The size of internal instruction memory is 0xf800 words.

8-32 ZSIM Simulator

8.2.45 show stats

Display all the run-time statistics generated by ZSIM. If no argument is
specified, ZISIM displays overall statistical information. If the opcode
argument is specified, ZISIM displays instruction opcode statistics.

Format

show stats

Example

zsim{32} show stats
zsim{32} show stats opcode

8.2.46 show trace

Show currently enabled/disabled trace information. Traces currently set
to ON are enabled during simulation.

Format

show trace

Example

zsim{32} show trace
***(info) Supported trace information:

 - Instruction trace: OFF
 - Pipeline trace: OFF
 - Register trace: OFF
 - Memory trace: OFF

zsim{33} enable trace pipe
***(info) Pipeline trace is ON.
zsim{34} show trace
***(info) Supported trace information:

 - Instruction trace: OFF
 - Pipeline trace: ON
 - Register trace: OFF
 - Memory trace: OFF

8.2.47 step

Single-step the simulator. Issuing the step command is equivalent to
issuing the command run 1.

I/O Port Usage 8-33

Format

step

Example

zsim{32} step

8.2.48 unalias

Deletes an alias.

Format

unalias [alias]

Example

zsim{32} unalias adv

8.3 I/O Port Usage

ZSIM400 models serial I/O as a memory-mapped device. Programs
perform terminal I/O by reading from and writing to the appropriate
address locations. The simulator defines two serial ports and one host
processor interface (HPI) port. Each port has a transmit buffer and a
receive buffer. Table 8.10 shows the memory addresses and
corresponding files for the I/O ports for the LSI402ZX, LSI403Z, and
ZSP400-core based devices.

Table 8.10 I/O Device Memory Map and Associated Files

I/O Port

Read Write

Address File Address File

Serial Port 0 0xF901 sp0in 0xF900 sp0out

Serial Port 1 0xFA01 sp1in 0xFA00 sp1out

Host Interface
Port

0xFB01 hpiin 0xFB00 hpiout

8-34 ZSIM Simulator

The format of input and output files are the same. Data must be in
decimal digits, with each data on a single line. If the input file is not
present in the current running directory at the time of the request, the
simulator will print an error message to standard output and exit.

ZSIM400 also supports user-specified I/O ports. You can create a library
containing peripheral devices and then use it in place of the default
library in the directory $SDSP_HOME/sdspI/bin, which is created when
the ZSP SDK tools are installed. The peripheral library is called
libzperiph.dll on Windows and libzperiph.so on Solaris platforms.
For information on writing the peripheral library, refer to the ZSIM
Peripheral API Reference Guide, document DB06-000299-00.

8.4 Example Session Using ZSIM

This section contains an example simulation session using ZSIM in
interactive mode.

zsim{1}> load exe test.exe
***(info) Starting address: 0x2000
.text : Loading to INT-INST memory ... 0x2000 -> 0x2950 (0x0951)
.data : Loading to INT-DATA memory ... 0x0001 -> 0x005f (0x005f)
Loading "test.exe" successfully.

The contents of the instruction memory can be checked to confirm
proper loading of the test:

zsim{2}> show imem int 0x2000 4
0x2000 0x2cfb movl r12, 0xfb
0x2001 0x3cf7 movh r12, 0xf7
0x2002 0xa6d0 mov r13, 0x0
0x2003 0x2460 movl r4, 0x60
zsim{3}> _

Before execution cycles begin, you can check to make sure that the
pipeline and caches are empty:

zsim{3}> show pipe
-- F(0:0)
-- G(0:0)
-- R(0:0)
-- E(0:0)
-- W(0:0)

As shown above, the five stages of the execution pipeline are identified
with a single letter – F (Fetch/decode), G (Group), R (Read), E (Execute),

Example Session Using ZSIM 8-35

and W (Write Back) – followed by two integers representing the number
of instructions currently in that stage and the number of instructions that
will advance to the next stage in the following cycle.

zsim{4}> show icache
I$[0]: ------ I ------ I ------ I ------ I ------
I$[1]: ------ I ------ I ------ I ------ I ------
I$[2]: ------ I ------ I ------ I ------ I ------
I$[3]: ------ I ------ I ------ I ------ I ------
I$[4]: ------ I ------ I ------ I ------ I ------
I$[5]: ------ I ------ I ------ I ------ I ------
I$[6]: ------ I ------ I ------ I ------ I ------
I$[7]: ------ I ------ I ------ I ------ I ------

In the above example, the 8 lines of the instruction cache are shown to
be empty . The first column contains the address (4 word boundary) and
the remaining 4 columns contain the corresponding instruction opcodes.
An ‘I’ to the left of a cell indicates an invalid instruction.

zsim{5}> show dcache
R13 - D$[0]: ------ I ------ ------ ------ ------
R13 - D$[1]: ------ I ------ ------ ------ ------
R13 - D$[2]: ------ I ------ ------ ------ ------
R14 - D$[3]: ------ I ------ ------ ------ ------
R14 - D$[4]: ------ I ------ ------ ------ ------
R14 - D$[5]: ------ I ------ ------ ------ ------
R15 - D$[6]: ------ I ------ ------ ------ ------
R15 - D$[7]: ------ I ------ ------ ------ ------
R15 - D$[8]: ------ I ------ ------ ------ ------
UL - D$[9]: ------ I ------ ------ ------ ------
UL - D$[10]: ------ I ------ ------ ------ ------
UL - D$[11]: ------ I ------ ------ ------ ------
UL - D$[12]: ------ I ------ ------ ------ ------
UL - D$[13]: ------ I ------ ------ ------ ------
UL - D$[14]: ------ I ------ ------ ------ ------
UL - D$[15]: ------ I ------ ------ ------ ------
UL - D$[16]: ------ I ------ ------ ------ ------

The 17 lines of the data cache are shown to be empty in the above
example. The first column contains the address (4-word boundary) and
the remaining 4 columns contain data values. An ‘I’ to the left of a data
line indicates that the corresponding data line is invalid.

Continuing with the example, as execution proceeds, the pipeline and
instruction cache reflect changes expected by instruction flow:

zsim{6}> run 4 ; show pipe
CYCLE=000004 PC=0x2000
CYCLE: 4

8-36 ZSIM Simulator

 -- F(4:1)
 (7)2007:6054:0:st r5, r4, 0
 (6)2006:a051:0:add r5, 0x1
 (5)2005:bc54:0:mov r5, r4
 (4)2004:3400:1:movh r4, 0x0
 -- G(4:1)
 (3)2003:2460:0:movl r4, 0x60
 (2)2002:a6d0:0:mov r13, 0x0
 (1)2001:3cf7:0:movh r12, 0xf7
 (0)2000:2cfb:1:movl r12, 0xfb
 -- R(0:0)
 -- E(0:0)
 -- W(0:0)
zsim{7}> show icache
I$[0]: 0x2000 V 0x2cfb V 0x3cf7 V 0xa6d0 V 0x2460
I$[1]: 0x2004 V 0x3400 V 0xbc54 V 0xa051 V 0x6054
I$[2]: ------ I ------ I ------ I ------ I ------
I$[3]: ------ I ------ I ------ I ------ I ------
I$[4]: ------ I ------ I ------ I ------ I ------
I$[5]: ------ I ------ I ------ I ------ I ------
I$[6]: ------ I ------ I ------ I ------ I ------
I$[7]: ------ I ------ I ------ I ------ I ------
zsim{8}> _

The simulator output below demonstrates use of the PC breakpoint. A
breakpoint is set for address 0x10 and the simulator is advanced.
Execution halts when the instruction associated with the breakpoint
address reaches the Group stage. The state of the pipeline and operand
registers are shown after the breakpoint halt occurs.

zsim{8}> set break sym main
Breakpoint 1 on PC at address 0x2010 of main
zsim{9}> enable trace write
***(info) Instruction trace is ON.
zsim{10}> run
<6> (0) 0x2000 2cfb movl r12, 0xfb ! r12 = 0x00fb
<7> (1) 0x2001 3cf7 movh r12, 0xf7 ! r12 = 0xf7fb
<7> (2) 0x2002 a6d0 mov r13, 0x0 ! r13 = 0x0000
<8> (3) 0x2003 2460 movl r4, 0x60 ! r4 = 0x0060
<9> (4) 0x2004 3400 movh r4, 0x0 ! r4 = 0x0060
<10> (5) 0x2005 bc54 mov r5, r4 ! r5 = 0x0060
<11> (6) 0x2006 a051 add r5, 0x1 ! hwflag = 0x0030
<11> (6) 0x2006 a051 add r5, 0x1 ! r5 = 0x0061
<11> (7) 0x2007 6054 st r5, r4, 0 ! INT-DATA[0x0060] = 0x0061
<12> (9) 0x2009 2510 movl r5, 0x10 ! r5 = 0x0010
<13> (8) 0x2008 bb1d mov rpc, r13 ! rpc = 0x0000
<13> (10) 0x200a 3520 movh r5, 0x20 ! r5 = 0x2010
<14> (12) 0x200c a750 call r5 ! rpc = 0x200d
(PC BREAKPOINT #1)....................... CYCLE=000020 PC=0x2014

Trace information is displayed in six fields:

Example Session Using ZSIM 8-37

• The first field is the cycle count number (enclosed by ‘< >’).

• The second field is the instruction sequence number (in parenthesis).

• The third field is the program counter (PC) of the executed
instruction.

• The fourth field is the instruction opcode.

• The fifth field is the disassembled instruction, including operands.

• The sixth field describes the result of the executed instruction.

zsim{11}> run 7; show pipe
<20> (13) 0x2010 2501 movl r5, 0x1 ! r5 = 0x2001
<20> (14) 0x2011 b91d mov r13, rpc ! r13 = 0x200d
<21> (15) 0x2012 3500 movh r5, 0x0 ! r5 = 0x0001
<21> (16) 0x2013 6fdc stu r13, r12, -1 ! INT-DATA[0xf7fb] = 0x200d
<21> (16) 0x2013 6fdc stu r13, r12, -1 ! r12 = 0xf7fa
<22> (17) 0x2014 a0cf add r12, 0xffff ! hwflag = 0x0040
<22> (17) 0x2014 a0cf add r12, 0xffff ! r12 = 0xf7f9
<22> (19) 0x2016 1060 call 0x20d6 ! rpc = 0x2017
<23> (18) 0x2015 615c st r5, r12, 1 ! INT-DATA[0xf7fa] = 0x0001
<25> (20) 0x20d6 a641 mov r4, 0x1 ! r4 = 0x0001
<26> (21) 0x20d7 b91d mov r13, rpc ! r13 = 0x2017
<26> (22) 0x20d8 6fdc stu r13, r12, -1 ! INT-DATA[0xf7f9] = 0x2017
<26> (22) 0x20d8 6fdc stu r13, r12, -1 ! r12 = 0xf7f8
<27> (23) 0x20d9 bc6c mov r6, r12 ! r6 = 0xf7f8
CYCLE=000027 PC=0x20dc
CYCLE: 27
 -- F(4:3)
 (33)20ea:bc34:0:mov r3, r4
 (32)20e9:6f7c:1:stu r7, r12, -1
 (31)20e8:b910:1:mov r0, rpc
 (30)20e7:6b2c:1:stdu r2.e, r12, -2
 -- G(4:3)
 (29)20e6:3d00:0:movh r13, 0x0
 (28)20e5:6b0c:1:stdu r0.e, r12, -2
 (27)20e4:2d68:1:movl r13, 0x68
 (26)20dc:1004:1:call 0x20e4
 -- R(1:1)
 (25)20db:a063:1:add r6, 0x3
 -- E(2:2)
 (24)20da:725c:1:ld r5, r12, 2
 (23)20d9:bc6c:1:mov r6, r12
 -- W(2:2)
 (22)20d8:6fdc:1:stu r13, r12, -1
 (21)20d7:b91d:1:mov r13, rpc
zsim{12}> show reg gpr
 r0 = 0x0000 r1 = 0x0000
 r2 = 0x0000 r3 = 0x0000
 r4 = 0x0001 r5 = 0x0001

8-38 ZSIM Simulator

 r6 = 0xf7f8 r7 = 0x0000
 r8 = 0x0000 r9 = 0x0000
 r10 = 0x0000 r11 = 0x0000
 r12 = 0xf7f8 r13 = 0x2017
 r14 = 0x0000 r15 = 0x0000
zsim{14}>

Execution halts when a breakpoint is reached, the maximum cycle count
is reached, or a system halt occurs. A system halt refers to the halt mode
as defined by the power level (lvl) field in the DSP’s %smode control
register.

A simulation session is terminated with the exit command.

zsim{12}> exit
***(info) Exiting ZSIM.
%_

ZSP SDK Software Development Kit 9-1

Chapter 9
Debugger

This chapter describes the SDK source and assembly-level Debugger for
the ZSP400 and ZSPG2 architectures.

The SDK Debugger, SDBUG, is based on the GNU Debugger (GDB)
from the Free Software Foundation. GDB is described in Debugging with
GDB: The GNU Source Level Debugger, by Richard Stallman, et. al.,
Free Software Foundation, January 1994. The description of SDBUG in
this chapter, for the most part, includes only the differences from GDB.

For Windows 95/98/NT platforms, the debugger can be accessed using
the ZSP Integrated Development Environment, as described in
Chapter 10, “ZSP Integrated Development Environment (ZSP IDE).“ This
chapter describes the debugger’s standard GNU command-line interface,
available for all platforms.

9.1 Using SDBUG

SDBUG is invoked from the command line as follows:

<debugger name> [options] [executable_file]

9-2 Debugger

where debugger name is the name of the desired debugger as listed in Table 9.1.

The above command both invokes and initializes the debugger.

SDBUG-only command-line options are listed in Table 9.2. All other
SDBUG options are described in Stallman, et. al.

Use the following command to load the symbol table from the executable
file:

(sdbug) file a.out

Table 9.1 Debugger Names

Debugger Name Use when debugging...

sdbug400 code written for devices based on the ZSP400 architecture.

zdxbug code originally written for devices based on the ZSP400
architecture, but cross-compiled for the ZSPG2
architecture.

zdbug code designed for devices based on the ZSPG2
architecture.

Table 9.2 SDBUG-Only Options

Option Description Availability

-mempcr=ADDR Sets the address of the mempcr register. sdbug400

-no_mempcr Specifies that the hardware target has no
MEMPCR register

sdbug400

-jtag_type=TYPE Gives priority to the detection of the JTAG
interface specified. TYPE can be either
pci (Corelis PCI JTAG), pcmcia (Corelis
PCMCIA JTAG), or raven (Macraigor
Raven) By default, SDBUG first attempts
to use the PCMCIA JTAG card, then the
PCI JTAG card, then the Macraigor
Raven interface..

sdbug400

-jtag_mapfile=FILE Makes the debugger look for the map file
FILE, rather than the default called
“mapfile” in the current directory and
SDSP_HOME/sdspI/misc.

sdbug400

SDBUG Execution Environments 9-3

Next select SDBUG’s target execution environment (as described in the
following section). For example, to target the cycle-accurate simulator:

(sdbug) target zsim

Use the following command to load the text and data sections of the
executable file:

(sdbug) load a.out

Now you are ready to debug your program using the standard GDB
commands.

9.2 SDBUG Execution Environments

The debugger supports four execution environments:

• Functional-accurate software simulation on the host (using ZISIM)

• Cycle-accurate software simulation on the host (using ZSIM)

• Target hardware, connected through the serial port

• Target hardware, connected through a JTAG controller
(Windows 95/98/NT platforms only)

These environments are described in the following subsections.

9.2.1 Functional-Accurate Simulator Connection

The ZISIM target simulator is invoked by the following command:

(sdbug) target sim [option...]

where option is any of the simulator options described in Table 7.1 on
page 7-1.

With this connection, program execution is performed by the
functional-accurate simulator, ZISIM, under the control of the debugger.
The debugger examines the simulator state to process queries from the
user.

SDBUG uses the functional-accurate simulator commands to select
information that is requested from the executing program by the ZISIM

9-4 Debugger

simulator. These commands are listed in Table 9.3 and described in
detail in Section 7.2, “ZISIM Commands,” page 7-4.

