USER'S
GUIDE

ZSP™
SDK Software
Development Kit

April 2002

Revision 4.0

111 L.LOGIC §



This document contains proprietary information of LSI Logic Corporation. The
information contained herein is not to be used by or disclosed to third parties
without the express written permission of an officer of LS| Logic Corporation.

DB15-000126-06, Third Edition (April 2002)

This document describes Rev. 4.0 of LSI Logic Corporation’s ZSP™ SDK
Software Development Kit and will remain the official reference source for all
revisions/releases of this product until rescinded by an update.

LSI Logic Corporation reserves the right to make changes to any products herein
at any time without notice. LS| Logic does not assume any responsibility or
liability arising out of the application or use of any product described herein,
except as expressly agreed to in writing by LSI Logic; nor does the purchase or
use of a product from LSI Logic convey a license under any patent rights,
copyrights, trademark rights, or any other of the intellectual property rights of
LSI Logic or third parties.

Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

TRADEMARK ACKNOWLEDGMENT

The LSI Logic logo design and ZSP are trademarks or registered trademarks of
LS| Logic Corporation. Microsoft, Microsoft Access, MS-DOS, Windows, and
Windows NT are registered trademarks of Microsoft Corporation. UNIX is a
registered trademark of X/Open Company, Ltd. Solaris is a trademark of Sun
Microsystems, Inc. All other brand and product names may be trademarks of
their respective companies.

For a current list of our distributors, sales offices, and design resource
centers, view our web page located at

http://www.Isilogic.com/contacts/na_salesoffices.html



Preface

This book is the primary reference and user’s guide for the ZSP™ SDK
Software Development Kit. The SDK supports digital signal processors
based on the ZSP400 core (for example, the LSI402ZX and LSI4032)
and the next generation ZSP G2 architecture.

Audience

This document assumes that you have some familiarity with the C
language, and with the ZSP architecture and assembly language. Those
who will benefit from this book are

* Engineers and managers who are evaluating the ZSP processor for
possible use in a system

* Engineers who are designing products based on the ZSP
architecture and wish to perform cost and performance analysis

* Engineers who are developing software for systems based on the ZSP
architecture

Organization

This document has the following chapters and appendices:

e Chapter 1, Introduction, introduces the ZSP SDK software
development Kkit.

e Chapter 2, Installation, describes how to install the SDK.
e Chapter 3, C Cross Compiler, describes the SDK C compiler.
e Chapter 4, Assembler, describes the assembler in the SDK tool set.

e Chapter 5, Linker, describes the linker in the SDK tool set.

Preface iii



* Chapter 6, Utilities, describes miscellaneous utilities in the SDK tool

set.

e Chapter 7, ZISIM Simulator, describes the SDK functional-accurate

simulator.

e Chapter 8, ZSIM Simulator, describes the SDK cycle-accurate

simulator.
e Chapter 9, Debugger, describes the SDK debugger.

e Chapter 10, ZSP Integrated Development Environment (ZSP IDE),
describes the SDK Project Manager provided by LSI Logic with
Windows 95/98/NT versions of the SDK.

e Chapter 11, ZSP IDE Debugger, describes the GUI Debugger
provided by LSI Logic with Windows 95/98/NT versions of the SDK.

* Appendix A, Example Programs, provides a sample program for
use with the SDK.

e Appendix B, ZSP400 Control Registers, lists the ZSP400 control
registers.

* Appendix C, ZSPG2 Control Registers, lists the ZSPG2 control
registers.

e Appendix D, L-Intrinsic Functions, describes the L-Intrinsic
functions supported by the SDK compiler.

* Appendix E, Signal Processing Library, describes the i bal g. a
library.

Related Publications

LSI402zX Digital Signal Processor User's Guide, LSI Logic Corporation,
order number R14021. Provides detailed information on the LSI402ZX
Digital Signal Processor.

LSI403Z Digital Signal Processor User’'s Guide, LSI Logic Corporation,
order number R14025. Provides detailed information of the LSI403Z
digital Signal Processor.

ZSP400 Digital Signal Processor Architecture Technical Manual, LSI
Logic Corporation, order number 114036. Provides detailed information
on the registers and instruction set defined by the ZSP architecture and
implemented in the LSI4xx family of processors.

Preface



Using and Porting GNU CC, by Richard M. Stallman, Free Software
Foundation, June 1996. Provides detailed information on how to use
GCC, which is the foundation of SDCC.

Using AS: The GNU Assembler, by Dean Elsner, et. al., Free Software
Foundation, January 1994. Provides detailed information on how to use
AS, which is the foundation of SDAS.

Using LD: The GNU Linker, by Steve Chamberlain, Free Software
Foundation, January 1994. Provides detailed information on how to use
LD, which is the foundation of SDLD.

Debugging with GDB: The GNU Source Level Debugger, by Richard
Stallman, et. al., Free Software Foundation, January 1994. Provides
detailed information on how to use GDB, which is the foundation of
SDBUG.

EB402 Evaluation Board Getting Started, LSI Logic Corporation, order
number DBO6-000264-01, September, 2000. Provides information on
using the EB402 Evaluation Board.

EB402 Evaluation Board User’s Guide, LSI Logic Corporation, order
number DB15-000143-00, September, 2000. Provides detailed
information on how to use the EB402 Evaluation Board.

PCMCIA-1149.1 Windows 95/NT Software Development Kit User's
Guide, Corelis, Inc. Provides detailed information on using the JTAG
interface.

Man pages for ar, nm obj dunmp, string, size, objcopy, strip and
ranl i b from the Free Software Foundation, available from the FTP site
prep.ai.nit. edu.

Conventions Used in This Manual

The first time a word or phrase is defined in this manual, it may be
italicized.

Hexadecimal numbers are indicated by the prefix “Ox”, for example,
0x32CF. Binary numbers are indicated by the prefix “Ob”, for example,
0b0011.0010.1100.1111.

Preface Y



The term ‘DOS’, unless otherwise noted, includes the MS-DOS operating
system and its Windows 3.1, Windows 95, Windows 98, and Windows
NT supersets.

The term ‘PC’, unless otherwise noted, includes the 386-, the 486-, and
the Pentium-based IBM-PC or compatible host computers.

Additional notational conventions used throughout this manual are listed

below.