The format for simulator commands using ZISIM is:

(sdbug) sim simulator-command

9.2.2 Cycle-Accurate Simulator Connection

The ZSIM target simulator is invoked by the following command:

(sdbug) target zsim

Table 9.3 SDBUG Target ZISIM Simulator Commands

Command Description

clear-stats Resets the statistics.

close filename Closes file filename.1

help Displays the list of simulator commands that can be
invoked.

max_number_of_files number Sets the maximum number of files that can be opened
at the same time to number.1

1. This command may also be invoked without specifying the target name. See Section 9.3.1,
“Generic Target-Specific Commands” on page 9-11 for details.

memory_download filename addr size Writes size of items to memory addr from file
filename.1

memory_upload filename addr size Reads size of items from memory addr to file
filename.1

print-stats Prints statistics such as instruction mix, load, store,
discontinue, and mispredicts to stdout.

reg-off Sets the simulator register tracing off.

reg-on Sets the simulator register tracing on.

trace-off Sets the simulator trace off.

trace-on Sets the simulator trace on.

clear-opcode Resets statistics of opcode usage.

print-opcode Prints statistics of opcode usage.

SDBUG Execution Environments 9-5

With this connection, the cycle-accurate simulator (ZSIM) executes your
program under the control of the debugger. The debugger examines the
simulator state to process queries from the user.

The cycle-accurate simulator commands are used to select information
that is requested from the executing program by the ZSIM simulator.
These commands are listed in Table 9.4 and described in detail in
Section 8.2, “ZSIM Commands,” page 8-5.

The format for ZSIM commands is:

(sdbug) zsim simulator-command

Table 9.4 SDBUG Target ZSIM Commands

Command Description

clear-stats Resets the general statistics.

clear-opcode Resets the opcode usage statistics.

close filename Closes file filename.1

help Displays the list of simulator commands that can be
invoked.

max_number_of_files number Sets the maximum number of files that can be opened at
the same time to number.1

memory_download filename addr
size

Writes size of items to memory addr from file
filename.1

memory_upload filename addr size Reads size of items from memory addr to file
filename.1

pfdu-off Turns off data unit profile information.

pfdu-on Turns on data unit profile information.

pfiu-off Turns off instruction unit profile information.

pfiu-on Turns on instruction unit profile information.

pfpipe-off Turns off pipeline unit profile information.

pfpipe-on Turns on pipeline unit profile information.

pipe-off Sets the simulator pipeline off.

(Sheet 1 of 2)

9-6 Debugger

9.2.2.1 User-Specified Profiling

When used with the cycle-accurate simulator, the debugger supports
profiling of selected areas of your project code. To use this feature, you

pipe-on Sets the simulator pipeline on.

print-dcache Prints contents of data cache to stdout.

print-icache Prints contents of instruction cache to stdout.

print-opcode Prints instruction opcode history to stdout.

print-pipe Prints contents of the pipeline to stdout.

print-profile Prints collected profile information to stdout.

print-rule [# | all] Prints grouping rule to stdout2.

print-stats When cycle count is on, prints statistics to stdout.

print-stats-inc Prints incremental statistics information to stdout.

pf functionName start end Collects profile information for functionName from
start to end addresses. Follow by profile-on
command to turn on the profile collector.

profile-func Collects profile information for all functions in the program.
Follow by the profile-on command to turn on the profile
collector.

profile-off Turns off profile collector.

profile-on Turns on profile collector

reg-off Sets the simulator register tracing off.

reg-on Sets the simulator register tracing on.

trace-off Sets the simulator trace off.

trace-on Sets the simulator trace on.

1. This command may also be invoked without the target name. See Section 9.3.1, “Generic Target-
Specific Commands” on page 9-11 for details.

2. The optional arguments only work in sdbug400. zdbug and zdxbug only supports the display of the
grouping rules that are currently active.

Table 9.4 SDBUG Target ZSIM Commands (Cont.)

Command Description

(Sheet 2 of 2)

SDBUG Execution Environments 9-7

must define the regions to be profiled using the following pair of
assembler directives in your source code:

asm(“\n__FUNC_START_region_name:”);

<code to be profiled>

asm(“\n__FUNC_EXIT_region_name:”);

The profiling can then be enabled using the following commands:

(sdbug) profile-func

(sdbug) profile-on

Execute the program by typing:

(sdbug) run

Display the profiling statistics using:

(sdbug) print_profile

With respect to profiling, the profile-func command will treat
region_name just like a function. Note that for function profiling to
operate correctly, execution that passes through the start label must
also pass through the exit label.

9.2.3 UART Connection

The UART connection is invoked by the following commands:

(sdbug) set remotebaud [baud_rate]

(sdbug) target sdsp-remote serial_port

The required baud rate can be specified when setting remotebaud. The
default baud rate setting is 38400.

To use this connection, your target evaluation board must be able to
support UART-based debugging with appropriate hardware and firmware.
In addition, your target must be booted from flash memory that contains
the UART debug code. For instructions on programming the flash
memory, refer to the application note, Programming the Flash. To ensure
that your EB402 Evaluation Board is booted from (external) flash

9-8 Debugger

memory, set the IBOOT pin LOW. Refer also to the EB402 Evaluation
Board User’s Guide.

Use the SDBUG commands in Table 9.5 to communicate with the target
board though the serial port connection.

The format for serial port commands is:

(sdbug) sdsp-remote sdsp-remote-command

9.2.4 JTAG Controller Connection

To use the JTAG connection, you must install a Corelis PCI or PCMCIA
Type II Boundary Scan Controller card on your Windows machine and
install a cable connecting it to your evaluation board.

Note: The JTAG target is available only for Windows 95/98/NT
platforms.

The JTAG target is invoked by the following commands:

(sdbug) jtag set_clk 2 0 0

(sdbug) target jtag

The first command is required to set the parameters for the JTAG clock
(TCK) on the Corelis Boundary Scan Controller card, where the first
parameter (2) specifies the base clock oscillator to be used (50 MHz), the

Table 9.5 SDBUG UART Connection Commands

Command Description

close file filename Close file filename.1

1. This command may also be invoked without the target name. See Section 9.3.1, “Generic Target-
Specific Commands” on page 9-11 for details.

help List UART connection commands.

max_number_of_files number Specify the maximum number of files that can be
opened at the same time.1

memory_download filename addr size Write size of items to memory addr from file
filename. addr can be a label.1

memory_upload filename addr size Read size of items from memory addr to file
filename. addr can be a label.1

SDBUG Execution Environments 9-9

second parameter (0) disables the clock prescaler, and the third
parameter (0) is used as the clock divisor (divide by 2). (These are the
default settings for boards running at 100 MHz and above.) The second
command establishes the connection.

Refer to the Corelis Software Development Kit User’s Manual for
information on supported JTAG clock speeds.

The JTAG commands described in Table 9.6 are used to select
information that is requested from the target using the JTAG connection.

The format for JTAG commands is:

(sdbug) jtag jtag-command

Table 9.6 SDBUG JTAG Commands

Command Description

close filename Close file filename.1

1. This command may also be invoked without the target name. See Section 9.3.1, “Generic Target-
Specific Commands” on page 9-11 for details.

help List JTAG commands.

set_clk val1 val2 val3 Sets the JTAG clock according to the JTAG interface in
question. With the Corelis JTAG interfaces, the values
are base clock occillator, prescaler enable, and clock
divisor, respectively.

For Macraigor Raven, it would be the speed value
followed by two zeros.

Generally speaking, fthe JTAG clock speed should be
approximately 1/10th to 1/20th of the ZSP clock speed.

raven_lpt port Tells the debugger to use LPT 1, 2, or 3 as the Raven
LPT port.

max_number_of_files number Specify the maximum number of files that can be
opened at the same time.1

memory_download filename addr size Write size of items to memory addr from file
filename. addr can be a label.1

memory_upload filename addr size Read size of items from memory addr to file
filename. addr can be a label.1

9-10 Debugger

9.2.4.1 Hardware-Assisted Debugging

The JTAG target environment supports hardware-assisted debugging.
The format for a hardware-assisted debugging command is:

(sdbug) hw hardware_assisted_debugging_command

Important: All breakpoints must be disabled before using hard-
ware-assisted debugging. Only one breakpoint may be
set, and when it is set, any previously-set breakpoint is
deactivated. You cannot perform I/O during hardware-
assisted debugging.

Important: Hardware-assisted debugging will function correctly
only with the correct map file for the specific part being
debugged. The SDK comes with the map file for LSI402ZX
rev. 1 (mapfile), LSI402ZX rev. 2 (mapfile_rev2), and
LSI403LP (mapfile_403lp); if your application uses a differ-
ent processor, please contact the vendor for the correct
map file. The default map file loaded is mapfile. To change
the map file used, either copy the new map file to the direc-
tory the debugger is inovked in as “mapfile,” or copy to the
current directory or $SDSP_HOME/sdspI/misc and use the
--jtag_mapfile command line option to specify the map file
to use.

The commands available for hardware-assisted debugging are shown in
Table 9.7.

Table 9.7 Hardware-Assisted Debugging Commands

Command Description

enable_ice Enable hardware-assisted debugging.

resume Resume execution.

step n Step n cycles.

insn_addr_brk addr Set a breakpoint when executing an instruction at
addr.

st_addr_brk addr Set a breakpoint when storing to addr.

st_data_brk data Set a breakpoint when storing the value data.

Debugger Commands – Special Cases 9-11

9.3 Debugger Commands – Special Cases

Some SDBUG commands have special cases, which are described in
the following subsections. For more information on the usage of any
command, issue the help command at the (sdbug) prompt.

9.3.1 Generic Target-Specific Commands

To make test scripts that need to run under multiple targets more generic,
the hardware and software target-specific commands memory_upload,
memory_download, close, and max_number_of_files may now be used
without their target prefixes after the target has been specified.

For example, the command:

(sdbug) jtag max_number_of_files 1

may be replaced by

(sdbug) max_number_of_files 1

within a script after you have issued the target command.

9.3.2 Backtrace Command

To use the backtrace command, you must adhere to the calling
conventions described in Section 3.2, “Compiler Conventions.” To use
this command to display the call stack, set breakpoints on the function

st_addr_and_data_brk addr data Set a breakpoint when storing data to addr.

st_addr_or_data_brk addr data Set a breakpoint when storing to addr or storing the
value data.

disable_brk Disable hardware breakpoint.

return_to_sw_dbg Returns to software debug mode. Must have
executed in hardware debug mode for at least one
cycle in order for this to work.

Table 9.7 Hardware-Assisted Debugging Commands (Cont.)

Command Description

9-12 Debugger

name. This command may display incorrect results when the debugger
is halted inside a function prologue or epilogue.

9.3.3 Info Registers Command

9.3.3.1 sdbug400, zdxbug

To use this command, the %rpc register must be stored on the stack,
even for leaf functions. Otherwise, the compiler returns incorrect values
for the %pc and %rpc registers when traversing the stack. Refer to
Section 3.2, “Compiler Conventions.”

9.3.3.2 zdbug

The code still needs to following the compiler convention, though the
convention has now been changed. Refer to Section 3.2, “Compiler
Conventions.” for details.

9.3.4 Breakpoint Command

SDBUG reserves the use of pc value zero. If two breakpoints are
inadvertently set at pc value zero, the debugger will loop while trying to
execute the instruction. If a breakpoint has to be set at pc value zero, set
only one breakpoint at that address.

9.3.5 Print Command

The print command is typically used to display the values of variables
and arrays. It may also be used to display the values in any memory
location.

9.3.6 Set Command

The set command is used to change the state of the processor or the
debugger. It can be used to change any register value, the value of any
word in any memory, or the value of any variable.

Keep in mind that with the cycle-accurate simulator (ZSIM), the set
command may not operate correctly if it is used to change the contents
of a register that will be used by an instruction currently in the pipeline—
if the instruction is in a pipeline stage older than Group (G), the
instruction may read the old value. Also, using the ZSIM set to modify a

Debugger Commands – Special Cases 9-13

memory location that has already been loaded into the data cache will
modify both the data cache and the memory. (With the UART and JTAG
targets, modifying memory will not affect the data cache.)

9.3.7 Cycle-Step Command

The cycle-step command is only available for use with the cycle-
accurate simulator (ZSIM). This command causes the simulator to
advance the pipeline cycle-by-cycle.

Format:

cycle-step #

Example:

(sdbug) cycle-step 10

The simulator will be advanced by 10 clock cycles.

9.3.8 Accessing Memory with the Debugger

9.3.8.1 sdbug400, zdxbug

Debugger commands use memory addresses that are seven
hexadecimal digits in length.

The address format is shown in Figure 9.1. The seventh (leftmost and
most-significant) digit is the page number (0x0–0xF) from the mempcr
register, the sixth digit selects between internal (0) or external (1)
memory, the fifth digit selects instruction (0) or data (2) memory, and the
first four (rightmost and least-significant) digits are the normal 16-bit
address. If any of the three most-significant digits are omitted from an
address, they are assumed to be zero.

9-14 Debugger

Figure 9.1 Debugger Memory Addressing (sdbug400, zdxbug)

Note: All other ZSP SDK tools and linker scripts use four-digit
addressing. The debugger is the only tool that uses seven-
digit memory addressing.

Some examples of debugger memory addressing are shown below:

9.3.8.2 zdbug

Debugger commands use memory addresses that are eight hexidecimal
digits in length.

The address format is shown in Figure 9.2. The eighth (leftmost and
most-significant) digit’s fourth bit (0x80000000) selects between internal
(0) or external (1) memory, the eighth digit’s third bit (0x40000000)
selects instruction (0) or data (1) memory. The other seven digits are
used to determine the address. If any of the leftmost digits are ommitted
from an address, they are assumed to be zero.

0 x 0 1 2 3 4 5 6

Page Number

Internal (0) or External (1)
Memory

Instruction (0) or Data (2)
Memory

Address
from mempcr register

0x0001000 Internal instruction at address 0x1000

0x0022000 Internal data at address 0x2000

0x0103000 Page 0, external instruction memory at address 0x3000

0x2124000 Page 2, external data memory at address 0x4000

0xa105000 Page 10, external instruction memory at address 0x5000

Dynamic Breakpoints 9-15

Figure 9.2 Debugger Memory Addressing (zdbug)

Note: All other ZSP SDK tools and linker scripts use 24-bit
addressing. The debugger is the only tool that uses 30-bit
addressing.

Some examples of debugger memory addressing are shown below:

9.4 Dynamic Breakpoints

Command-line debugging supports dynamic breakpoints for all target
execution environments while in software debug mode. Dynamic
breakpoints are set by pressing cntl-C.

9.5 Example Debugging Sessions

This section contains two examples demonstrating the use of SDBUG.
The first example uses the functional-accurate simulator, ZISIM. The
second example uses the JTAG controller connection for hardware-
assisted debugging.

0 x 0 1 2 3 4 5 6 7

Internal (0) or External (8)
Memory

Instruction (0) or Data (4)
Memory

Address

0x00001000 Internal instruction at address 0x1000

0x40002000 Internal data at address 0x2000

0x80003000 External instruction memory at address 0x3000

0xC0004000 External data memory at address 0x4000

0x30000000 Internal Instruction at address 0x300000000

0xF0000100 External data memory at address 0x30000100

9-16 Debugger

9.5.1 Example 1

In this sample debugging session, the executable is built from the C and
assembly programs shown in Appendix A, "Example Programs" The
name of the executable is demo.exe, and the start address is 0x1000.
The target is set to the functional-accurate simulator (ZISIM) for the
LSI402Z. The complete command name is used the first time the
command is invoked (for example, backtrace); subsequent invocations
use the abbreviated command name (bt).

(shell) sdbug400
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=sparc-sun-solaris2.6 --target=sdsp-zsp-elf"...
(sdbug) file demo.exe
Reading symbols from demo.exe...done.
(sdbug) target sim
Connected to the simulator.
(sdbug) load demo.exe
.text : 0x 0 .. 0x cd ... Loading
.data : 0x cd .. 0x cf ... Loading
Transfer rate: 3312 bits in <1 sec.
(sdbug) breakpoint main
Breakpoint 1 at 0x13: file demo.c, line 9.
(sdbug) b func_1
Breakpoint 2 at 0x56: file func1.s, line 9.
(sdbug) b func_2
Breakpoint 3 at 0x89: file func2.c, line 4.
(sdbug) b func_3
Breakpoint 4 at 0x70: file func1.s, line 50.
(sdbug) run
Starting program: /user/Tools/MyProject02/demo.exe

Breakpoint 1, main () at demo.c:9
9 char ch = ’A’;
(sdbug) list
4
5 int t=500;
6
7 main()
8 {
9 char ch = ’A’;
10 int i,j = 100,k;
11
12 for (i=0; i< 2; i++) {
13 func_2();

Example Debugging Sessions 9-17

(sdbug) step
10 int i,j = 100,k;
(sdbug) print j
$1 = 0
(sdbug) p i
$2 = 0
(sdbug) continue
Continuing.

Breakpoint 3, func_2 () at func2.c:4
4 int x=0,n=0;
(sdbug) next
5 while(n < 20)
(sdbug) n 5
25 t1 = x;
(sdbug) backtrace
#0 func_2 () at func2.c:25
#1 0x21 in main () at demo.c:13
(sdbug) up
#1 0x21 in main () at demo.c:13
13 func_2();
(sdbug) down
#0 func_2 () at func2.c:25
25 t1 = x;
(sdbug) info reg r2 r3 r12 rpc pc
r2 0x0 0
r3 0x0 0
r12 0xf7f3 -2061
rpc 0x21 33
pc 0xc0 192
(sdbug) c
Continuing.

Breakpoint 2, func_1 () at func1.s:14
14 mov r5, r4
Current language: auto; currently asm
(sdbug) l
9 mov r13, %rpc
10 stu r13, r12, -1
11
12 /** END PROLOGUE **/
13
14 mov r5, r4
15 ld r4, r5
16 mov r6, 500
17 cmp r4, r6 /* *t <= 500; */
18 bgt L2
(sdbug) s 6
20 mov r6, 100
(sdbug) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000013 in main at demo.c:9
 breakpoint already hit 1 time

9-18 Debugger

2 breakpoint keep y 0x00000056 func1.s:9
 breakpoint already hit 1 time
3 breakpoint keep y 0x00000089 in func_2 at func2.c:4
 breakpoint already hit 1 time
4 breakpoint keep y 0x00000070 func1.s:50
(sdbug) delete 4
(sdbug) b demo.c:23
Breakpoint 5 at 0x3b: file demo.c, line 23.
(sdbug) c
Continuing.

Breakpoint 3, func_2 () at func2.c:4
4 int x=0,n=0;
(sdbug) n 3
9 x += 5;
(sdbug) bt
#0 func_2 () at func2.c:9
#1 0x21 in main () at demo.c:13
(sdbug) c
Continuing.

Breakpoint 2, func_1 () at func1.s:14
14 mov r5, r4
(sdbug) disable 2 3
(sdbug) c
Continuing.

Breakpoint 5, main () at demo.c:23
23 while (i < 20) {
(sdbug) p i
$3 = 2
(sdbug) p j
$4 = 100
(sdbug) c
Continuing.

Breakpoint 5, main () at demo.c:23
23 while (i < 20) {
(sdbug) d 5
(sdbug) c
Continuing.
(SYSTEM HALT).. PC=0x000e
Total Instructions: 1384

Program exited normally.
(sdbug) exit

Example Debugging Sessions 9-19

9.5.2 Example 2

This example illustrates the use of hardware-assisted debugging with the
JTAG connection. The example program hw_dbg.s is shown in
Appendix A, "Example Programs"

GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-cygwin32 --target=sdsp-zsp-elf".
(sdbug) file a.out
Reading symbols from a.out...done.
(sdbug) jtag set_clk 2 0 0
(sdbug) target jtag
Connected to the target JTAG.
(sdbug) load
.data: 0x 1 .. 0x 1 ... Loading
.text: 0x 0 .. 0x ce ... Loading
(sdbug) hw enable_ice
(sdbug) hw insn_addr_brk 0x11
(sdbug) run
Starting program: hardware_debug.out
Connected to the target JTAG.
.data: 0x 1 .. 0x 1 ... Loading
.text: 0x 0 .. 0x ce ... Loading
Before:
 r0:0000 r4:0000 r8:0000 r12:0000
 r1:0000 r5:0000 r9:0000 r13:0000
 r2:0000 r6:0000 r10:0000 r14:0000
 r3:0000 r7:0000 r11:0000 r15:0000

 %fmode:0000 %hwflag:0004 %pc:0000 %timer1:0000
 %tc:0000 %ireq:0060 %rpc:0000 %loop2:0000
 %imask:0000 c10:0000 %tpc:ffff %loop3:0000
 %ip0:0000 c11:0000 %cb0_beg:0000 c27:0000
 %ip1:0000 %vitr:0000 %cb1_beg:0000 c28:0000
 %loop0:0000 c13:0000 %cb0_end:0000 c29:0000
 %loop1:0000 amode:0000 %cb1_end:0000 %dei:0000
 %guard:0000 %smode:0200 %timer0:0000 %ded:0000

Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
Successfully entered HW Debug mode ...

(sdbug) i r 14
r14 0x00
(sdbug) i r 15

9-20 Debugger

r15 0x00
(sdbug) i r pc
pc 0x1319
(sdbug) hw st_data_brk 0xab02
(sdbug) hw resume
Host: Scanning into target 6024 bits
Host: Finished scanning into target 6024 bits
Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14
r14 0x44
(sdbug) i r 15
r15 0x00
(sdbug) i r pc
pc 0x3048
(sdbug) hw resume
Host: Scanning into target 6024 bits
Host: Finished scanning into target 6024 bits
Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14
r14 0x77
(sdbug) i r 15
r15 0x00
(sdbug) i r pc
pc 0x4569
(sdbug) hw st_addr_brk 0x2000
(sdbug) hw resume
Host: Scanning into target 6024 bits
Host: Finished scanning into target 6024 bits
Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14
r14 0x88
(sdbug) i r 15
r15 0x00
(sdbug) i r pc
pc 0x4c76
(sdbug) hw st_addr_and_data_brk 0x2001 0xab01
(sdbug) hw resume
Host: Scanning into target 6024 bits
Host: Finished scanning into target 6024 bits
Host: Waiting to scan out of target 6024 bits
Host: Writing scan command
Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14
r14 0xd13
(sdbug) i r 15
r15 0x22
(sdbug) i r pc

Example Debugging Sessions 9-21

pc 0x82130
(sdbug) quit

9-22 Debugger

ZSP SDK Software Development Kit 10-1

Chapter 10
ZSP Integrated Devel-
opment Environment
(ZSP IDE)

Version 4.0 of SDK Tools features a new Graphical Interface Integrated
Development Environment for ZSP software project management,
referred to as ZSP IDE. ZSP IDE is a productivity-enhancing tool for
users of ZSP Processors, allowing easy setup, build, and debug of ZSP
software projects. This chapter will focus on managing project structure
and building executable ZSP programs. The ZSP IDE Debugger chapter
describes the graphical user interface for the debugger.

Features of ZSP IDE –

• Workspaces to organize projects and default settings

• ZSP Project Build Support - G2, G1/G2, ZSP400

• Compatibility - Backward-compatible with Version 3.2 Projects.

• Windows and UNIX (planned) platforms

• Multiple Projects in same directory

• Build Output linked to Source File View

• Parallel Debug Manager

System Requirements – ZSP IDE requires PC/Windows 95/98/2000.

Although unsupported at this time, the IDE will be available on Solaris
platforms as well in the future.

This section is organized as follows: ZSP IDE Overview, Workspace
Overview, Project Overview, and detailed functional information.

10-2 ZSP Integrated Development Environment (ZSP IDE)

10.1 ZSP IDE Overview

ZSP IDE provides an integrated tool suite for ZSP software developers
by managing projects, building code, and debuging for all ZSP
processors and supported targets. The graphical user interface allows
easy project setup for users with minimal familiarity with ZSP tools and
hardware.

Figure 10.1 ZSP IDE Tools Suite Implementation

10.1.1 Introduction to Workspaces and Projects

Figure 10.2 ZSP IDE Workspace

10.1.1.1 Project

The basic element of each ZSP software project is an executable file.
Each executable file is managed by ZSP IDE based on settings that are

ZSP IDE Overview 10-3

created within ZSP IDE and stored in a project file. Project settings
include all information needed to build and debug an executable:

• Target ZSP Architecture

• Compiler Settings

• Include and Archive File directories

• Assembler Settings

• Debugger Settings

• IDE Debugger Window Settings

10.1.1.2 Workspace

A workspace may contains any grouping of projects with any combination
of processor settings and debug targets. The workspace component of
ZSP IDE allows maintenance of default settings for its component
projects.

10.1.1.3 IDE

Figure 10.3 ZSP IDE Main Window

The main window layout of ZSP IDE contains the main menu, toolbar,
project tree, source file editing area and output/utility windows.

10-4 ZSP Integrated Development Environment (ZSP IDE)

All of the main functions of ZSP IDE are available through the main
menu. The most commonly used functions from the main menu are also
accessible throught the toolbar. The project tree displays the workspace
and project structure, allows opening of source files for editing, and
provides quick access to pertinent menu functions through popup menus.

At the bottom of the ZSP IDE main screen is the output window which
displays the output of build and compile commands. Additional tabs
grouped with the output window in the lower section provide a basic
operating system shell interface and an output window for post-
processing functions (such as object dump utility) or for custom
commands. The shell tab allows operating system command line
capability from within the IDE. The Utility Output tab displays output of
utility commands available from within the IDE.

The bottom part of the IDE shows status information. The current cursor
location in the editor window is also reflected in this status area.

10.2 Working With Workspaces and Projects

10.2.1 Working With Workspaces

The purpose of a workspace is to organize and to provide default
settings for a Project or group of Projects. New and existing Projects may
be added to a workspace. A Project may belong to multiple workspaces.

A set of default properties can be set for a workspace. Any new project
added to the workspace will inherit the default settings of the workspace.
These settings may later be altered by the user. When an existing project
is added to a workspace, the user is given the option to either keep
existing project settings or inherit the default settings of the workspace.

The Workspace menu has sub-menus to open, close and save
workspace files. It also has sub-menus to add new or existing projects
to a workspace. You can also delete projects from a workspace. A history
of the previous workspaces visited is also available to quickly switch
between workspaces. Only one workspace may be active at any time.
Switching to a different workspace will close the existing workspace and
the component projects. If a source file was altered and not yet saved, a

Working With Workspaces and Projects 10-5

warning is issued and the user is provided with an option to save
changes before switching to a different workspace.

Figure 10.4 Recent Workspaces List

10.2.1.1 Creating a new workspace

A new workspace can be created by selecting Workspace>New from the
IDE Main Menu. A dialog box is displayed to specify the filename for the
new workspace.

Figure 10.5 File Selection Dialog

The workspace filename will be taken from the Selection Entry in the
Dialog Box. You may type or cut and paste the selected pathname
directly into the Selection entry box and select the Create command
button to create the new workspace, or you may navigate to a new
directory from the currently selected one. The Files area shows the
filtered contents of the selected directory when the Filter command
button is selected. To limit file extensions shown in the file selection box,

10-6 ZSP Integrated Development Environment (ZSP IDE)

type the filter specification into the Filter Entry area and select the Filter
button at the bottom of the Dialog Box. To change the directory, select
from the directory selection box or type the directory into the Filter Entry
area. To create a new directory, enter the desired path into the Selection
entry area. The new directory will be created when the Create command
button is selected. Workspace file names will always be specified by the
filename extension “.ws”. This is not modifiable. If another extension or
no extension is specified, then the .ws extension will be created for the
base filename entered.

Note: Filenames may not contain space characters.

10.2.1.2 Open a Workspace

An existing workspace can be opened using the same procedure as
described in the previous section.

10.2.1.3 Save a Workspace

Select Save from Workspace menu to save the current workspace.

Select Save As from the Workspace menu to display the file selection
dialog box to save a workspace with a different name or in a different
directory. The new workspace becomes the current session after
executing “Workspace -> Save As”.

10.2.1.4 Add Projects to a Workspace

To add new or existing projects to a workspace, select “Add Project” from
the Workspace menu. The file selection dialog for projects is similar to
that used for creating workspaces. The default filename extension for
project files is “.pjt”.

Working With Workspaces and Projects 10-7

It is also possible to add multiple projects to a workspace without closing
the dialog box by selecting the Create command button for each project
to be added. When all projects have been added, select Done to close
the dialog box.

10.2.1.5 Delete a Project from a Workspace

Select the project to be deleted from the workspace in the project
explorer window then select Workspace->Remove Project.

10.2.1.6 Close a Workspace

To close a workspace select Workspace->Close from the Workspace
menu. Before closing a workspace, the user is prompted to save any
unsaved files.

10.2.2 Working With Projects

A project is a container for source files, object files, executable files, build
settings and debugger settings.

Each project’s settings are stored in a file with a .pjt extension. It is not
necessary for the constituent files to be resident in the same directory as
the project. The project can be moved as long as the paths to the source
files are correct. Source files, header files, libraries and object modules
can be shared across multiple projects. Multiple project files may exist in
the same directory.

The Project menu has sub-menus to open, close and save project files,
and a sub-menu to add new or existing files to a project. You can also

10-8 ZSP Integrated Development Environment (ZSP IDE)

delete files from a project. A history of projects recently visited is
available to quickly move between projects. Only one project can be
active at any time. Switching to a different project will close the existing
project. If a source file was altered, a warning is issued and the user is
provided with an option to save changes before switching to a different
project.

Figure 10.6 Project Menu

10.2.2.1 Creating a New Project

To create a new project within a workspace, you may select either from
the main menu Workspace>Add Project>New Project or from the Project
Tree popup menu over the active workspace node Add Project> New
Project.

A dialog box similar to that described for workspaces will be displayed
and you may create the new project using the same methods.

10.2.2.2 Opening an Existing Project

A Project can be opened by the following options

Step 1. Project -> Open. The file selection dialog is displayed.

Step 2. One can browse to the appropriate directory and specify the
project file (.pjt file) to be opened.

Step 3. Click OK

This will open the selected project. All associated component source,
header, and object files will be shown in the project explorer pane.

Project Settings 10-9

10.2.2.3 Saving a Project

To save a project, select Save from the Project menu.

To save a project to a new project file name, select Save As from the
Project Menu. A dialog box is displayed to save the project with a
different name or in a different directory. The new name is immediately
reflected in the project explorer window and the new project becomes
active.

10.2.2.4 Add Files to a Project

To add new or existing files to a workspace, select “Add File” from the
Project menu. The file selection dialog for files is similar to that used for
creating projects. There is no default filename extension for files. The
initial filter in the file selection dialog suggests source files. Edit the filter
specification in the filter entry to display listings of files with alternate
extensions.

It is also possible to add multiple files to a project without closing the
dialog box by selecting the Create command button for each file to be
added. When all files have been added, select Done to close the dialog
box.

10.2.2.5 Delete Files from project

To delete a file from a project, use the popup menu over the file you
would like to remove to select “Remove From Project”. You may also
select the file to be deleted from the project explorer window then select
Project->Remove Files from the main menu.

10.2.2.6 Close a project

To close a project select Project->Close from the Project menu. Before
closing project the user is prompted to save any unsaved files.

10.3 Project Settings

Selecting Build->Settings or Debug->Settings from the main menu
invokes the display of the Settings Dialog. If a workspace node is

10-10 ZSP Integrated Development Environment (ZSP IDE)

selected in the project tree then the Settings Dialog will reflect the default
settings for the workspace.

The Settings Dialog contains a tabbed notebook view that contains all of
the settings for a project, including settings for the ZSP compiler,
assembler, linker, debugger, and GUI debugger preferences. These tabs
are described below. You may page between the various tabs on the
Settings Dialog and make changes. When the changes are complete for
all of the tabs, select “Save and Exit” to save the settings to the project
file and close the Dialog Box. Select “Exit without Saving” to discard the
changes.