Notation Example Meaning and Use

courier typeface . nwk file Names of commands, files, directories, and code are
shown in courier typeface

bold typeface fdlsp In a command line, command keywords are shown in
bold, nonitalic courier typeface. Enter them exactly as
shown, including case.

italics module In command lines and syntax descriptions, italics
indicate user-defined variables of a type defined by the
italicized noun. ltalicized text must be replaced with
appropriate user-specified items.

italic underscore full_pathname When an underscore appears in an italicized string,
enter a user-supplied item of the type called for, without
spaces.

brackets [ version ] In command formats, you may, but need not, enter an

[ flename | register ] | item enclosed within brackets. When vertical bars are
used within brackets, you may select one (but not more
than one) of the items separated by bars. Do not enter
the brackets or bar.

braces { directory } In command formats, you must select one (but not

{ filename | register } | more than one) item enclosed within braces. Do not
enter the braces. When vertical bars are used within
braces, you may select one (but not more than one) of
the items separated by braces. Do not enter the braces
or bar.

ellipses option... In command formats, elements preceding ellipses may
be repeated any number of times. Do not enter the
ellipses. In menu items, if an ellipsis appears after an
item, clicking that item brings up a dialog box.

Vi Preface




Notation Example Meaning and Use

vertical dots . Vertical dots indicate that a portion of a program or list-
ing has been omitted from the text.

semicolon, and other Use as shown in the text.

punctuation

Preface vii



viii Preface



cContents

Chapter 1
Introduction
1.1  Overview of the SDK Tools 1-2
1.2 Overview of Software Development Using the SDK Tools 1-5
Chapter 2
Installation
2.1  Contents of the CD-ROM 2-1
2.2 Installation on Windows Systems 2-1
221 Installing SDK Tools 2-2
2.2.2 Restarting Windows 2-9
2.3 Uninstalling the SDK Tools on Windows Systems 2-9
2.4  Installation on Solaris Systems 2-10
Chapter 3
C Cross Compiler
3.1  Compiler Options 3-2
3.2 Compiler Conventions 3-4
3.21 Data Type Conventions 3-5
3.2.2 Register Usage 3-6
3.2.3 Conventions Used for Passing Parameters 3-9
3.24 Run Time Stack 3-10
3.25 Example Code for Function Prologue and Epilogue 3-11
3.2.6 Parameter Passing Examples 3-13
3.3  Run Time Environment 3-15
3.4 C Run Time Library Functions 3-15
3.5  N-Intrinsics 3-16
351 Vector N-Intrinsics 3-18
3.5.2 ETSI Functions 3-18

Contents



3.6 Circular Buffers 3-20
3.7  Accessing Control Registers 3-21
3.8 Q15 Support 3-22
3.9 Inline Assembly 3-23
3.9.1 Syntax 3-23
3.9.2 Parameterized Assembly 3-23
3.9.3 Variables and Expressions 3-24
3.94 Explicitly Clobbered Registers 3-25
3.9.5 Examples of asmDirective 3-25
3.9.6 Optimization of Inline Assembly 3-28
3.10 Assembly Optimizer and Handwritten Assembly 3-28
3.11 Debugging Options 3-29
3.12 Code Statistics 3-29
3.13 Example Compilations 3-30
3.13.1 Example 1 3-30
3.13.2 Example 2 3-30
3.13.3 Example 3 3-30
3.13.4 Example 4 3-30
Chapter 4
Assembler
4.1  Assembly Language Syntax 4-1
411 Assembler Options 4-2
4.1.2 Assembler Directives 4-3
4.1.3 Assembler Special Cases 4-4
Chapter 5
Linker
5.1  Sections 5-1
511 Symbols 5-2
5.1.2 Linker command file 5-3
5.1.3 Linker options 5-3
Chapter 6
Utilities
6.1 sdar 6-2
6.2  sdstrip 6-5

Contents



6.3 sdranlib 6-7
6.4 sdnm 6-8
6.5 sdsize 6-9
6.6  sdstrings 6-11
6.7  sdobjdump 6-12
6.8  sdobjcopy 6-14
Chapter 7
ZISIM Simulator
7.1  Using ZISIM 7-1
7.1.1 Batch Mode 7-1
7.1.2 Interactive Mode 7-2
7.2  ZISIM Commands 7-4
7.2.1 alias 7-7
7.2.2 clear break 7-8
7.2.3 clear dmem 7-8
7.2.4 clear imem 7-8
7.2.5 clear stats 7-9
7.2.6 disable break 7-9
7.2.7 disable trace 7-9
7.2.8 dump dmem 7-9
7.2.9 dump imem 7-10
7.2.10 enable break 7-11
7.2.11 enable trace 7-11
7.2.12 exit 7-11
7.2.13 fill dmem 7-12
7.2.14 fill imem 7-12
7.2.15 help 7-12
7.2.16 load dmem 7-13
7.2.17 load exe 7-13
7.2.18 load imem 7-14
7.2.19 reset 7-14
7.2.20 run 7-15
7.2.21  script 7-15
7.2.22 set attr 7-16
7.2.23 set break 7-17
7.2.24 setreg 7-17

Contents

Xi



7.2.25 set size 7-17
7.2.26  show attr 7-18
7.2.27 show bits 7-19
7.2.28 show break 7-19
7.2.29 show dmem 7-20
7.2.30 show imem 7-20
7.2.31 show reg 7-21
7.2.32 show size 7-22
7.2.33 show stats 7-22
7.2.34  show trace 7-23
7.2.35 step 7-23
7.2.36 unalias 7-23
7.3 1/O Port Usage 7-24
7.4  Example Session Using ZISIM 7-24
Chapter 8
ZSIM Simulator
8.1 Using ZSIM 8-1
8.1.1 Batch Mode 8-1
8.1.2 Interactive Mode 8-2
8.2  ZSIM Commands 8-5
8.2.1 alias 8-11
8.2.2 clear break 8-11
8.2.3 clear dcache 8-11
8.2.4 clear dmem 8-12
8.25 clear icache 8-12
8.2.6 clear imem 8-12
8.2.7 clear stats 8-13
8.2.8 disable break 8-13
8.2.9 disable profile 8-13
8.2.10 disable trace 8-14
8.2.11 dump dmem 8-14
8.2.12 dump imem 8-14
8.2.13 enable break 8-15
8.2.14  enable profile 8-15
8.2.15 enable trace 8-16
8.2.16 exit 8-17

Xii

Contents



8.2.17
8.2.18
8.2.19
8.2.20
8.2.21
8.2.22
8.2.23
8.2.24
8.2.25
8.2.26
8.2.27
8.2.28
8.2.29
8.2.30
8.2.31
8.2.32
8.2.33
8.2.34
8.2.35
8.2.36
8.2.37
8.2.38
8.2.39
8.2.40
8.241
8.2.42
8.2.43
8.2.44
8.2.45
8.2.46
8.2.47
8.2.48

fill dmem
fill imem
help

istep

load dmem
load exe
load imem
reset

run

script

set attr

set break
set delay
set latency
set reg

set size
show attr
show bits
show break
show dcache
show dmem
show icache
show imem
show pipe
show profile
show reg
show rule
show size
show stats
show trace
step
unalias

8.3 1/O Port Usage
8.4  Example Session Using ZSIM

Contents

8-17
8-17
8-18
8-18
8-19
8-19
8-20
8-20
8-21
8-21
8-22
8-23
8-23
8-24
8-24
8-24
8-25
8-26
8-26
8-26
8-28
8-28
8-29
8-29
8-30
8-30
8-31
8-31
8-32
8-32
8-32
8-33
8-33
8-34

xii



Chapter 9

Debugger
9.1 Using SDBUG 9-1
9.2 SDBUG Execution Environments 9-3
9.2.1 Functional-Accurate Simulator Connection 9-3
9.2.2 Cycle-Accurate Simulator Connection 9-4
9.2.3 UART Connection 9-7
9.24 JTAG Controller Connection 9-8
9.3 Debugger Commands — Special Cases 9-11
9.3.1 Generic Target-Specific Commands 9-11
9.3.2 Backtrace Command 9-11
9.3.3 Info Registers Command 9-12
9.3.4 Breakpoint Command 9-12
9.35 Print Command 9-12
9.3.6 Set Command 9-12
9.3.7 Cycle-Step Command 9-13
9.3.8 Accessing Memory with the Debugger 9-13
9.4  Dynamic Breakpoints 9-15
9.5 Example Debugging Sessions 9-15
9.5.1 Example 1 9-16
9.5.2 Example 2 9-19
Chapter 10
ZSP Integrated Development Environment (ZSP IDE)
10.1 ZSP IDE Overview 10-2
10.1.1  Introduction to Workspaces and Projects 10-2
10.2 Working With Workspaces and Projects 10-4
10.2.1  Working With Workspaces 10-4
10.2.2  Working With Projects 10-7
10.3 Project Settings 10-9
10.3.1  Build methodology and Project Tree Structure 10-10
10.3.2  Compiler/Assembler Settings 10-10
10.3.3  Linker Settings 10-14
10.4 ZSP IDE Detailed Description 10-17
10.4.1  Paned Window Controls 10-17
10.4.2  Project Tree 10-17
10.4.3 Main Menu 10-19

Xiv

Contents



10.4.4  Toolbar 10-29
10.5 Shell Window 10-32
10.6 Disassembly Window 10-33
10.7 Parallel Debug Manager 10-33
10.8 Help Menu 10-34
10.9 Editor 10-34
10.10 ZSP IDE File Formats 10-35
Chapter 11
ZSP IDE Debugger
11.1 GUI Debugger Overview 11-3
11.1.1  Main Window 11-3
11.1.2 Title Bar - Project File Name Display 11-3
11.1.3 Window Area 11-3
11.1.4 Status Area 11-3
11.1.5 Main Menu 11-3
11.1.6 Main Toolbars 114
11.1.7 Debugging Windows (General) 11-6
11.2 Detailed Descriptions 11-11
11.2.1  Main Menu 11-11
11.2.2 Debugging Window Detailed Descriptions 11-19
Appendix A
Example Programs
A.1 Example Program: deno. ¢ A-1
A.2  Example Program hw dbg. s A-5
Appendix B

ZSP400 Control Registers

Appendix C

ZSPG2 Control Registers

Appendix D
L-Intrinsic Functions

Contents

XV



Appendix E

Signal Processing Library

E.1  API Specification Auto-correlation Library Function on G2 E-2
E.1.1  Auto-correlation E-2
E.2  API Specification for Convolutional Encoder Library Function
on G2 E-3
E.2.1 Convolutional Encoder E-3
E.3 API Specification for 16bit CRC Library Function on G2 E-5
E.3.1 CRC 16bit E-5
E.4  API Specification for 8bit CRC Library Function on G2 E-6
E4.1 CRC 8bit E-6
E.5 API Specification for 32 bit Division Library Function on G2 E-7
ES5.1 32 bit Division E-7
E.6  API Specification for IIR Library Function on G2 E-8
E.6.1 IIR E-8
E.7  API Specification for IR Biquad Library Function on G2 E-9
E.7.1 IIR Biquad E-9
E.8 API Specification for Inverse Square Root Library Function
on G2 E-10
E.8.1 Inverse Square Root E-10
E.9 API Specification for Synthesis Lattice Filter Library
Function on G2 E-11
E9.1 Synthesis Lattice Filter E-11
E.10 API Specification for Real Block FIR Library Function on G2 E-12
E.10.1 Real Block FIR E-12
E.11 API Specification for 256 point FFT Library Function on G2 E-14
E.11.1 256 point FFT E-14
Index

XVi

Customer Feedback

Contents



Figures

11
9.1
9.2
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
10.18
10.19
10.20
10.21
10.22
10.23
10.24
10.25
10.26
10.27
10.28
111
11.2
11.3
114
115

Overview of Software Development
Debugger Memory Addressing (sdbug400, zdxbug)
Debugger Memory Addressing (zdbug)

ZSP IDE Tools Suite Implementation

ZSP IDE Workspace

ZSP IDE Main Window

Recent Workspaces List

File Selection Dialog

Project Menu

Compiler Settings

Assembler Settings

Paned Window Handles

ZSP IDE Project Tree

ZSP IDE File Menu

ZSP IDE Edit Menu

ZSP IDE View Menu

Customize Toolbar

ZSP IDE Project Menu

ZSP IDE Workspace Menu

ZSP IDE Build Menu

Build / Compile Output Window

Build Output Window Popup Menu

ZSP IDE Debug Menu

Debug Settings

Debug Window Settings

Object File Utility

Utility Output Window Showing Disassembled Code
Shell Window

Disassembly Window

Parallel Debug Manager Setup Window
Parallel Debug Manager Control Window
Menu Checkmarks For Debugging Windows
Tools Menu - Invoke Toolbars