10.3.1 Build methodology and Project Tree Structure

The ZSP IDE project tree partitions project files into “folders” based on
filename extensions. Source files which have extension of “.c” for C
sources are added to the “C Source Files” folder. Source files which have
a “.S” extension are assembly sources that require C preprocessing
while a “.s” extension indicates an assembly source file which does not
require preprocessing. Both “.S” and “.s” are inserted into the IDE Project
Tree in “Assembly Source Files” folder. Include files which have
extensions of “.h” or “.inc” will be added to the project tree “Include Files”
folder. Additionally, when a file with a “.h” or “.inc” extension is added to
the project, ZSP IDE will provide a prompt allowing the directory
containing the files to the Include Directories list. Files with any other
extension than those described here are inserted into the project in the
“Other Files” folder and will not be part of the build process.

The ZSP IDE invokes the appropriate ZSP compiler (SDCC ZDCC
ZDXCC) based on the processor type selected in the Settings dialog.
The ZSP compiler invokes each of the component processes that
complete the build process. Options may be specified to direct the
behavior or the compiler, assembler, and linker. These are specified in
the Settings panel.

10.3.2 Compiler/Assembler Settings

The Compiler Settings tab is the primary control for each project. The
processor architecture selected in the Compiler Settings tab controls the
entire set of underlying command line tools and utilities. The three
available architecture choices are

Project Settings 10-11

• G2 - This option selects the ZSP G2 architecture.

• ZSP400 - This option selects the ZSP400 architecture.

• G1G2 - This option is provided to enable building ZSP400 code for
processors based on ZSP G2 architecture.

ZSP400 is the first generation ZSP architecture. This setting will work for
all ASSPs based on this core (example LSI402ZX, LSI403Z, LSI403LP).

ZSPG2 is the next generation architecture in the ZSP roadmap. It has
many new instructions, new resources and a bigger address range. It is
assembly compatible with the ZSP400.

At this time there is a dual mac core called ZSP500 that is being
designed based on the ZSPG2 architecture. It supports a 24-bit address
range and is a 4 issue machine. The simulators in the toolchain support
the ZSP500 in a cycle accurate and instruction accurate modes. Refer
to the ZSP400 and ZSPG2 manuals for more information. Select G2 to
compile for ZSP500 or G1/G2 to compile ZSP400 source code for G2.

10-12 ZSP Integrated Development Environment (ZSP IDE)

Figure 10.7 Compiler Settings

Figure 10.8 Assembler Settings

The following table describes the other options that control the Compiler
and Assembler.

Project Settings 10-13

Table 10.1 Compiler/Assembler Options

Option (Command Line Equivalent) Description

Produce debugging information (-g) This option instructs the compiler to produces debug-
ging information for source-level debugging.

Print stages of compilation (-v) This option instructs the compiler to print the com-
mands executed in stages of compilation, and to print
the version number of the tools before compilation.

Optimization (-O number) This option instructs the compiler to produce opti-
mized code. Select optimization level 0-3. See the
compiler section of this document for more details
regarding optimization levels and the impact of optimi-
zaton on debugging capabilities.

No assembly optimization (-mno_sdopt) This option supresses back-end optimization that is
otherwise automatically performed on compiler-gener-
ated assembly code.

Use Long calls (-mlong_call) This option will tell the compiler to use register-based
calls (long calls). These calls can be optimized where
possible if back-end optimization is enabled.

Use Large Data Model (-mlarge_data) The large data model has no requirements on the size
or placement of the data and bss sections.

Additional compiler options Text Box (option) This option specifies any compiler options that do not
have a check box in the Compiler/Assembler options
tab. Separate multiple options with spaces.

Output
Options

Create object files (-c) This option instructs the compiler to compile and
assemble the source files and produces object file(s)
only (no linking is performed).

Create assembly files (-s) This option instructs the compiler to stop after compi-
lation and produces assembly code files for each C
source file specified.

Preprocess files (-E) This option stops compilation after the preprocessing
stage and redirects the preprocessed output to stan-
dard output.

Create executable (-o) This option instructs the compiler to compile all
sources and link objects into the executable file spec-
ified in the Executable File Name entry.

Executable File Name Specify the name of the executable file you want here.

10-14 ZSP Integrated Development Environment (ZSP IDE)

The following table describes the options that control the linker.

10.3.3 Linker Settings

The Linker Settings window provides detailed control over link behavior.
See the Linker section of this manual for more detail.

a. Entry Point - The Entry Point directive to the linker specifies the
starting address or label of the executable. The default is the
label “__start” (provided in crt0.obj for C programs). For
assembly programs you may specify the entry point to be any
valid label or address, or you may accept the default which is the
start of the “.text” section.

No standard includes (-nostdinc) This option directs the compiler not to search the
standard system directories for header and include
files.

Include Directories (-I) Include Directories is a list of directories that the com-
piler will search for header and include files.

No Standard Libraries (-nostdlib) This option forces the compiler to not use the stan-
dard system startup files or libraries during linking.

Suppress warnings (-W) This option suppresses warning messages.

Listing option (-a) This option produces a listing file. The listing file
includes high-level source information, assembly
instruction information, and symbol information. Type
a filename in the text box to save the listing to a file.
The listing is sent to standard output if no filename is
specified.

Additional compiler options Text Box (option) This option specifies any compiler options that do not
have a check box in the Compiler/Assembler options
tab. Separate multiple options with spaces.

Produce debugging information (-dbg) This option includes debugging symbols in the object
file to allow source-level debugging of assembly files.

Additional assembler options Text Box (
option)

This option specifies any assembler options that do
not have a check box in the Compiler/Assembler
options tab. Separate multiple options with spaces.

Table 10.1 Compiler/Assembler Options

Option (Command Line Equivalent) Description

Project Settings 10-15

b. Locate Stack - The Locate Stack defines the __stack_start
symbol that determines the starting address of the program
stack pointer.

c. Define Symbols - You may define other symbols with this option.

d. Code Section (-Ttext) - You may specify the starting address for
the “.text” section by entering a valid address in this entry box.

e. Data Section (-Tdata) - You may specify the starting address for
the initialized data section by entering a valid address in this
entry box.

f. BSS Section (-Tbss) - You may specify the starting address for
the uninitialized data section by entering a valid address in this
entry box.

g. Link Script - If you need more control over the locations of
sections in you executable, you may specify a link script file in
this entry. If you specify a relative pathname, it should be relative
to your project directory.

h. Additional Options - Specify any additional options for linking.

i. Archive Files - Archive Files is a list of archive files to be linked
with your project’s object files to produce the executable.

j. Object Files - Object Files is a list of object files to be linked with
your project’s object files to product the execuatable.

10-16 ZSP Integrated Development Environment (ZSP IDE)

For archive and object files, you may invoke a file browser to select the
files by selecting the appropriate “Add” command button. Likewise,
remove a file from the list by selecting it with the mouse and then
selecting the “Remove” command button.

Table 10.2 Linker options

Option (Command Line Equivalent) Description

Entry Point (-e) This option specifies a symbol for beginning execu-
tion of the program. The default entry point is __start.
Enter the symbol in the text box.

Locate Stack (__stack_start) This entry defines the symbol __stack_start for the
Linker to explicitly locate the program stack.

Define symbols (-defsym) Creates a symbol in the output file containing the
absolute address specified by the expression. Enter
the symbol and the expression in the text box, using
the following syntax: symbol=expression. Note that
spaces are not allowed next to the ‘=’ sign.

Code Section(-Ttext) This entry specifies the starting address for the text
segment of the output file. Default value is 0x0

Data Section (-Tdata) This entry specifies the starting address of the data
segment of the output file. Default value is 0x0.

Data Section (-Tbss) This entry specifies the starting address of the unini-
tialized data segment of the output file. Default value
is 0x0.

Link Script This entry specifies a filename to be used as a Linker
Command File. Filename extension must not conflict
with source / object file name extensions.

Object Files Specifies external object files to be linked with the
project’s object files. Select Add button to select new
object files from a File Selection Dialog box. To
remove an object file from the list, select the entry
with the mouse and then select Remove.

Archive files List Box (-L) Specifies external archive files to be linked with the
project’s object files. Select Add button to select new
archive files from a File Selection Dialog box. To
remove an archive file from the list, select the entry
with the mouse and then select Remove.

Additional options This entry specifies any linker options that do not
have a check box in the Linker options tab. Separate
multiple options with spaces.

ZSP IDE Detailed Description 10-17

10.4 ZSP IDE Detailed Description

10.4.1 Paned Window Controls

The IDE Main Window is divided into resizable sections by Paned
Window Controls. IDE screen area displayed in the Paned Window may
may be resized by dragging the handles of the paned window controls
that separate the screen areas.

Figure 10.9 Paned Window Handles

10.4.2 Project Tree

The Project Tree component of the ZSP IDE shows a hierarchical view
of the files included in your projects and workspace. The Project Tree
also provides the primary means of selecting the active project or
workspace component.

Figure 10.10 ZSP IDE Project Tree

10-18 ZSP Integrated Development Environment (ZSP IDE)

Select the workspace node of the tree to customize default settings for
your workspace. Default settings are applied to new projects when they
are created within your workspace. Default settings may also be applied
to existing projects when they are added to your workspace. To apply
default settings to existing projects, select the checkbutton labeled “Use
Workspace Settings” in the Preferences Window. To invoke the
Preferences Window select Preferences from the View Menu. See
Section 10.4.3.5, “View Menu,” page 10-21 for details on the preferences
window.

Select a project or file from the tree to activate the project file as the
Current Project. The Current Project is the project affected by Build and
Debug operations.

Select a file from the Project Tree to edit the file in the Edit Window.

A popup menu is available for the workspace node of the project tree. To
invoke the Workspace Popup Menu, click the right mouse button over the
workspace node of the tree.

The Workspace Popup Menu shows the name of the workspace followed
by shortcuts to workspace menu items from the main menu.

A popup menu is available for a project node of the project tree in the
same fashion as above.

ZSP IDE Detailed Description 10-19

A popup menu is available for the filenode of the project tree in the same
fashion as above.

10.4.3 Main Menu

The Main Menu provides access to major functions of ZSP IDE such as
opening, closing, and maintaining workspaces, projects and files, as well
as building and debugging projects

10.4.3.1 Operating the Main Menu

Main menu items may be selected either by left-clicking with the mouse
or by typing on the keyboard using menu accelerator keys (Underlined
character in the menu name). To invoke the menus from the keyboard,
depress the ALT key and the accelerator key for the Main Menu item
concurrently. This will display the pull down subitem menu from which
you can make further selections without using the ALT key. You may also
use the Up, Down, Left, and Right arrow keys to navigate through the
menus, terminating your choice with either the Enter key to confirm or
the Escape key to cancel your selection.

10.4.3.2 Main Menu Functions

The ZSP IDE Main Menu provides the following submenus:

• File Menu

• Edit Menu

• View Menu

• Project Menu

• Workspace Menu

• Build Menu

• Debug Menu

• Help Menu

10-20 ZSP Integrated Development Environment (ZSP IDE)

10.4.3.3 File Menu

The File Menu is used for operations on text files such as source files,
include files, batch files, or any other text file. This menu is provided to
open new or existing files and save and close active files.

Figure 10.11 ZSP IDE File Menu

A file opened using the file menu does not automatically belong to the
active project. A file needs to be explicitly added to a project as
described in the section on Projects.

A file may be opened and edited even if no workspace or project is
active.

10.4.3.4 Edit Menu

A simple editor is included in the IDE. The Edit Menu provides options
that may be useful during editing. It is fairly intuitive to use and provides
standard edit functionality like cut, copy, paste, indent, outdent, find,
replace, select all, undo and redo.

The Edit functions are applicable to a file that is being edited in the Edit
Window. They are not applicable for projects, workspaces and directories
and will result in errors if used for anything but File editing.

Short cut keys are also available for common edit functions.

ZSP IDE Detailed Description 10-21

Figure 10.12 ZSP IDE Edit Menu

10.4.3.5 View Menu

The view menu is available to selectively display and customize ZSP IDE
Screen components.

Figure 10.13 ZSP IDE View Menu

View Preferences

A user may set IDE enviromnent preferences by selecting View-
>Preferences. The preferences window offers options to alter editor
settings in a tab labeled “Editor”. Colors, Text style, line number and
other preferences can be set in this window.

The checkbutton labeled “Use workspace settings” controls the default
project settings when a new project is created. If it is checked, then the
project will be created with the default workspace settings, otherwise the
project will be created with generic defaults.

The checkbutton labeled “Use Relative Path” controls the type of path
that is created within the workspace and projects. If it is not checked then
absolute paths will be used for workspace components (projects and
files, include directories, etc.) Otherwise relative paths are used. Relative
path heirarchy begins with the workspace, (which is always an absolute

10-22 ZSP Integrated Development Environment (ZSP IDE)

path). Projects are relative to the workspace. Files and other project
component paths are relative to the project directory.

After finishing setting the preferences, click OK to save these settings.

View Window

View->Window provides the option to display or hide the Project Explorer
set of tabs and the Output set of tabs. A check mark to the left of the
item denotes if the window is active. The setting is toggled each time an
item is selected.

View Toolbar

The Toolbar Buttons icons displayed in the toolbar at the top of the IDE
window can be customized to a user’s liking.

There is a default that comes up as the standard toolbar. A user may
select View->Toolbar->customize to customize the toolbar. When
customize is selected a window titled “Customize Toolbar” pops up that
shows the various options available for customizing. On clicking OK, the
toolbar will be altered to display the customized settings.

Select View->Toolbar->Customize to display the Customize Toolbar
Window which allows selection of toolbar buttons to be displayed.

ZSP IDE Detailed Description 10-23

Figure 10.14 Customize Toolbar

Switch back to the standard settings by selecting View->Toolbar-
>Standard.

A check mark to the left of the item denotes if the selection is active. The
setting is toggled each time an item is selected.

10.4.3.6 Project Menu

The Project Menu allows projects to be created and maintained.

Figure 10.15 ZSP IDE Project Menu

10-24 ZSP Integrated Development Environment (ZSP IDE)

10.4.3.7 Workspace Menu

The Workspace Menu allows Workspaces to be created and maintained

Figure 10.16 ZSP IDE Workspace Menu

10.4.3.8 Build Menu

The Build Menu invokes the ZSP IDE Build process and allows
customization of Project Build Parameters.

Figure 10.17 ZSP IDE Build Menu

Build Project

Once a project is created and the constituent files added to it, the build
settings which control the options with which the underlying tools
(compiler, assembler, linker) are invoked can be set and the executable
can be built.

Build project will build the executable, using the options specified in the
Project Settings window. This functionality is also available from the
popup menu on the project tree when a project file is the selected node.

When building the executable, build messages will be displayed on the
output window in the Build / Compile Output tab if enabled.

ZSP IDE Detailed Description 10-25

Figure 10.18 Build / Compile Output Window

The Build Output Window displays all the standard error or output of the
process of building or compiling a project. The output can be saved by
right clicking on the window. If errors in building are shown in the Build
Output Window, you may easily display the source file and line containing
the error in the Edit Window by double-clicking with the left mouse button
on the line in the Build Output Window.

A popup menu is available within the Build Output Window to save or
clear the window contents.

Figure 10.19 Build Output Window Popup Menu

Settings

Select Settings to customize the parameters to be used for building your
project. This functionality is also available from the popup menu on the
project tree when the project file is the selected node.

Compile Current

Select “Compile Current” to compile the currently selected source file.
The ZSP compiler is invoked with the -c option and an object file will be
produced with the same base name as the input file and an extension of
“.obj”. This functionality is also available from the popup menu on the
project tree when the source file is the selected node.

10-26 ZSP Integrated Development Environment (ZSP IDE)

10.4.3.9 Debug Menu

The Debug Menu provides configuration and control of Project
Debugging.

Figure 10.20 ZSP IDE Debug Menu

Use Default Target

Select Use Default Target from the Debug Menu to ignore the Target
Settings in the project file and use instead the default settings you have
saved for your computer. Use Default Target is a system setting and is
not a component of the project. The default target setting is stored in the
ZSP Tools Program directory in a file named zspide.ini.

Target Settings

Select Target Settings from the Debug Menu to display the Debug Target
Settings Panel

Debug Settings displays the valid target types for the processor type that
is specified in your project’s Build Options. For ZSP400, valid Debug
Targets are ZSIM, ZISIM, and Hardware Targets. For G2, valid Debug
targets are software simulators ZSIM and ZISIM.