Preferences - Use Images For Toolbar Buttons
Toolbar Buttons With Text Annotation
Toolbar Buttons With Image Annotation

1-6
9-14
9-15
10-2
10-2
10-3
10-5
10-5
10-8
10-12
10-12
10-17
10-17
10-20
10-21
10-21
10-23
10-23
10-24
10-24
10-25
10-25
10-26
10-27
10-27
10-29
10-29
10-32
10-33
10-33
10-34

11-4

11-5

11-5

11-6

11-6

XVii



XViii

11.6

11.7

11.8

11.9

11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22
11.23
11.24
11.25
11.26
11.27
11.28
11.29
11.30
11.31
11.32
11.33
11.34
11.35
11.36
11.37
11.38
11.39
11.40
11.41
11.42
11.43

Debugger Paned Window

Paned Window Handles

Preferences - Set Main Window Columns
Top Level Debugging Window

Top Level Window Focus Control
Preferences - Separate New Window
Display Controls for Paned Window
Display Controls for Top Level Window
Preferences - Autoload Windows
Breakpoint Menu

Source Code Window Current Selection Line
Source Code Window Breakpoints
Execute Menu

Program View Menu

Target View Menu

Tools Menu

Source Code Window

Progress Bar Window

Source Code Window (shown with Disassembly Window)
Example Source Code Popup Query Result
Breakpoint List Window

Debugging Symbols Window

Call Stack Window

Local Variables Window

Global Variables Window

.Expression Window

Watch Expressions Window

ZSIM Profile Window

ZSIM Statistics Window

Disassembly Window

Register Element Popup Format Menu
Register Window Format Menu

Register Window Columns Menu

Register Window Configure Menu

Control Register Window - Standard Mode
Control Register Bitfield Entry Annotation
Control Register Window - Bitfield Mode
Operand Register Window

11-7

11-8

11-8

11-9

11-9

11-9
11-10
11-10
11-10
11-12
11-12
11-13
11-15
11-18
11-18
11-19
11-20
11-21
11-21
11-22
11-23
11-24
11-24
11-25
11-25
11-26
11-26
11-27
11-27
11-28
11-29
11-29
11-30
11-30
11-30
11-31
11-31
11-32



11.44
11.45
11.46
11.47
11.48
11.49
11.50
11.51

Address Register Window
Memory Window

ZSIM Grouping Rule Window
ZSIM Pipeline Window
Command Line Window
Preferences Window - Logging
Tools Menu - Session Log File
Session Log Window

11-32
11-32
11-33
11-33
11-34
11-34
11-35
11-35

Xix



XX



Tables

11
1.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
8.1
8.2
8.3
8.4
8.5

SDK Tools and GNU Counterparts
SDK Utilities and GNU Counterparts
Compiler Options

Output Options

Optimization Options

Compiler's Representation of C Data Types
Effect of Mode Bits on Compiler-Generated Code
Stack Frame Layout

Stack Frame Example

N-Intrinsic Functions

Vector N-Intrinsics

ETSI to N-Intrinsic Mapping
Parameter Output Syntax

Argument Constraints

SDK Utilities and GNU Counterparts
sdar p Keyletter Options

sdar p Keyletter Modifiers

sdstrip Options

sdnm Options

sdsize Options

sdstrings Options

sdobjdump Options

sdobjcopy Options

ZISIM Command-line Options

ZISIM Command Summary
ZISIM400 specific commands
ZISIMG2 specific commands
Configurable ZISIM Attributes
Default Arguments for show dmem
Default Arguments for show imem
I/O Device Memory Map and Associated Files
ZSIM Command-line Options
Command-line Options for zsim400
Command-line Options for zsimg2
ZSIM Command Summary
ZSIM400 specific commands

3-10
3-11
3-17
3-18
3-19
3-23
3-24

6-1

6-4
6-6
6-8
6-9
6-11
6-13
6-15
7-3
7-4
7-6
7-7
7-16
7-20
7-20
7-24
8-3
8-4
8-5

8-9

XXi



XXii

8.6
8.7
8.8
8.9
8.10
9.1
9.2
9.3
9.4
9.5
9.6
9.7
10.1
10.2
10.3
10.4
111
11.2
11.3
B.1
C.1
D.1

ZSIMG2 specific commands

Configurable ZSIM Attributes

Default Arguments for show dmem

Default Arguments for show imem

I/O Device Memory Map and Associated Files
Debugger Names

SDBUG-Only Options

SDBUG Target ZISIM Simulator Commands
SDBUG Target ZSIM Commands

SDBUG UART Connection Commands
SDBUG JTAG Commands
Hardware-Assisted Debugging Commands
Compiler/Assembler Options

Linker options

ZSP IDE Toolbar

Command Line Debugger Executables
Debugger Targets

Keyboard Shortcuts

ZSP400 Control Registers

G2 Control Registers

Long Intrinsic Functions

8-10
8-22
8-28
8-29
8-33

9-10
10-13
10-16
10-30
10-35

11-2

11-2
11-16

B-1

D-1



Chapter 1
Introduction

The ZSP Software Development Kit (ZSP SDK) from LSI Logic supports
all aspects of software development for systems incorporating devices
based on the ZSP400 and ZSPG2 architectures. The ZSP SDK includes
an optimizing C cross compiler, assembler, and linker, both a functional-
accurate simulator and a cycle-accurate simulator, and a source- and
assembly-level debugger.

The ZSP SDK is available for Windows 95, Windows 98, Windows NT,
and Solaris platforms. For the Windows platforms only, the software
development tools can be used in the context of the SDK Integrated
Development Environment (IDE), which includes a project manager and
a GUI debugger. The GUI debugger provides a graphical environment for
developing and debugging your code, with interactive viewing and control
of project source files and run-time data.

ZSP SDK Software Development Kit 1-1



1.1 Overview of the SDK Tools

1-2

The ZSP SDK tools are all placed under one directory which is referred
to with the environment variable SDSP_HOME. The sdspl subdirectory
contains all tools related to the ZSP400 architecture. The zspg2
subdirectory contains all tools related to the ZSPG2 architecture. There
are no dependencies between the two directories. Users who only need
tools for the ZSP400 can delete the zspg2 subdirectory. Likewise, users
who only need tools for the ZSPG2 can delete the sdspl subdirectory.
The two subdirectories closely mirror one another. Both have the
following subdirectories: bin, lib, include, misc, tmp. The bin directories
contain the command-line tools. The lib directories contain the C
libraries. The include directories contain the C header files. The misc
directories contain auxilary files. The tmp directories are used by the
tools for temporary space. The GNU based tools for the ZSP400 all have
a “sd” prefix. The analgous tools for ZSPG2 all have a “zd” prefix. In
addition the assembly optimizer, sdopt/zdopt, also follows this prefix
convention. The simulators do not follow this convention. The ZSP400
simulators are: zsim400 and zisim400. The ZSPG2 simulators are:
zsimg2 and zisimg2.

The ZSP SDK also supports users who want to take assembly and C
code written for the ZSP400 architecture and run it without modification
on the ZSPG2 architecture. The compiler zdxcc compiles for a ZSPG2
target but uses the calling convention and pointer sizes designed for the
ZSP400. The zspg2 directory also contains a subdirectory libg1g2, which
contains C libraries for zdxcc. There is also a debugger, zdxbug, for
debugging code developed with zdxcc.

The ZSP SDK tools are based on the GNU tools from the Free Software
Foundation, Inc. The GNU project has well-proven software development
tools that have been successfully ported to many different target
machines and platforms. Documentation for the GNU project tools can
be obtained from the web site www.gnu.org and the FTP site

prep.ai . mt.edu. To gain access to the FTP site, log in as ‘anonymous’
and type your e-mail address as the password. The descriptions of the
tools in this document, for the most part, include only the differences
from their GNU counterparts (refer to Table 1.1).

Introduction



Table 1.1  SDK Tools and GNU Counterparts
GNU

Tool Equivalent | Function

sdcc gcc Compiles

zdcc

zdxcc

sdas as Assembles

zdas

sdl d I d Links

zdl d

sdbug400 | gdb Debugs

zdbug

zdxbug

The GNU tools have been enhanced so as to take advantage of the
many high-performance features of the ZSP LSI402ZX and LSI403Z
devices and ZSP400-based ASICs, such as single-cycle multiply-

accumulate instructions, fast context switching, circular buffer support,

single-cycle compare/select, and zero-overhead loops.

The SDK provides utilities for manipulating the files that are generated

by the tools during project creation. These SDK-specific utilities,
described in Table 1.2, replace their GNU counterparts.

Overview of the SDK Tools

1-3



1-4

Table 1.2 SDK Utilities and GNU Counterparts
GNU

Utility Equivalent | Function

sdar ar Creates, modifies, and extracts files from an archive.
zdar

sdnm nm Lists symbols from object files.

zdnm

sdobj dunp | obj dunp Displays information from object files.

zdobj dunp

sdranlib |ranlib Generates an index for an archive.

zdranlib

sdstrings |strings Prints the printable characters in the files.
zdstrings

sdsi ze si ze Lists section sizes and total size of object file.
zdsi ze

sdstrip strip Discards symbols from object files.

zdstrip

sdobj copy | obj copy Copies and translates object files.

zdobj copy

The SDK Tools also includes the following non-GNU-based tools:

e The compiler's optimizer, sdopt / zdopt /zdxopt, performs additional
optimizations to those performed by SDCC/ZDCC/ZDXCC.

* Both the functional-accurate and cycle-accurate simulators are
provided in a standalone form that support a simple command-line
interface and that can be provided in a dynamic linkable format that
can be used in conjuction with the debugger.

*  For Windows platforms only, the GUI tools include an IDE and a GUI
Debugger.

For Solaris platforms, there are freely-available GUI front ends that do
not have all the capabilities of the GUI supplied by LSI Logic for Windows
platforms, but that can be configured for use with all the LSI Logic ZSP

SDK Tools.

Introduction




1.2 Overview of Software Development Using the SDK Tools

An overview of the software development process utilizing the SDK tools
is shown in Figure 1.1. As shown in the figure, the compiler accepts C
source files (. ¢ ) and produces a relocatable assembly language source
module (. s). The assembly source file is input to the assembler, which
translates the module into a relocatable object file in the Executable and
Linkable Format (ELF) file format (. obj (Windows) or . o (UNIX)). ELF
files are then linked with other ELF files (for example, library files) to
produce a single executable ELF load file (a. out). The load file can be
loaded into host memory for symbolic simulation/debugging, or it can be
downloaded to a ZSP architecture-based target system for real-time
debugging.

On Windows 95/98/NT and Solaris platforms, the tools can be accessed
using the standard GNU command-line interface, as described in
Chapter 3, "C Cross Compiler” through Chapter 9, “Debugger.” On
Windows 95/98/NT platforms, the tools can also be accessed using the
the ZSP Integrated Development Environment (ZSP IDE), (Chapter 10,
"ZSP Integrated Development Environment (ZSP IDE)"), and the ZSP
IDE Debugger (Chapter 11, "ZSP IDE Debugger").

Overview of Software Development Using the SDK Tools 1-5



1-6

Figure 1.1 Overview of Software Development

C Source
Files

Assembler
Source Files

Introduction

C Compiler !
Source Files

preprocessor

Macro-

Assembler

Y

1 Optimizer ’

Assembler

Archiver -
( ) Object File

\ 4

ELF

Libraries

ELF
Load File

Debugger

Listing
File




Chapter 2
Installation

This chapter describes how to install the ZSP Software Development Kit.

The SDK is available for Windows 95, Windows 98, Windows NT, and
Solaris. The media used to provide the tools is a CD-ROM.

2.1 Contents of the CD-ROM

The CD-ROM has the following five top-level directories:

doc

Contains the complete documentation for the SDK tools and the
GNU tools.

exanpl es
Contains example code for the SDK tools.
solaris

Contains initialization code and tools for installing the SDK on the
Solaris platform.

wi ndows

Contains the initialization code and tools for installing the SDK on
Windows 95/98/NT platforms, and examples that can be added to an
ZSPIDE project.