ZSP IDE Detailed Description 10-27

Figure 10.21 Debug Settings

Figure 10.22 Debug Window Settings

10-28 ZSP Integrated Development Environment (ZSP IDE)

Run

Select Run to launch the ZSP IDE Debugger using the selected
processor and debug target settings.

Invoke PDM

Select Invoke PDM from the Debug Menu to run the Parallel Debug
Manager component of ZSP IDE. PDM allows concurrent debugging of
projects. PDM is valid when a workspace is active and operates on all
projects selected from within the current workspace. See Section 10.7,
“Parallel Debug Manager,” page 10-33 for more information on this
feature.

10.4.3.10 Utilities Menu

objdump

Select “objdump” from the Utilities Menu to invoke the objdump dialog
box.

The Object File Utility dialog box shows information about object files.
The default object file is the compiler output file from the currently
selected project. You may select another object file from a file selection
dialog for processing by selecting the “Choose File” command button.

ZSP IDE Detailed Description 10-29

Figure 10.23 Object File Utility

Figure 10.24 Utility Output Window Showing Disassembled Code

User Command

Select User Command from the Utilities menu to display a dialog box that
allows execution of a custom command to be executed.

10.4.4 Toolbar

The Toolbar provides easy access to commonly used functions of ZSP
IDE.

10-30 ZSP Integrated Development Environment (ZSP IDE)

Table 10.3 ZSP IDE Toolbar

The following functions are available through the toolbar.

New File

Select the “New File” toolbar button to create a new text file in the IDE
editor window. The new file is not automatically included in the current
working project. If you wish the new file to be a project component, use
the “Add File” option either from the main menu Project Menu or from
the project tree popup menu over the selected project.

Open File

Select the “Open File” toolbar button to open an existing text file in the
IDE editor window. The opened file is not automatically included in the
current working project. If you wish the opened file to be a project
component, use the “Add File” option either from the main menu Project
Menu or from the project tree popup menu over the selected project.

Close

Select the “Close File” toolbar button to close the text file that is the being
edited in the IDE edit window.

Close All

Select the “Close All” toolbar button to close all of the text files that are
the being edited in the IDE edit window.

Save

ZSP IDE Detailed Description 10-31

Select the “Save” toolbar button to save the file that is currently being
edited in the editor window.

Save All

Select the “Save All” toolbar button to save all of the files that are present
in the editor window and that have been modified.

Cut

Select the “Cut” toolbar button to cut selected text from the editor
window.

Copy

Select the “Copy” toolbar button to copy the selected text from the editor
window into the clipboard buffer.

Paste

Select the “Paste” toolbar button to paste the contents of the clipboard
at the insertion point in the text file in the edit window.

Find

Select the “Find” toolbar button to invoke the Find Dialog, which allows
searching the current source file for the desired text.

Settings

Select the “Settings” toolbar button to display the Settings window for the
currently selected project or workspace.

10-32 ZSP Integrated Development Environment (ZSP IDE)

Build

Select the “Build” toolbar button to invoke the build tools using the
settings from the currently selected project

Compile

Select the “Compile” toolbar button to compile the currently selected
source file.

Debug

Select the “Debug” toolbar button to invoke the GUI debugger for the
currently selected project.

10.5 Shell Window

Figure 10.25 Shell Window

This is a window, where you can type dos commands

Disassembly Window 10-33

10.6 Disassembly Window

Figure 10.26 Disassembly Window

The disassembly window shows disassembled code sections and is
generated from the executable file. To populate the Disassembly Window,
select Disassembly from the View Menu.

10.7 Parallel Debug Manager

When PDM starts, a configuration window is displayed from which you
may select the projects from within your workspace that you would like
to debug. Selected projects display a checkmark in the selection box.

Figure 10.27 Parallel Debug Manager Setup Window

Select Run from the Debug menu choice to start debugging. The PDM
window changes to debugging mode and ZSP IDE Debuggers are
launched for each of the projects selected. Each debugger may be

10-34 ZSP Integrated Development Environment (ZSP IDE)

controlled independently using its own controls, or all debuggers may
execute the same commands as directed by the PDM Control Window.

PDM Controls include command buttons from the Debug Execute menus
and a command prompt and output window. Commands that are typed
into the command prompt will have output displayed in the PDM output
window for each of the projects being debugged.

Figure 10.28 Parallel Debug Manager Control Window

10.8 Help Menu

10.9 Editor

The ZSP IDE Editor is a window where you can write your code. It allows
basic editing functionality

ZSP IDE File Formats 10-35

10.10 ZSP IDE File Formats

ZSP IDE produces a number of files when you create and compile a
project or Workspace. These can be categorized as follows

Table 10.4

Extension Description

.c C Source file

.S or .s Assembly source File

.h Header File

.pjt Project File

.ws Workspace File

.exe Executable file

10-36 ZSP Integrated Development Environment (ZSP IDE)

ZSP SDK Software Development Kit 11-1

Chapter 11
ZSP IDE Debugger

This chapter describes how to use the ZSP IDE Debugger, a graphical
debugging environment for developers using the ZSP family of Digital
Signal Processor Cores.

Version 4.0 of SDK Tools features a new Graphical Interface Integrated
Development Environment for ZSP software project management,
referred to in this document as ZSP IDE. The debug component of ZSP
IDE is the focus of this chapter and is referred to as ZSP IDE Debugger.

ZSP IDE Debugger is a menu-driven user interface to the ZSP Debugger.
It provides a user-friendly graphical interface that allows navigation
through your code while showing program and processor information for
debugging purposes. The ZSP IDE Debugger allows setting breakpoints,
examining registers and variables, watching source level variables,
examining memory. Commands may be entered to be executed by the
Command Line Debugger. The capability to automatically save your
current debug settings and restore them at startup allows quick setup for
each debugging session.

The ZSP IDE Debugger is an integral component of the ZSP IDE
executable (ZSPide.exe). The Debugger is configured and invoked from
the IDE Debug Menu to operate on the IDE Current Project. The
Debugger component of the IDE may be run independently from the IDE
by using a separate executable (guidebug.exe). When running the
Debugger in this way, a Project File may be loaded through the Debugger
File Menu.

Features of ZSP IDE Debugger –

• Processor Support - ZSP G2 Architecture, ZSP400 Architecture, and
G1/G2 (to use ZSP400 source code for processors based on ZSP
G2 architecture.)

• Compatibility - Backwards-compatible with Version 3.2 Projects.

11-2 ZSP IDE Debugger

• Windows and UNIX (planned) Debugger platforms

• Support for multiple targets

• Processor Register Windows - Operand, Control, Address Registers

• Displays cycle-accurate simulator information, code statistics, code
profile, instruction grouping rules

• Concurrent Source and Disassembly level debugging

• 40-Bit Register display

• Multiple sessions may run concurrently

• Command-Line Debugger interface

Underlying Command Line Tools – Behind the ZSP IDE Debugger is
a command line interface to a GNU Debugger (sdbug, zdbug, zdxbug)
for the ZSP processor. Each currently supported debug target (ZSP
Core) uses a separate configuration of the Command Line Debugger.

Target Interfaces

Table 11.1 Command Line Debugger Executables

Target Command Line Debugger

ZSP400 sdbug400.exe

G2 zdbug.exe

G1G2 zdxbug.exe

Table 11.2 Debugger Targets

Simulator targets

Cycle accurate simulator (zsim)

Instruction level simulator (zisim)

Hardware Targets

Corelis PCMCIA based JTAG connector

Corelis PCI based JTAG connector

UART (Serial Port)

GUI Debugger Overview 11-3

ZSP IDE Debugger supports the JTAG hardware target for ZSP400,
UART (Serial Port) hardware target for ZSP400, ZISIM instruction-
accurate simulator for ZSP400, G2, and G1G2, and ZSIM cycle-accurate
simulator for ZSP400, G2, and G1G2.

11.1 GUI Debugger Overview

11.1.1 Main Window

The Main Window comprises a Title Bar, Menu Bar, Tool Bar(s), Status
Area, and Debugging Window area in which Debugging Windows may
be displayed.

11.1.2 Title Bar - Project File Name Display

When a project is loaded, the name of the project file is displayed in the
Main Window Title Bar.

11.1.3 Window Area

Debugging Windows are displayed in the window area in the center of
the Main Window. The Main Window configuration adds new Debugging
Windows by splitting the available window size into panes that are
resized by adjusting the handle on the separator between the windows.
Alternatively, Debugging Windows may each be separated from the Main
Window (see Section 11.1.7.3, “Top Level Window Presentation,”
page 11-8).

11.1.4 Status Area

The Status Area at the bottom of the Main Window shows general
information throughout the debugging session, such as the target
processor, debug target, executable file name, and debugging status.

11.1.5 Main Menu

The Main Menu provides access to major functions of the debugger such
as controlling breakpoints, executing navigation commands, displaying
Debugging Windows.

11-4 ZSP IDE Debugger

11.1.5.1 Operating the Main Menu

Main menu items may be selected either by left-clicking with the mouse
or by typing on the keyboard using menu accelerator keys (Underlined
character in the menu name). To invoke the menus from the keyboard,
depress the ALT key and the accelerator key for the Main Menu item
concurrently. This will display the pull down subitem menu from which
you can make further selections without using the ALT key. You may also
use the Up, Down, Left, and Right arrow keys to navigate through the
menus, terminating your choice with either the Enter key to confirm or
the Escape key to cancel your selection.

11.1.5.2 Controlling Debugging Windows Through the Main Menu

Debugging Windows display program and/or debugging target
information. Debugging Windows may be selected for viewing through
the Main Menu checkbutton menu items.

Debugging Window Menu Checkmarks – When a Debugging Window
is displayed, the corresponding Main Menu item displays a checkmark in
front of the menu text field

Figure 11.1 Menu Checkmarks For Debugging Windows

11.1.6 Main Toolbars

Toolbars are available as menu shortcuts to provide access to commonly
used debugging features.

11.1.6.1 Available toolbars

Toolbars exist for the following areas:

• Program navigation (Execute Menu shortcuts)

GUI Debugger Overview 11-5

• Breakpoints (Breakpoint Menu shortcuts)

• Windows (Debugging Window menu shortcuts)

11.1.6.2 Invoking Toolbars

Select Toolbars from the Tools Menu and select the desired toolbar by
name to toggle the display of the toolbar below the menu in the Main
Window.

Figure 11.2 Tools Menu - Invoke Toolbars

11.1.6.3 Modifying Toolbar Appearance

Toolbar Buttons may be viewed with text or icon annotation. To view the
button annotation as text, select Preferences from the Tools Menu to
display the Preferences Window then unselect the “use images”
checkbutton. Figure 11.4 and Figure 11.5 illustrate the appearance of the
toolbar for each of these annotation modes.

Figure 11.3 Preferences - Use Images For Toolbar Buttons

Each Toolbar Button has a text description that is displayed when the
mouse cursor is present on the button providing additional information
regarding that button’s functionality.

11-6 ZSP IDE Debugger

Figure 11.4 Toolbar Buttons With Text Annotation

Figure 11.5 Toolbar Buttons With Image Annotation

11.1.7 Debugging Windows (General)

Debugging Windows comprise the following types (described in detail in
later sections):

• C/Assembly Program Windows

– Source Code

– Breakpoint List

– Debugging Symbols

– Call Stack

– Local Variables

– Global Variables

– Expression

– Watch

– ZSIM Statistics

– ZSIM Profile

• Target system windows

– Disassembly Code

– Control Registers

GUI Debugger Overview 11-7

– Operand Registers

– Address Registers (G2)

– Memory

– ZSIM Grouping Rule

– ZSIM Pipeline

• Tools Preferences

• Command Line Interface

11.1.7.1 Debugging Window Operation

Debugging Windows are displayed by selecting the appropriate menu
item from the Main Menu or by selecting the appropriate button from the
Window Toolbar. To remove the window from the display, invoke the menu
item again to remove the checkmark, close the window by clicking on the
“X” icon, or deselect the associated Toolbar Button.

11.1.7.2 Debugging Windows Paned Window Presentation

Debugging Windows are presented by default in a Paned Window view
as child windows within the Main Window. In this configuration, all
windows appear at the same level, ie. no separate Debugging Windows.
Each Debugging Window may be separated from the Paned Window (
see Section Debugging Window Top Level Preference - Page 9 and
Section Changing Debugging Window View Mode - Page 9)

Figure 11.6 Debugger Paned Window

Paned Window Operation – Windows displayed in the Paned Window
may may be resized by dragging the handles of the paned window

11-8 ZSP IDE Debugger

controls that separate the rows and columns of the Debugging Window
area.

Figure 11.7 Paned Window Handles

Resizing columns affects all windows in that column while resizing rows
only modifies one window plus its vertical neighbor.

Paned Window Configuration – The presentation of windows in the
Paned Window may be configured in 1-4 columns by selecting
Preferences from the Tools Menu and “Main Window Columns” from the
Preferences Window Display Tab. To change the number of columns
displayed during a session,

Step 1. Set the desired number of columns in the preferences panel

Step 2. Save the debugging session (File > Save > Session)

Step 3. Reload the debugging session (File > Load > Session)

Figure 11.8 Preferences - Set Main Window Columns

11.1.7.3 Top Level Window Presentation

Top Level presentation of a Debugging Window displays that window as
a separate Top Level window.

GUI Debugger Overview 11-9

Figure 11.9 Top Level Debugging Window

Top Level focus control – Top Level Debugging Windows that are
obscured by other graphics on the screen may be brought into focus for
viewing by selecting the corresponding Window Button on the toolbar at
the bottom of the Paned Window.

Figure 11.10 Top Level Window Focus Control

Debugging Window Top Level Preference – New Debugging
Windows may be automatically configured for Top Level presentation by
selecting Preferences from the Tools Menu and then selecting the
checkbox labeled "Separate New Windows" in the Display Tab of the
Preferences Window.

Figure 11.11 Preferences - Separate New Window

11.1.7.4 Changing Debugging Window View Mode

Each of the Debugging Windows may be changed to and from Top Level
or Paned Windows or may be closed by selecting the appropriate window
icon at the upper right corner of that Debugging Window’s submenu
area.

11-10 ZSP IDE Debugger

Click the left mouse button on the Window icon to separate the window
into a Top Level Window. Click the left mouse button on the “X” icon to
close the window.

Figure 11.12 Display Controls for Paned Window

Click the left mouse button on the window icon to join the Top Level
Window into the Paned Window. Click the left mouse button on the “X”
icon to close the window.

Figure 11.13 Display Controls for Top Level Window

11.1.7.5 Autoload Debugging Windows Preference

When restarting a debugging session, the windows displayed in the
previous session may be automatically displayed by selecting
Preferences from the Tools Menu then selecting the "Autoload/save
windows at entry/exit" checkbox from the Session Tab of the Preferences
Window.

Figure 11.14 Preferences - Autoload Windows

Display settings are saved as part of the project data when Autoload is
selected. This includes all of the window preferences selections and all
of the debugging windows that are open when the debugger is closed.

Detailed Descriptions 11-11

11.2 Detailed Descriptions

11.2.1 Main Menu

11.2.1.1 File Menu

File operations available through the File Menu include:

• loading and saving debugging sessions

• loading an executable for debugging

• loading and saving memory images

• script recording and playback

11.2.1.2 Breakpoint Menu

Breakpoints allow program execution to stop at specified code locations
so that processor and program information may be examined during
debugging. Each line of source or disassembly code may be specified as
a Breakpoint. When a Breakpoint is enabled, program execution will be
stopped when the line of code is scheduled as the next instruction. When
a Breakpoint is disabled, program execution is not stopped at the line but
continues past the breakpoint. Breakpoint Operations available through
the Breakpoint Menu include:

• toggling breakpoints at the currently selected source line

• enabling and disabling a breakpoint at the currently selected source
line.

• disabling or deleting breakpoints at all except the currently selected
line

• deleting, enabling, or disabling all breakpoints

• toggling display of the breakpoint listing window

Breakpoints are indicated in the Source and Disassembly Windows in the
left-most column of the window. An Enabled Breakpoint is indicated by a
red highlight in this area of the line. A Disabled Breakpoint is indicated
by a gray highlight.