2.2 Installation on Windows Systems

The minimum system requirements for the SDK tools are

a Pentium Pro-based PC

ZSP SDK Software Development Kit 2-1



* 64 Mbytes of RAM
e 48 Mbytes of Disk Space

On Windows NT systems, you must have administrator privileges to
install the ZSP SDK Tools.

2.2.1 Installing SDK Tools

Before you install the SDK tools, make sure you have uninstalled any
older version. Refer to Section 2.3, “Uninstalling the SDK Tools on
Windows Systems.”

Step 1. Insert the CD-ROM in the CD drive, click Add/Remove Program
on the Control Panel, then click Install and select
D\ wi ndows\ Set up. exe.

Step 2. Follow the Setup Instructions.

Step 3. A dialog box will be displayed for entering the serial Number.

LS51 Logic Z5P SDK Tools Setup
Customer Information

Fleaze enter your infarmation.

Fleasze enter your name, the name of the company for whom you work. and the product
serial number.

User Mame:

IUSE[ MName

LComparny Mame:

ILSI Logic: Corp

Serial Humber:

Irstal Shield

< Back Hext > I Cancel I

Step 4. Type the serial Number, and then click on the Next button. The
dialog box shown below will be displayed.

2-2 Installation



InstallShield Wizard

Select Components

Choose the components Setup will install.

5 Jevelopment Kit 0016
P 500 [Pulzar] Saftware Developrnent Eit

Support Filez [Cygwind . dil)
Graphical IDE and GUI Debugger

D esgtination Faolder
|7C:\F'roglam FilezSDKE Tool: 4.0 Beta Browsze I |
Space Bequired on C: 42816 K =TE
Space Available on C: 243034 K &I
= 1] il =]

< Back I Mext = I Cancel I

Step 5. The default directory is C\ Program Fi | es\ SOK
Tool s<Versi on Nunber>\. You can change the default
directory by clicking on the Browse button, specifying a
directory name, and then clicking OK.

The Setup program installs the SDK files in the selected
directory. When the setup is complete, a dialog box is displayed
confirming successful setup.

By default, the Setup program installs the files listed below in
C.\Installation_Directory\sdspl\bin, where
Install ation_Directory is the directory specified in Step 5

Filename Function

el fread. exe Produces a simple dump of entire contents of an
object file

li bzi si m#00. dI 11 Dynamic link library used in sdbug400 for target
zisim

l'i bzsi mt00. di |1 Dynamic link library used in sdbug400 for target
zsim

l'i bzperiph.diI?! Dynamic link library used in sdbug400 for target
zsim

(Sheet 1 of 2)

Installation on Windows Systems 2-3



2-4

Filename

Function

sdar . exe

Archive utility

sdas. exe

Assembler

sdbug400. exe

Source-level debugger for ZSP400-based Devices

sdcc. exe Driver

sdccl. exel Compiler

sdcpp. exel Preprocessor

sdl d. exe Linker

sdnm exe Symbol listing utility

sdobj copy. exe

Object file copying utility

sdobj dunp. exe

Object dump utility

1

sdopt . exe Optimizer
sdranl i b. exe Ranlib utility
sdsi ze. exe Size utility

sdstrings. exe

String print utility

sdstri p. exe

Symbol discarding utility

zi si n400. exe Functional-accurate simulator for ZSP400-based
devices
zsi m00. exe Cycle-accurate simulator for ZSP400-based

devices

(Sheet 2 of 2)

1. These files are not intended to be used on the command line, but instead are
always called by other functions.

Installation




The libraries listed below are installed by default in the directory

C.Installation_Directory\sdspl\lib.

Filename Function

crt0. obj Startup file

libc.a C library

libg. a C library with debug
information

l'i bl ongc. a C library with long calls.

The header files listed below are installed by default in the directory

C:\Installation_Directory\sdspl\incl ude.

Filename Function

cbuf . h Circular buffer
ctype. h Standard header file
creg. h Control registers
dsp. h L-Intrinsics

l'i bsdsp. h SDSP-specific printing
limts.h Standard header file
N Intrinsic.h N-Intrinsics

gl5.h Support file

setjnp. h Standard header file
simos. h Standard header file
stdarg. h Standard header file
stddef. h Standard header file
stdio.h Standard header file
stdlib.h Standard header file
string.h Standard header file

Installation on Windows Systems

2-5



By default, the Setup program installs the files listed below in
C:\Installation_Directory\zspg2\bi n, where
Installation_Directory is the directory specified in Step 5

Filename

Function

el fread. exe

Produces a simple dump of entire contents of an
object file

li bzising2.dll?1

Dynamic link library used in zdbug and zdxbug for
target zisim

li bzi dl nesg2. di |1

Dynamic link library used in zdbug and zdxbug for
target zisim

zdar . exe Archive utility

zdas. exe Assembler

zdbug. exe Source-level debugger for ZSP500-based Devices

zdxbug. exe Source-level debugger for ZSP500-based devices
running code designed for ZSP400

zdcc. exe Compiler

zdxcc. exe Cross (“X") compiler for ZSP400 to ZSP500

zdccl. exel Compiler Driver for zdcc

zdxccl. exel Compiler Driver for zdxcc

zdcpp. exe’ Preprocessor

zdxcpp. exel Preprocessor for zdxcc

zdl d. exe Linker

zdnm exe Symbol listing utility

zdobj copy. exe

Object file copying utility

zdobj dunp. exe

Object dump utility

zdopt . exe’

Optimizer

zdxopt . exel

Optimizer for ZSP400 to ZSP500 code.

zdranli b. exe

Ranlib utility

(Sheet 1 of 2)

Installation




Filename

Function

zdsi ze. exe

Size utility

zdstrings. exe

String print utility

zdstrip. exe

Symbol discarding utility

Zi si ng2. exe

Functional-accurate simulator for ZSP400-based
devices

(Sheet 2 of 2)

The libraries listed below are installed by default in the directory
C.Installation_Directory\zspg2\lib.

Filename Function

crt0. obj Startup file

libc.a C library

libg. a C library with debug

information

The libraries listed below are installed by default in the directory
CInstallation_Directory\zspg2\lib.glg2

Filename Function

crt0. obj Startup file

libc.a C library

libg. a C library with debug
information

l'ibalg.a Basic signal processing

functionality

Installation on Windows Systems

2-7



The header files listed below are installed by default in the directory
C:\Installation_Directory\zspg2\incl ude.

Filename Function

cbuf. h Circular buffer
ctype. h Standard header file
creg. h Control registers
dsp. h L-Intrinsics

I'i bsdsp. h SDSP-specific printing
linmts.h Standard header file
N Intrinsic.h N-Intrinsics

gl5.h Support file

setjnp. h Standard header file
simos. h Standard header file
stdarg. h Standard header file
stddef. h Standard header file
stdio. h Standard header file
stdlib. h Standard header file
string. h Standard header file

The files listed below are installed by default in the directory
C Installation_Directory\ide\bin

Filename Function

en.rc IDE menu resource

gui debug. exe GUI debugger frontend.

zspi de. exe IDE for the ZSP family of
processors.

Installation



2.2.2 Restarting Windows

The Setup program installs system files and updates some shared files
that are required for running the SDK tools. The system prompts you to
reboot after you have installed the SDK tools.

L51 Logic Z5P SDK Tools Setup

L51 Logic Z5F SDK Tools Setup

The Inztallation wizard haz successfully installed L5 LOGIC
Z5F SDK Tools . Before you can use this program ypou must
restart wour computer.

7 ez, | want to restart my computer now.
&+ Mo, | will restart myp computer later.

Remove any disks from their drives. and then click Finish to
complete sstup.

< Bach Finish I [Earize] I

Click Finish to exit from the Setup program.The system will be restarted
according to the option selected in the above dialog box.

2.3 Uninstalling the SDK Tools on Windows Systems

Perform the following steps to uninstall the SDK tools:

Step 1. Open the Control Panel window. (The Control Panel is
accessed by clicking on the Start menu, then selecting
Settings, then selecting Control Panel.

Step 2. In the Control Panel window, double-click on Add/Remove
Program.

Step 3. Then select the LSI LOGIC SDK tools and click on
Add/Remove. In the dialog box shown below, click on Remove
to uninstall the tools.

Uninstalling the SDK Tools on Windows Systems 2-9



InstallShield Wizard
welcome

kM odify, repair, or remowe the program.

wWelcome to the LS1 Logic Z5F SDE Toolz Setup b aintenance program. T his program lets pou
modil e current inztallation. Click one of the options belovs.

Select new program components to add or select currently installed
components o remove.

i Repair
ﬁ Reinztall all pragram components installed by the previous setup.

' Bemove

Remowe all installed components.

[FEsballShe!d

< Back I HMe=t > I Cancel I

2.4 Installation on Solaris Systems

2-10

The ZSP SDK may be hosted on the Solaris 2.6 operating system and
later versions.

Step 1. |If your Solaris system has vol d, it will automatically mount the
CD-ROM after it has been inserted. To access the CD-ROM,
change the directory to / cdr oni SDK.

Step 2. If vol d is not running, mount the CD-ROM and enter the
following command:

nmount /dev/sr0 / mt/cdrom

Step 3. Use one of the following commands to invoke the installation
script under / cdr o SDK/ sol ari s or / mt/ cdrond sol ari s:

/ cdr o SDK/ sol ari s/ sdsp_i nstal |
or
/ mt/cdroni sol ari s/ sdsp_i nstal |

Step 4. Follow the directions given in the script.

Installation



Step 5.

Step 6.
Step 7.

Step 8.

Specify an installation directory for the SDK tools. Assign the
installation path to the SDSP_HOME environment variable,
followed by a forward slash (/).

For example, if you install the tools in M/I nstal | Di rectory,
assign the directory to the SDSP_HOME variable:

SDSP_HOME = Myl nstall Directory/

Export the SDSP_HOME variable.

If you want to be able to invoke the SDK tools from any
directory, add the installation directory to the path.

In order to use the sdbug400 debugger, the environment
variable LD_LIBRARY_PATH must be included in the
installation path. Use the following command:

setenv LD LI BRARY PATH
${LD_LI BRARY_PATH} : $SDSP_HOME/ sdspl / bi n

The Setup program installs the SDK files.

The following files containing the tools are installed in the directory
$SDSP_HOME sdspl / bi n.

Filename Function

el fread Produces a simple dump of entire contents of an
object file

sdar Archive utility

sdas Assembler

sdbug400 Source-level Debugger for
ZSP400

sdcc Driver

sdccl Compiler

sdcpp Preprocessor

sdl d Linker

sdnm Symbol listing utility

sdobj copy Object file copying utility

Installation on Solaris Systems 2-11



Filename Function

sdobj dunp Object dump utility

sdopt Optimizer

sdranlib Random library (ranlib) utility

sdsi ze Size utility

sdstrings String print utility

sdstrip Symbol discarding utility

zi si 00 Functional-accurate simulator for ZSP400-based
Devices

zsi ni100 Cycle-accurate simulator for ZSP400-based
Devices

The libraries listed below are installed in the directory
$SDSP_HOME sdspl / 1i b.

Filename Function

crt0.0 Startup file

libc.a C library

libg. a C library with debug information

The header files listed below are installed in the directory
$SDSP_HOME sdspl /i ncl ude.

Filename Function

cbuf . h Circular buffer

ctype. h Standard header file
dsp. h L-Intrinsics

I'i bsdsp. h SDSP-specific printing
linmts.h Standard header file

2-12 Installation



Filename Function

N Intrinsic.h N-Intrinsics

g15. h Support file

setjnp. h Standard header file
simos. h Standard header file
stdarg. h Standard header file
stddef. h Standard header file
stdio. h Standard header file
stdlib. h Standard header file
string. h Standard header file

For both the Windows and Solaris setups, there are additional files and
directories installed by the Setup program that are required for running
the tools. For this reason, do not delete or modify any of the files or
directories in the installation directory.

The ZSP SDK tools use the t np directory, which is created during setup,
to store temporary files.

The m sc directory contains a file called mapfi | e. This file contains
information about the scan chain of the target processor that is used for
hardware-assisted debug with the JTAG port (on Windows platforms
only). The correct map file is required for hardware-assisted debugging.
The map file supplied with the ZSP SDK tools corresponds to the
LSI1402ZX rev2. If you are using a different ZSP400-based part, you must
replace the map file installed during setup with the proper map file for
your device.

Installation on Solaris Systems 2-13



2-14 Installation



Chapter 3
C Cross Compiler

This chapter describes the SDK C Cross Compiler and the compilation
process.