11-12 ZSP IDE Debugger

Figure 11.15 Breakpoint Menu

Current Selection Line – When setting a breakpoint from the
breakpoint menu, the breakpoint will be set at the Current Selection Line.

At the completion of each program navigation step (eg breakpoint
reached, single step executed, etc) the Current Selection Line is the
highlighted program line.

The Current Selection Line for Breakpoint Operations may be set in
either the Source Window or Disassembly Window. Left-click the mouse
with the mouse pointer over the desired line and that line will become the
Current Selection Line. Alternatively, you may use the up and down arrow
keys to select the previous or next line of code as the Current Selection
Line.

When the Current Selection Line is selected with the mouse or keyboard,
the address of the Current Selection Line is displayed in the status bar
at the bottom of the Paned Window, the appropriate line/lines is/are
highlighted in both the Source Code and Disassembly Windows, and
subsequent Breakpoint Operations will be applied to that line.

Figure 11.16 Source Code Window Current Selection Line

Breakpoint Toolbar (Menu alternative) – Each of the breakpoint
functions except the listing is available from a toolbar that is displayed in
the Main Window. To display the Breakpoint Toolbar select Toolbars from
the Tools Menu and then select Breakpoint Management from the
Toolbars cascade menu.

Detailed Descriptions 11-13

Toolbar settings are saved and restored for each debugging session
when “auto load/save windows at entry/exit” is selected in Debugging
Preferences.

Breakpoint Menu –

Toggle Set
When a breakpoint is 'Toggle Set' by the "Toggle Set" menu choice, the
debugger checks for the existence of a breakpoint at the current line. If
a breakpoint exists, it is deleted. If a breakpoint does not exist, then one
is created at the current line.

Alternatives to Breakpoint Menu 'Toggle Set':

• Source and Disassembly Window Popup Menus "Toggle Breakpoint"

• Source and Disassembly Window Breakpoint Area (left-most column
of the window) left-click

• Keyboard Shortcut "T or t"

Example of Source Code Window breakpoint controls and displays

Figure 11.17 Source Code Window Breakpoints

Toggle Enable
When a breakpoint is 'Toggle Enabled' by the "Toggle Enable" menu
choice, the debugger checks for the existence of a breakpoint at the
current line. If a breakpoint does not exist, then one is created at the
current line and enabled. If a breakpoint exists, the debugger checks for
the enabled state of the breakpoint. If it is enabled then the breakpoint
is set to disabled and vice-versa.

Alternatives to Breakpoint Menu 'Toggle Enable'

• Source and Disassembly Window Popup menus "Toggle Breakpoint"

• Keyboard Shortcut "E or e"

11-14 ZSP IDE Debugger

Delete Except
Selecting "Delete Except" from the Breakpoint Menu causes all
breakpoints to be deleted except at the current line. If no breakpoint
exists at the current line, then a breakpoint at the current line is created.

Disable Except
Selecting "Disable Except" from the Breakpoint Menu causes all
breakpoints to be disabled except at the current line. If no breakpoint
exists at the current line, then a breakpoint at the current line is created.

Delete All
Selecting "Delete All" from the Breakpoint Menu causes all breakpoints
to be deleted.

Enable All
Selecting "Enable All" from the Breakpoint Menu causes all existing
breakpoints to be enabled.

Disable All
Selecting "Disable All" from the Breakpoint Menu causes all existing
breakpoints to be disabled.

List
Selecting "List" from the Breakpoint Menu displays a Debugging Window
showing details of breakpoints currently set.

Note: For details about the Breakpoint List Window, see Section ,
“Breakpoint List,” page 11-22

11.2.1.3 Execute Menu

The Execute Menu provides access to commonly used navigation
features for debugging.

• Run

• Continue

• Stop

• Source Step

• Source Next

• Source Until

Detailed Descriptions 11-15

• Source Finish

• Assembly Step

• Assembly Next

• Cycle Step

• Multiple Cycle Step

Figure 11.18 Execute Menu

Alternative to execute menu for execute functions – Additional
means of navigation are:

• Program Navigation Toolbar

• Keyboard shortcut keys

• Popup menu on source and disassembly Debugging Windows

Program Navigation Toolbar
Each of the execute functions is available from a toolbar that is invoked
from the Tools Menu. To turn on the Program Navigation Toolbar, select:

11-16 ZSP IDE Debugger

Keyboard Shortcut Keys
Keyboard shortcut keys allow single-keystroke navigation through
program execution.

Popup Execution Functions
Selecting a source or disassembly line and using the right-click popup
menu allows run or continue to that line.

Execute Menu Functions –

Run
Run causes the program to be run from the start.

Continue
Continue causes the program to be run from the current position.

Step
Step causes the program to advance from the current source position to
the next source line for which debugging information exists. If the source
file does not exist, the Disassembly Window will be invoked for navigation
through the debug execution steps. If the current source is assembly

Table 11.3 Keyboard Shortcuts

Key Action

F2 R r Run

F3 C c Continue

F4 S s Step

F5 N n Next

F6 A a Assembly Step

F7 X x Assembly Next

I i finish

U u Until

O o stop

Y y Cycle-Step

M m Multiple Cycle-Step

Detailed Descriptions 11-17

code then Step advances by one assembly instruction, stepping info
function calls.

Next
Next causes the program to advance from the current source position to
the next source line. If the current source position is a function call then
the function is stepped over. Otherwise the behavior is the same as Step.
If the current source is assembly code then Next advances by one
assembly instruction, stepping over function calls.

Assembly Step
Assembly step advances program execution by an assembly-level
instruction. Assembly step will follow calls to step into functions.

Assembly Next
Assembly next advances program execution by an assembly-level
instruction. Assembly next will step over calls and will not step into
functions.

Finish
Finish completes execution of a function and returns to the line following
the function call.

Until
Until continues running until a source line past the current line in the
current stack frame is reached.

Stop
Stop causes a dynamic breakpoint to be executed in a running program.
Program execution is halted and current state of the program and
processor is reflected in the Debugging Windows.

Cycle-Step
Cycle-step advances program execution by one processor clock cycle.
Cycle-step is available for the ZSIM simulator target only. Depending on
instruction grouping, more than one assembly instruction may be
executed in a Cycle-Step.

Multiple Cycle-Step
Multiple Cycle-step advances program execution by a user defined
number of processor clock cycles. Multiple Cycle-step is available for the
ZSIM simulator target only.

11-18 ZSP IDE Debugger

11.2.1.4 Program View Menu

The Program View Menu controls program-related windows. To display a
window, select it from the menu. When the window is displayed, a
checkmark is placed next to the window description. See
Section 11.2.2.1, “C/Assembly Program Windows,” page 11-19 for
detailed window information.

Figure 11.19 Program View Menu

11.2.1.5 Target View Menu

The Target View Menu controls target hardware-related windows. To
display a window, select it from the menu. When the window is displayed,
a checkmark is placed next to the window description. See
Section 11.2.2.2, “Target Windows,” page 11-27 for detailed window
information.

Figure 11.20 Target View Menu

11.2.1.6 Tools Menu

The Tools Menu provides customization of views for each project, access
to a Command Line Debugger Interface, display of target settings,
selection of toolbars to be displayed in the Main Window, and log file

Detailed Descriptions 11-19

display. See Section 11.2.2.3, “Tools Windows and Functions,”
page 11-33 for more information on the Tools Menu items.

Figure 11.21 Tools Menu

11.2.1.7 Help Menu

The Help Menu provides help.

11.2.2 Debugging Window Detailed Descriptions

11.2.2.1 C/Assembly Program Windows

Available from the Program View menu or from the Window Toolbar, the
Program Windows display data pertinent to execution of a program.
Available Program Windows include:

• Source Code Window

• Breakpoint List Window

• Debugging Symbols Window

• Call Stack Window

• Local Variables Window

• Global Variables Window

• Expression Window

• Watch Window

• ZSIM Profile Window

• ZSIM Statistics Window

Source Code Window – The Source Code window displays the
program source files for debugging. The location of the program source
files are obtained from the debugging information in the loaded
executable. Additional directories may be searched for source files by

11-20 ZSP IDE Debugger

using the Working Directories specification in the Project Settings dialog
of the IDE.

Accessing Source Code Window
The Source Code Window is accessible through the Program View Menu
by selecting “Source Code”.

Program execution tracking
Tracking of program execution is visible through the Source and
Disassembly Windows. The Current Line is highlighed as the next
instruction to be executed.

Source Code Window Display
The Source Code Window is populated based on information reported
from the Command Line Debugger. When the Source Code Window is
created, all source files known to the Command Line Debugger are
inserted into the file selection pulldown box when the Source Code
Window is created. The content of the source files are read from their
files and displayed in the Source Code Window either when you select
the file for viewing from the file selection pulldown box or when program
execution enters that source code file.

Figure 11.22 Source Code Window

Source Code Window Syntax Highlighting
If the project preferences indicate that syntax highlighting is desired,
each file will be highlighted at creation.

Source Code Window progress bar
While source file loading or highlighting is in progress, a progress bar is
displayed to inform the user of the status of the operation. If the source
file is a Top Level window then the progress bar is also displayed as a
Top Level window, otherwise the progress bar is displayed in the Main
Window status area.

Detailed Descriptions 11-21

Figure 11.23 Progress Bar Window

Source Code Window Components
The Source Code Window contains columns for breakpoint information,
pipeline stage (ZSIM target only) line number, and source code text. The
window submenu contains a source file listing drop-down box in the
Source Code Window Menu. The source file drop-down box lists all of
the source files known to the Command Line Debugger.

Figure 11.24 Source Code Window (shown with Disassembly
Window)

• Source Code Window Breakpoint Area
The breakpoint area shows enabled breakpoints in red, disabled
breakpoints in gray and the current line is indicated by an ascii arrow.

• Source Code Window Line Highlighting
The Source Code Window has two important items highlighted for
user information, one being the Current Program Execution Line and
the other being the User-Selected Line.

– Source Code Window Current Execution Line
Current Program Execution Line - indicated by a highlighted
background on the code and line number areas.

– Source Code Window User-Selection Line
User-Selection Line - indicated by a blue band over the line
selected. The line may be selected by clicking the left mouse
button on the desired line. The line may also be selected by
using the keyboard up and down arrow keys. The source code
filename and instruction address are displayed in the Main
Window status bar when the user selects a line. If the 'Target
View > Disassembly' Window is displayed when the user selects

11-22 ZSP IDE Debugger

a source code line, then the associated disassembly lines are
also marked with the same color blue band and brought into
view.

• Source Code Window Popup Menu
The popup menu for the source code or Disassembly Window is
invoked by right-clicking the mouse over the code area. The popup
menu allows you to toggle a breakpoint or breakpoint enable at the
selected line, run from start to the selected line, or continue from the
current execution point to the selected line. Run and continue to the
selected line is implemented by saving the breakpoints, setting a
break at the selected line and then executing run or continue as
specified.

The source code window popup menu also allows a command-line
debugger query to be performed using the word beneath the mouse
pointer as the query expression.

Figure 11.25 Example Source Code Popup Query Result

Breakpoint List – Selecting "Breakpoint -> List" from the Main Window
causes a Debugging Window window to be displayed showing details of
breakpoints currently set.

Detailed Descriptions 11-23

Figure 11.26 Breakpoint List Window

For each existing breakpoint, the breakpoint list shows:

• source code file name

• source code file line number

• instruction address

• command line debugger's breakpoint identification number

• breakpoint enable state

Selecting a Breakpoint Line
Left-click on a line in the breakpoint list to select that breakpoint as the
current line for Breakpoint Operations.

Actions on Selecting a Breakpoint Line
When a breakpoint line is selected from the list, if the Source Code
and/or Disassembly Windows are shown, the breakpoint line is
highlighted and brought into focus in these windows.

Operations Available for a Selected Breakpoint Line
Right-click on a line in the breakpoint list to display a popup menu of
breakpoint operations that may be applied to the selected Breakpoint.

Saving of Breakpoints
Breakpoints are saved and restored with the project session when
Autoload is selcted from the Preferences Window.

Debugging Symbols Window – Debugging Symbols are available for
browsing using the Debugging Symbols Window. Two types of
information are presented, program data symbols and program
instruction symbols.

11-24 ZSP IDE Debugger

Figure 11.27 Debugging Symbols Window

• Program Data Symbols
The Symbols Window lists variables that are global, indicates the
source file in which they are defined and the data type associated
with the variable.

• Program Instruction Symbols
The Symbols Window lists instruction labels for the program being
debugged and the associated addresses.

The Debugging Symbols Window is only populated when it is invoked,
since it will not change within the debugging session.

Call Stack – To display a program’s Call Stack, select Call Stack from
the Program View Menu.

Figure 11.28 Call Stack Window

Call Stack Code Viewing
To view the code associated with one of the stack levels displayed, select
that line in the Stack Window and select the Show Code button. The
Source and Disassembly Windows will display the associated code.

Call Stack Details Popup
The Show Detail on the Stack Window menu shows details in a popup
window so that information exceeding the display area may be easily
examined. The detailed information includes the Stack Level, Address,

Detailed Descriptions 11-25

Procedure (name and arguments), Source File name, Source File line
number.

Local Variables – To display local variables, select Local Variables from
the Program View Menu. The Local Variables Window shows all
variables that are in the local scope.

Figure 11.29 Local Variables Window

Global Variables – A view of global variables is available from the Main
Menu by selecting 'Program View > Globals'. The Global Variables
Window shows all variables that are global in scope.

Figure 11.30 Global Variables Window

Expression – To have the debugger evaluate and display a single
expression at each display refresh, use the Evaluate Expression Window.
To invoke the Evaluate Expression Window, select Evaluate Expression
from the Program View Menu. Type the expression you would like
evaluated into the entry area and expression will be evaluated and
displayed after each execution step

11-26 ZSP IDE Debugger

Figure 11.31 .Expression Window

Watch – To have the debugger evaluate and display multiple expressions
at each display refresh, use the Watch Expression Window. To invoke the
Watch Expression Window, select Watch Expression from the Program
View Menu. Add expressions to watch using the Add Watch button in the
Watch Expression Window. Remove expressions from the Watch
Expression Window by selecting the existing expression and selecting
the Remove Watch button.

Figure 11.32 Watch Expressions Window

ZSIM Target Windows – ZSIM Debugging windows are available when
ZSIM is selected as the target in the IDE Debug>Setup window.

• ZSIM Profile

A view of the code execution profile is available for the ZSIM target
by selecting Profile from the Program View Menu. The menubar of
the Profile Window includes a checkbutton to turn function profiling
off and on and a checkbutton to select incremental mode, which
shows only the functions executed since the last navigational step.

The Profile Window shows each function name that is available for
profiling, the histogram, cumulative and calls information reported by
ZSIM. A bargraph chart is displayed with data type selectable from
a drop-down selection box.

Detailed Descriptions 11-27

Figure 11.33 ZSIM Profile Window

• ZSIM Statistics

A view of code execution statistics is available for the ZSIM target by
selecting Statistics from the Program View Menu.

Figure 11.34 ZSIM Statistics Window

11.2.2.2 Target Windows

Available from the Target View Menu or from the Window Toolbar, the
Target Windows display data pertinent to the state of the processor after

11-28 ZSP IDE Debugger

each navigational step in the debug session. Available Target Windows
include

• Disassembly Code Window

• Control Registers Window

• Operand Registers Window

• Address Registers Window (G2 only)

• Memory Window

• ZSIM Pipeline Window

• ZSIM Grouping Rule Window

Disassembly Window – The Disassembly Window shows
disassembled instructions from the target's program memory. The
address range of the Disassembly Window includes all instructions in the
current scope. As execution proceeds, the Disassembly Window is
repopulated as necessary.

The Disassembly Window comprises left to right, a Breakpoint column,
pipeline stage column (for ZSIM target only), address column, and
disassembled code. The next line to execute is indicated by an ASCII-
styled arrow in the breakpoint column.

Figure 11.35 Disassembly Window

Register Window General Description

Three types of register windows, Control Register Window, Operand
Register Window, and Address Register Window (G2 Only) are available
to display and modify the processor registers. These windows have
similar functionality. Each item in a Register Window may be edited by

Detailed Descriptions 11-29

left-clicking in the item to set the input focus, typing in the desired value
followed by depressing the enter key. The new value is sent to the
Debugger when the enter key is pressed. The Register Window is then
refreshed to validate the entry. Each item in the Register Window may
be formatted independently of the other items by right-clicking on the
item to invoke the popup format menu.

Figure 11.36 Register Element Popup Format Menu

Register Windows each contain a subwindow menu that includes the
following functions.

• Format
The Format Menu in a Register Window allows reformatting of data
for all of the visible registers to one of the following formats:

– Fixed Point (for 16, 32, or 40-bit numbers)

– Hexadecimal

– Integer

– Unsigned Integer

– ASCII Character

Figure 11.37 Register Window Format Menu

• Columns
The Columns Menu in the Register Window allows arrangement of
the individual registers in the Window into 1-8 columns.

11-30 ZSP IDE Debugger

Figure 11.38 Register Window Columns Menu

• Configure
The Configure Menu item in the Register Window allows selection of
individual registers to be displayed in the window by selecting them
from a list.

Figure 11.39 Register Window Configure Menu

Control Registers –

The Control Registers Window provides access to the target processor's
control registers.

Figure 11.40 Control Register Window - Standard Mode

In addition to the common Register View submenu items, the Control
Register Window also provides examination and modification capabilities
for individual bit fields within each of the Control Registers. The individual
bit fields may be edited in the same manner as described in the general
Register Window description above.

• Bit Fields
The Bit Fields checkbox menu item in the Control Register Submenu

Detailed Descriptions 11-31

Window turns on the display of individual bitfields for the visible
control registers.

Each of the Control Register and Bit Field entries displayed in the Control
Register Window is labeled with a mnemonic abbreviations of the register
name. The full name and bit position(s) if appropriate are displayed in a
popup text box when you move the mouse pointer over the entry or label.

Figure 11.41 Control Register Bitfield Entry Annotation

Figure 11.42 Control Register Window - Bitfield Mode

Operand Registers – Operand Registers Window provides access to
the target processor's operand registers. Menu items in the operand
register Window include Format, Columns, and Configure functionality
described above in the general Register Window description.

11-32 ZSP IDE Debugger

Figure 11.43 Operand Register Window

Address Registers (G2) – Address Registers Window provides access
to the target processor's address and index registers. Menu items in the
operand register Window include Format, Columns, and Configure
functionality described above in the general Register Window description.

Figure 11.44 Address Register Window

Memory – The Memory Window provides access to the target
processor's memory. Menu items in the memory Window include Format
and Columns functionality described above in the general Register
Window description. except that memory may displayed in up to 16
columns.

Figure 11.45 Memory Window

Start address for the memory Window may be an address or debugging
symbol.

ZSIM Target Windows – ZSIM Debugging Windows are available when
ZSIM is the current debugging target.

• Grouping Rule Window

Detailed Descriptions 11-33

The Grouping Rule Window displays ZSIM instruction grouping
information. The rule displayed applies to instructions currently in the
grouping stage at the pipeline.

Figure 11.46 ZSIM Grouping Rule Window

• ZSIM Pipeline Window

The ZSIM Pipeline Window displays ZSIM pipeline information.

Figure 11.47 ZSIM Pipeline Window

11.2.2.3 Tools Windows and Functions

Preferences Window – The Preferences Window provides
customization of your project session preferences

Command Line Debugger Window – The Command Line Debugger
Window provides direct access to the Command Line Debugger.
Commands entered in the command entry box are passed to the
Command Line Debugger and the response from each command is
presented in the output window.

11-34 ZSP IDE Debugger

Figure 11.48 Command Line Window

11.2.2.4 Using Session Logging

The Session Logging functionality of the ZSP IDE debugger captures
communications with the underlying Command Line Debugger for
informational purposes. To configure Session Logging, open the
Preferences Window by Selecting “Preferences” from the Tools Menu.

Figure 11.49 Preferences Window - Logging

Session Log Types – The Session Log may be disabled by selecting
the radiobutton labeled “Disable logging” in the Preferences Window.
This setting is recommended for the best speed performance of the
debugging environment.

The Session Log may be directed to a window by selecting the
radiobutton labeled “Log to Window” in the Preferences Window. Logging
to a window provides continuous non-interactive update throughout the
debugging session. Logging to a window is faster than logging to a file.
There is no permanant Session Log record when logging to a window.

The Session Log may be directed to a file for a permanent Session Log
record by selecting the radiobutton labeled “Log to file” in the

Detailed Descriptions 11-35

Preferences Window. When Session Logging is recording to a file, the
Log File Name is appended to the Tools Menu (see Figure 11.50). To
view the Log File, select the Log File from the Tools Menu. If you want
to retain log files after your debugging session exits, select the
checkbutton labeled “Keep Log Files” in the Preferences Window.
Otherwise the logfile will be automatically deleted.

Figure 11.50 Tools Menu - Session Log File

The name of the log file is generated automatically and contains the
project file name and a number related to the logging start time.
Selecting the Log File name from the Tools Menu invokes the Session
Log Window.

Figure 11.51 Session Log Window

Log Window Controls

• Refresh - When logging to a file, the refresh button reads the log file
into the Log Window text area

• Clear - Clears the Log Window text area

11-36 ZSP IDE Debugger

• Log Type Radiobuttons - Radiobuttons labeled “Disable Logging”,
“Log To Window”, and “Log To File” have the same functionality as
their counterparts in the Preferences Window. The presence of these
radiobuttons allows logging to be easily reconfigured when in use.

• Purge Log File - Each time the logging mode changes to “Log to File”
a new log file is created and the log file name is updated on the Tools
Menu. The “Purge Log Files” button deletes all log files in your
project directory (ie those with a .log extension).

ZSP SDK Software Development Kit A-1
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

Appendix A
Example Programs

This appendix contains two example programs, demo.c and hw_dbg.s,
that are referred to in previous chapters of this document. The first
example is a program project that combines C and assembly-language
modules. The second example is a program used in hardware-assisted
debugging.

A.1 Example Program: demo.c

This example is a C program in the file demo.c. It calls another C
function, func2, in the file func2.c. It also calls two assembly functions,
func1 and func3, in the assembly file func1.s.

int func_1 (int *t);
void func_2 ();
int func_3 ();

int t=500;

main()
{
 char ch = ‘A’;
 int i,j = 100,k;

 for (i=0; i< 2; i++) {
 func_2();
 k = func_1 (&j);
 if (k) {
 j = func_3() + 100;
 }
 else {
 j = 100;
 }

A-2 Example Programs
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

 }

 while (i < 20) {
 k++;
 i++;
 }
}

Example Program: func2.c

int t1;
void func_2 ()
{
 int x=0,n=0;
 while(n < 20)
 {
 switch(n) {
 case 0:
 x += 5;
 n =1;
 break;
 case 1:
 x = x <<4;
 n = 4;
 break;
 case 17:
 x = x ^ 13;
 n = 20;
 break;
 default:
 x++;
 n++;
 break;
 }
 t1 = x;
 }

Example Program: demo.c A-3
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

Example Program: funcl.s

.segment “text”

.globl _func_1

.walign 2
_func_1:

/** PROLOGUE **/

mov r13, %rpc
stu r13, r12, -1

/** END PROLOGUE **/

mov r5, r4
ld r4, r5
mov r6, 500
cmp r4, r6 /* *t <= 500; */
bgt L2
ld r4, r5
mov r6, 100
add r4, r6 /* *t += 100; */
st r4, r5
mov r4, 1
br L1

L2:
mov r4, 0
br L1

L1:

/** EPILOGUE **/

bitc %imask, 15
nop
add r12, 1
ldu r13, r12, 1
mov %rpc, r13
add r12, -1
bits %imask, 15
ret

/** END EPILOGUE **/

A-4 Example Programs
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

.extern_t

.globl _func_3

.walign 2
_func_3:

/** PROLOGUE **/

mov r13, %rpc
stu r13, r12, -1

/** END PROLOGUE **/

mov r5, 300
lda r4, _t
ld r4, r4
shll r4, 1
add r4, r5 /** k = i + 2 * t **/
add r4, r5
lda r6, _t
ld r6, r6
add r4, r6
br L3

L3:

/** EPILOGUE **/

bitc %imask, 15
nop
add r12, 1
ldu r13, r12, 1
mov %rpc, r13
add r12, -1
bits %imask, 15
ret

/** END EPILOGUE **/

Example Program hw_dbg.s A-5
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

A.2 Example Program hw_dbg.s

This example illustrates hardware-assisted debugging. It consists of one
assembly file, hw_dbg.s.

.section ".text"
 .global __start
__start:

bits %smode, 6
mov r0, 0xab00
mov r1, 0xab01
mov r2, 0xab02
mov r3, 0xab03
mov r4, 0xab04
mov r5, 0xab05
mov r14, 0
mov r15, 0
nop
nop
nop
nop
nop
add r14, 1
mov r13, 0x2000
mov r12, 0x2001
nop
nop
nop
nop
nop
add r14, 1
st r0, r13
nop
nop
nop
nop
nop
add r14, 1
st r1, r13
nop
nop
nop
nop
nop
add r14, 1

A-6 Example Programs
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

st r2, r13
nop
nop
nop
nop
nop
add r14, 1
st r0, r13
nop
nop
nop
nop
nop
add r14, 1
st r1, r13
nop
nop
nop
nop
nop
add r14, 1
st r2, r13
nop
nop
nop
nop
nop
add r14, 1
st r0, r13
nop
nop
nop
nop
nop
add r14, 1
st r1, r13
nop
nop
nop
nop
nop
add r14, 1
st r2, r13
nop
nop
nop
nop
nop

Example Program hw_dbg.s A-7
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

add r14, 1
st r0, r13
nop
nop
nop
nop
nop
add r14, 1
st r1, r13
nop
nop
nop
nop
nop
add r14, 1
st r2, r13
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
add r15, 1
st r0, r12
nop
nop
nop
nop
nop
add r15, 1
st r1, r12
nop
nop
nop
nop
nop
add r15, 1
st r2, r12
nop
nop
nop
nop
nop
add r15, 1

A-8 Example Programs
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

st r0, r12
nop
nop
nop
nop
nop
add r15, 1
st r1, r12
nop
nop
nop
nop
nop
add r15, 1
st r2, r12
nop
nop
nop
nop
nop
add r15, 1
st r0, r12
nop
nop
nop
nop
nop
add r15, 1
st r1, r12
nop
nop
nop
nop
nop
add r15, 1
st r2, r12
nop
nop
nop
nop
nop
add r15, 1
st r0, r12
nop
nop
nop
nop
nop

Example Program hw_dbg.s A-9
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

add r15, 1
st r1, r12
nop
nop
nop
nop
nop
add r15, 1
st r2, r12
nop
nop
nop
nop
nop
bitc %smode, 6
halt

A-10 Example Programs
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

ZSP SDK Software Development Kit B-1
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

Appendix B
ZSP400 Control
Registers

The ZSP400 control registers are listed in Table B.1.

Table B.1 ZSP400 Control Registers

Register
Reference
Number Control Register Register Description

0 %fmode Functional Mode Register

1 %tc Timer Control Register

2 %imask Interrupt Mask Register

3 %ip0 Interrupt Priority Register 0

4 %ip1 Interrupt Priority Register 1

5 %loop0 Loop 0 Register

6 %loop1 Loop 1 Register

7 %guard Guard Bits for {r1 r0} and {r3 r2}

8 %hwflag Condition Codes

9 %ireq Interrupt Request Register

10 reserved –

11 reserved –

12 %vitr Viterbi Traceback Register

13 reserved –

14 %amode Addressing Mode Register

15 %smode System Mode Register

(Sheet 1 of 2)

B-2 ZSP400 Control Registers
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

16 %pc Program Counter

17 %rpc Return Program Counter

18 %tpc Trap Return Program Counter

19 %cb0_beg Circular Buffer 0 Begin Address

20 %cb1_beg Circular Buffer 1 Begin Address

21 %cb0_end Circular Buffer 0 End Address

22 %cb1_end Circular Buffer 1 End Address

23 %timer0 Timer0

24 %timer1 Timer1

25 %loop2 Loop 2 Register

26 %loop3 Loop 3 Register

27 reserved –

28 reserved –

29 reserved –

30 %dei Device Emulation Instruction Register

31 %ded Device Emulation Data Register

Table B.1 ZSP400 Control Registers (Cont.)

Register
Reference
Number Control Register Register Description

(Sheet 2 of 2)

ZSP SDK Software Development Kit C-1
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

Appendix C
ZSPG2 Control
Registers

The G2 control registers are listed in Table C.1.

Table C.1 G2 Control Registers

Register
Reference
Number Control Register Register Description

0 %fmode Functional Mode Register

1 %tc Timer Control Register

2 %imask Interrupt Mask Register

3 %ip0 Interrupt Priority Register 0

4 %ip1 Interrupt Priority Register 1

5 %loop0 Loop 0 Register

6 %loop1 Loop 1 Register

7 %guard Guard Bits for {r1 r0} and {r3 r2}

8 %hwflag Condition Codes

9 %ireq Interrupt Request Register

10 %cb2_beg Circular buffer 2 Begin Address

11 %cb2_end Circular buffer 2 Begin Address

12 %vitr Viterbi Traceback Register

13 %shwflag Sticky Condition Codes

14 %amode Address Mode Register

15 %smode System Mode Register

(Sheet 1 of 2)

C-2 ZSPG2 Control Registers
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

16 %pc Program Counter

17 %rpc Return Program Counter

18 %tpc Trap Return Program Counter

19 %cb0_beg Circular Buffer 0 Begin Address

20 %cb1_beg Circular Buffer 1 Begin Address

21 %cb0_end Circular Buffer 0 End Address

22 %cb1_end Circular Buffer 1 End Address

23 %timer0 Timer0

24 %timer1 Timer1

25 %loop2 Loop 2Register

26 %loop3 Loop 3 Register

27 %cb3_beg Circular Buffer 3 Begin Address

28 %cb3_end Circular Buffer 3 End Address

29 reserved –

30 %dei Device Emulation Instruction Register

31 %ded Device Emulation Data Register

Table C.1 G2 Control Registers (Cont.)

Register
Reference
Number Control Register Register Description

(Sheet 2 of 2)

ZSP SDK Software Development Kit D-1
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

Appendix D
L-Intrinsic Functions

This appendix describes the Long Intrinsic functions (L-Intrinsics) that
were included in Version 1.0 of the SDK compiler and that are currently
supported for backward compatibility. The L-Intrinsics are no longer
implemented within the compiler itself, but rather with a header file,
dsp.h. Note that although the L-Intrinsics are supported, you should
develop new code using the N-Intrinsics, described in Chapter 3,
“C Cross Compiler,” Section 3.5, “N-Intrinsics,” page 3-16.

To use the L-Intrinsic functions, add the following line to all your C files:

#include <dsp.h>

The compiler implements the L-Intrinsic functions using the assembly
instructions shown in Table D.1.

The long argument for the L_maca, L_macb, L_macna, L_macnb, L_mac2a,
and L_mac2b intrinsic functions is copied to the appropriate accumulator
register, which is {r0,r1} for the .a versions and {r2, r3} for the
.b versions.

Table D.1 Long Intrinsic Functions

Intrinsic Function Underlying Instruction

L_mula mul.a

L_maca mac.a

L_macna macn.a

L_mac2a mac2.a

L_mulb mul.b

L_macb mac.b

L_macnb macn.b

L_mac2b mac2.b

D-2 L-Intrinsic Functions
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

The compiler generates code to copy the arguments to the proper
accumulator registers, if required. Eliminating the steps required in
copying the arguments minimizes execution time. Copying the
arguments is not required if:

• The long argument already exists in the appropriate accumulator (for
example, if you call L_maca with a variable declared as type
accum_a).

Execution time can also be minimized by not requiring the result to be
copied to its destination. Copying the result is not required if:

• The destination for the intrinsic function’s result is already the target
for the instruction used to implement the intrinsic function (for
example, if L_maca returns a value to a variable declared as type
accum_a)

For example, the following code is legal:

accum_b b;
int x,y;
...
b = L_maca(b,x,y);

However, it is more efficient to use:

b = L_macb(b,x,y);

In the first case (b = L_maca(b,x,y)), two copies are required—one to
move {r3 r2} to {r1 r0} for the argument, and another to move
{r3 r2} to {r1 r0} to the destination. The second case (b =
L_macb(b,x,y)) requires no extra copies.

Note that a call to an L_*a function clobbers any variable declared with
an accum_a, and a call to an L_*b function clobbers any variable
declared with an accum_b. In the following example, the value of variable
a is equivalent to b after the L_maca function call:

accum_a a;
accum_b b;
int x,y;
a = 0;
...
b = L_maca(b,x,y);

D-3
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

Note: It is not guaranteed that a will have the same value as b in
future versions of the SDK compiler.

Long L_mula (int var1, int var2) This function returns a 32-bit result of
the multiplication of a 16-bit variable
var1 with a 16-bit variable var2, with
one shift left.

Long L_mulb (int var1, int var2) This function returns a 32-bit result of
the multiplication of a 16-bit variable
var1 with a 16-bit variable var2, with
one shift left.

Long L_maca (long var3, int
var1, int var2)

This function multiplies the 16-bit
variable var1 by the 16-bit variable var2
and shifts the result left by 1. This 32-bit
result is added to the 32-bit variable
var3 with saturation and returns the
32-bit result.

Long L_macb (long var3, int
var1, int var2)

This function multiplies the 16-bit
variable var1 by the 16-bit variable var2
and shifts the result left by 1. This 32-bit
result is added to the 32 bit variable
var3 with saturation and returns the
32-bit result.

Long L_macna (long var3, int
var1, int var2

This function multiplies the 16-bit
variable var1 by the 16-bit variable var2
and shifts the result left by 1. This 32-bit
result is subtracted by the 32-bit variable
var3 with saturation and returns the
32-bit result.

Long L_macnb (long var3, int
var1, int var2)

This function multiplies the 16-bit
variable var1 by the 16-bit variable var2
and shifts the result left by 1. This 32-bit
result is subtracted by the 32-bit variable
var3 with saturation and returns the
32-bit result.

Long L_mac2a (long var3, long
var1, long var2)

The lower 16 bits of the variable var1 is
multiplied with the lower 16 bits of the
variable var2. The higher 16 bits of the
variable var1 is multiplied with the
higher 16 bits of variable var2, and the
two 32-bit results are added to the
variable var3, which is the return value.

D-4 L-Intrinsic Functions
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

Long L_mac2b (long var3,
long var1, long var2)

The lower 16 bits of the variable var1 is
multiplied with the lower 16 bits of the
variable var2. The higher 16 bits of the
variable var1 is multiplied with the
higher 16 bits of variable var2, and the
two 32-bit results are added to the
variable var3, which is the return value.

Long norm_l (long var1) This function produces the number of
left shifts required to normalize a 32-bit
variable var1. The number is a 32-bit
result.

int norm_s (int var1) This function produces the number of
left shifts required to normalize a 16-bit
variable var1. The number is a 16-bit
result.

Long L_deposit_h (int var1) This function returns a 32-bit result,
where the high-order 16 bits is the input
16-bit variable var1, and the low-order
16 bits are zeroed.

int extract_h (long) This function returns a 16-bit result
which is the high-order 16 bits of the
32-bit input.

Long L_abs (long var1) This function returns a 32-bit result
which is the absolute value of the 32-bit
variable var1. Note that abs (0x8000)
returns 0x7FFF.

int abs_s (int var1) This function returns a 16-bit result
which is the absolute value of the 16-bit
variable var1. Note that abs.s (0x8000)
returns 0x7FFF.

int round (long) This function returns a 16-bit result. The
result is obtained by rounding the lower
16 bits of the 32-bit input number and
storing it in the higher 16 bits with
saturation. This value is then shifted
right by 16 bits to obtain the result.

ZSP SDK Software Development Kit E-1
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

Appendix E
Signal Processing
Library

The library, libalg.a, contains some basic functionality commonly
used in signal processing. The interface to libalg.a is contained in
alg.h, which can be accessed with:

#include <alg.h>

To use this library, it must be linked in with a -lalg switch on the link line.

E-2 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.1 API Specification Auto-correlation Library Function on
G2

E.1.1 Auto-correlation
Synopsis

void lib_autocorr(*Struct_AUTOCOR)

Input

The input variables that are to be passed through the AUTOCOR
structure:

Return Value

None

Output

The output is returned as a field in the AUTOCOR structure

Description

This function implements the auto-correlation of the input data
(InputData) and stores the computed correlation lags in an array
(AutoCorrData). The number of correlation lags are specified by
NumberOfLags. As the number of lags are small, a direct sum-of-product
algorithm is used for computing the correlation values.

*Struct_AUTOCOR Pointer to the Auto-correlation Structure

short DataSize Length of the input data

short InputData Input data array of size Datasize*2

short NumberOfLags Number of auto-correlation lags needed

short Scale Factor to use in scaling the partial products

short AutoCorrData Array to hold the Auto-correlation values

API Specification for Convolutional Encoder Library Function on G2 E-3
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.2 API Specification for Convolutional Encoder Library
Function on G2

E.2.1 Convolutional Encoder

Synopsis

void lib_convEnc_k9r2(short *inpw, short *outpw, short
Nwords)

Input

Return

None

Output

Description

This function implements a Convolutional encoder with generating
polynomial,

G0 = 1 + D2 + D3 + D4 + D8 (octal 561)
G1 = 1 + D1 + D2 + D3 + D5 + D7 + D8 (octal 753)

and with a constraint length of K=9 and rate of R=1/2.

It employs Block-XOR technique, along with LUT-based sorting and
operates on packed words containing input data bits.

Dependencies/Assumptions

This encoder always starts from the zero state.

Assumes that the input data bits are packed into an array of 16-bit words,
in a "right-MSB" format, that is, in each word, the LSB has the oldest

Short *inpw Pointer to input data (packed, 16-bit array)

Short Nwords Size of input array

Short *outpw Pointer to output data (packed, 16-bit array)

E-4 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

data. In the final word, if there are fewer than 16 data bits, the MSB part
may be filled with zero bits but not essential.

The output encoded bits are available packed into 16-bit words in the
same "right-MSB" format. The output array size is twice that of the input
array, and any extra bits in the final output word may be ignored.

API Specification for 16bit CRC Library Function on G2 E-5
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.3 API Specification for 16bit CRC Library Function on G2

E.3.1 CRC 16bit

Synopsis

short lib_crc16(short *inpw, short Nwords)

Input

Output

Description

This function implements CRC-16 bit checksum calculation, based on the
Generating Polynomial

P(D) = D(16) + D(12) + D(5) + 1 (decimal 69,665).

Dependencies/Assumptions

Assumes that the input bits are packed into an array of 16-bit words, in
a "right-MSB" format, that is, in each word, the LSB has the oldest data.
In the final input word, if there are fewer than 16 data bits, the MSB part
may be filled with zero bits but not essential.

The output encoded bits are available packed into one 16-bit word in the
same "right-MSB" format.

Short *inpw Pointer to input data (packed, 16-bit array)

Short Nwords Size of input for which CRC is needed

Short crc16 Computed checksum (16-bit scalar)

E-6 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.4 API Specification for 8bit CRC Library Function on G2

E.4.1 CRC 8bit

Synopsis

short lib_crc8(short *inpw, short Nwords)

Input

Output

Description

This function implements CRC-8 bit checksum calculation, based on the
Generating Polynomial

D(8) + D(7) +D(4) + D(3) + D + 1 (decimal 411).

Dependencies/Assumptions

Assumes that the input data bits are packed into an array of 16-bit words,
in a "right-MSB" format, that is, in each word, the LSB has the oldest
data. In the final input word, if there are fewer than 16 data bits, the MSB
part may be filled with zero bits but not essential.

The output encoded bits are available packed into one 16-bit word in the
same "right-MSB" format.

Short *inpw Pointer to input data (packed, 16-bit array)

Short Nwords Size of input for which CRC is needed

Short crc8 Computed checksum (16-bit scalar)

API Specification for 32 bit Division Library Function on G2 E-7
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.5 API Specification for 32 bit Division Library Function on
G2

E.5.1 32 bit Division

Synopsis

Result32 lib_div32(Num32, Den32)

Input

Return

Description

Performs a 32 bit fractional division between two 32 bit positive integers

Result32 = Num32/Den32

The technique is a 32 bit implementation of the 16 bit divide step
instruction "diva"

Int Num32 32 bit positive integer

Int Den32 32 bit positive integer

Int Result32 Q31 Fractional number

E-8 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.6 API Specification for IIR Library Function on G2

E.6.1 IIR

Synopsis

void lib_IIR(short *indata, short *coef, short *state, short N)

Input

Return

None

Output

Output is returned in the “indata” input data vector.

Description

This function implements an in-place Infinite Impulse Response (IIR)
filter.

Dependencies/Assumptions

The input data is assumed to be in Q1.15 format.

The number of taps in the filter “T” must be a multiple of 2.

Coefficients are stored as -a1/2, -a2/2, b1/2, b2/2, ..., b0/2.

Input data is stored 0, In(0), In(1), ..., In(N).

Short *indata Pointer to input data.

Short *coef Coefficient vector.

Short *state Intermediate state of the filter.

Short N Length of the input data vector.

API Specification for IIR Biquad Library Function on G2 E-9
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.7 API Specification for IIR Biquad Library Function on G2

E.7.1 IIR Biquad

Synopsis

void lib_IIRBIQ(short *indata, short *coef, short *state, short N-1)

Input

Return

None

Output

Output is returned in the “indata” input data vector.

Description

This function implements an in-place Biquad Infinite Impulse Response
(IIR) filter.

Dependencies/Assumptions

The input data is assumed to be in Q1.15 format.

The number of taps in the filter “T” must be a multiple of 2.

Coefficients are stored as -a11/2, a21/2, b11/2, b21/2 -a21/2, a22/2,
b21/2, b22/2.

Input data is stored 0, In(0), In(1), ..., In(N).

Short *indata Pointer to input data.

Short *coef Coefficient vector.

Short *state Intermediate state of the filter.

Short N-1 Length of the input data vector.

E-10 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.8 API Specification for Inverse Square Root Library
Function on G2

E.8.1 Inverse Square Root

Synopsis

Xout lib_invsqrt(Xi)

Input

Short Xi Q14 number in the range 0x1000 (0.25) < Xi < 0x7fff
(1.99999)

Return

short Xout Q14 number in the range 0x1000 (0.25) < Xi
< 0x7fff (1.99999)

Description

Calculate the inverse square root of an input Xi.

Xout = 1/sqrt(Xi)

Technique employs a look up table to obtain a first approximation to Xout.

The approximation Xout is then used by following recursive algorithm to
calculate a more precise value for Xout.

Xout = (3/2)*Xout - (Xi * Xout^3)/2

Three iterations of the above algorithm are performed

API Specification for Synthesis Lattice Filter Library Function on G2 E-11
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.9 API Specification for Synthesis Lattice Filter Library
Function on G2

E.9.1 Synthesis Lattice Filter

Synopsis

short lib_lattice(short *b, short n, short *k)

Input

Output

Description

This function implements a Lattice filter. The lattice is a synthesis filter
which calculates the following loop:

f -= b[n - 1] * k[n - 1];
for (i = n - 2; i >= 0; i--) {
f -= b[i] * k[i];
b[i + 1] = b[i] + (k[i] * f);

{

where “n” is the order for the filter, “k” and “b” are coefficients and “f” is
the “forward result”

The variables f, b[i],k[i] and k are in q15 format.

Short *b Array of filter coefficients

Short n Number of data samples

Short *k Array of filter coefficients

Short f Result of forward synthesis

E-12 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.10 API Specification for Real Block FIR Library Function on
G2

E.10.1 Real Block FIR

Synopsis

void lib_realblockfir(*FIR)

Input

Output

Description

This function implements a real valued block FIR filter. The N samples
of input array (“x”) are filtered with T filter coefficients in array (“h”), and
the result is stored in array (“y”).

The input, output, and filter coefficients are 16-bits. The filter coefficients
must be stored in reverse order h(T-1) ... h(0).

A delay line is used to hold the history of input data and it is updated
each time to contain the latest T samples and point to the oldest of them.

*RBF_CFG_Type Pointer to a configuration type structure

int *x Address of input array, length>=N.

int *h Address of coefficients, length>=T.
Coefficients stored in reverse order h(T-1) ... h(0).

int N Number input samples in x to filter.
N must be multiple of 4.

int T Number of filter taps (length of h).
T must be multiple of 4 and T>=8.

int *y Address of output array, length>=N

int *delay_line Base address of delay line

int *delay_current Ptr to current addr in delay line (oldest sample)

API Specification for Real Block FIR Library Function on G2 E-13
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

Accumulations are 40 bits with bits 31-16 being the stored result, which
will be saturated if SAT is enabled.

Two taps for each of 4 output samples are computed every iteration of
the inner loop.

E-14 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

E.11 API Specification for 256 point FFT Library Function on
G2

E.11.1 256 point FFT

Synopsis

void lib_FFT256(short *in_data, short *out_data, *twiddles)
void lib_iFFT256(short *in_data, short *out_data, *twiddles)

Input

Return

None

Output

Description

This function implements a 256 point complex, Radix-2, decimation-in-
time Fast Fourier Transform (FFT) algorithm.

Dependencies/Assumptions

The input and output data are to be stored as Im,Re,Im,Re... and are in
natural order.

The input and output data is in Q.15 format.

Twiddle factors have to be recalculated and stored in memory.

Short *in_data Pointer to input data

Short *twiddles Array of Twiddle factors

Short *out_data Computed FFT or iFFT values

ZSP SDK Software Development Kit IX-1

Index

Symbols

__FUNC_EXIT_region_name 9-7
__FUNC_START_region_name 9-7

A

Accessing Memory 9-13
accum_a 3-5
accum_b 3-5

B

baud rate 9-7

C

C run time stack 3-10
Callee preserved registers 3-6, 3-7
caller saved registers 3-6
Cycle-step 9-13

D

Data Type 3-5

E

ELF 1-5

G

GNU documentation 1-2

H

header files 2-5, 2-8, 2-12

I

include 2-12
install 2-2
Installation_Directory 2-3, 2-5, 2-6, 2-7, 2-8

J

JTAG 9-8
JTAG clock 9-8

L

LD_LIBRARY_PATH 2-11
lib 2-12
libraries 2-12

M

mapfile 2-13
memory_download 9-4
memory_upload 9-4
-mempcr 9-2
mlong_call 3-2
mno_sdopt 3-2
mode registers 3-7

N

-no_mempcr 9-2

P

Parameter registers 3-6, 3-7

Q

q15 3-5

R

Register Usage 3-6
Return registers 3-7

S

save-temps 3-4
SDBUG 9-1
sdcc 3-1, 3-28
sdopt 1-4, 3-3
SDSP_HOME 2-11
sdsp_install 2-10
serial Number 2-2
Stack Frame 3-11
Stack pointer 3-6, 3-7
structure passing 3-9

U

UART Connection 9-7
User-specified Profiling 9-6

IX-2 Index

V

vold 2-10

W

www.gnu.org 1-2

Z

ZISIM target 9-3

ZSP SDK Software Development Kit

Customer Feedback

We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important: Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

Customer Feedback

Reader’s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: ZSP SDK Software Develop-
ment Kit. Place a check mark in the appropriate blank for each category.

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.

Excellent Good Average Fair Poor

Completeness of information ____ ____ ____ ____ ____
Clarity of information ____ ____ ____ ____ ____
Ease of finding information ____ ____ ____ ____ ____
Technical content ____ ____ ____ ____ ____
Usefulness of examples and
illustrations

____ ____ ____ ____ ____

Overall manual ____ ____ ____ ____ ____

Name Date

Telephone

Title

Company Name

Street

City, State, Zip

Department Mail Stop

Fax

You can find a current list of our U.S. distributors, international distributors, and sales
offices and design resource centers on our web site at

http://www.lsilogic.com/contacts/na_salesoffices.html