The SDK C Cross Compilers; SDCC, ZDCC, and ZDXCC; are based on
the GNU C compiler (GCC) from the Free Software Foundation. SDCC
is the compiler for the ZSP400 architecture. ZDCC is the compiler for the
ZSPG2 architecture. ZDXCC is targeted for the ZSPG2 architecture, but
it uses the same calling convention and pointer size as SDCC. This
allows C/assembly programs written for the ZSP400 architecture to be
easily ported to the ZSPG2 architecture. CC will be used to refer to all
three compilers. GCC is described in Using and Porting GNU CC, by
Richard M. Stallman, Free Software Foundation, June 1996. The
description of CC in this chapter, for the most part, includes only the
differences from GCC.

The compiler is invoked from the shell using the following command:
cc [options] sourcefile

The command-line options and source file name extension determine the
type of compilation. In the simplest case, with no options and a . ¢ source
file, the compiler will produce an executable, a. out .

ZSP SDK Software Development Kit 3-1



3.1 Compiler Options

The CC compiler supports all GCC compiler options in addition to the
SDK-specific options described in Table 3.1.

Table 3.1 Compiler Options

Option Description Availability
-mong_cal | The compiler generates code for a call instruction using | SDCC
a register operand. Use this option to resolve the ZDCC
limitation of the call immediate range. zbxcct
- mo_sdopt The compiler disables the assembly optimizer, SDCC
sdopt /zdopt / zdxopt . By default, the optimizer is ZDCC
automatically invoked at optimization levels -QL, - and | ZDXCC
-CB.
- m ong_cond_br anch? The compiler generates code for a conditional branch by | SDCC
using a register operand. ZDXCC
-mong_uncond_branch® | The compiler generates code for an unconditional SDCC
branch by using a register operand. ZDXCC
-mnfer_nac Enable the compiler to generate mac and macn SDCC
instructions without using intrinsics. Use this option only | ZDXCC
if the code generated will be run with the sat, q15, sre
and mre bits of %fmode turned off.
-marge data Use large data model. ZDCC

1. Since the range of a call immediate on ZSPG2 is 16-bits versus 13-bits on ZSP400, the -mlong_call
option will be less frequently needed for ZDXCC and ZDCC.

2. This option is preserved for backward compatibility with previous versions of the SDK, but it is no
longer needed, since the compiler will automatically use register based branches when needed.
This option will be removed in a future version of the SDK.

3. (same as 2.)

The -m ong_cal | option is frequently necessary with SDCC because
call-immediates on the ZSP400 architecture have a 13-bit range, and its
use is therefore recommended for applications that are larger than the
range of a call-immediate. The ZSPG2 architecture has a larger call
immediate range (16-bits), so this option is not as critical for it. Better
performance and code size can be obtained by selectively using the -
m ong_cal | option, but this may require repetitive trial and error to
determine which files can safely be converted to use call-immediates.
One important exception is a file which does not call a function external

3-2 C Cross Compiler



to the file; in this case, the necessity of - m ong_cal | does not depend
on other files or on the link order—this kind of file will either always
require - m ong_cal | or it will never require it. Note that with SDCC, the
use of - m ong_cal | does not guarantee that all calls will be long calls;
that is, the assembly optimizer, sdopt, will convert long calls to call
immediates if it can determine that such a conversion is safe. The
assembly optimizer can be disabled by specifying the - mo_sdopt
option; otherwise, it is automatically invoked when optimization is
selected. Note that to debug optimized code, the - mo_sdopt option
should be used, because the assembly optimizers perform optimizations
that make debugging extremely difficult.

sdopt takes in assembly generated by the compiler proper and
optimizes it to produce improved assembly. The optimizations that sdopt
performs include simplification of constant generation, conversion of
loops to use loop registers, dead code elimination, loop invariant code
motion, conversion of long calls to call-immediate, instruction scheduling,
and improved register utilization.

zdopt takes in assembly generated by ZDCC and optimizes it to
produce improved assembly. The optimizations that zdopt performs
include dead code elimination, loop invariant code motion, instruction
scheduling, and improved register utilization.

ZDCC supports two models of memory. The default small memory model
requires that data and bss sections be placed in the first 64K words of
data memory. The large data model has no requirements on the size or
placement of the data and bss sections. The large data model is selected
with the “-ml ar ge_dat a” option. For both models, the pointer size is 32-
bits. Both models allow stack and heap space to use all addressable
memory. Code generated with the small data model will be more
compact and have better performance than code generated with the
large data model. The small data model allows a shorter instruction
sequence to be used to access memory in the data or bss sections.

Compiler Options 3-3



Some of the key options that control the compiler’'s output are shown in
Table 3.2.

Table 3.2  Output Options

-C Compile or assemble source files but do not link. Output file is named by
replacing the suffix of the source file with ‘.0’

-o file Place output in file. This option is applicable whether the output is preprocessed
C, assembly, an object file, or an executable.

-E Stop after preprocessing. Output is sent to standard output.

-S Stop after compilation. Do not assemble. Output file is named by replacing the
‘.c’ suffix with ‘.s’.

- save-t enps Store the intermediate preprocessed C, assembly, and object files permanently.
The names used for these intermediate files will be based on the name of the
input file: compiling f 0o. ¢ with - save-t enps will produce foo.i, foo.s, and
foo. o.

-g Generate debugging information for use by the debugger.

The optimization levels supported by GCC are described in Table 3.3.
Table 3.3  Optimization Options

Option Description

- No optimization is performed. All variables are placed on the stack.

-al Only those optimizations that allow the debugger to behave as expected are
performed.

- Only those optimizations that do not greatly increase code size are performed.
These optimizations include dead-code elimination, constant propagation, common
subexpression elimination, and loop invariant code motion.

-G All optimizations performed at level -Q@ are performed, as well as function inlining

and loop unrolling.

3.2 Compiler Conventions

3-4

This section describes the software conventions defined by the SDK

assembler and compiler. You must follow these conventions when writing

assembly-language routines that will be called by your C program.

C Cross Compiler




3.2.1 Data Type Conventions

The compiler's representation of C data types is summarized in Table
3.4. The g15 data type can be printed by the fprintf and printf
functions. The % format specifier will print a 16-bit value in fixed-point
notation. For example, the call:

printf("%j\n", 0x6000);
will print:

0. 75000

Table 3.4  Compiler’s Representation of C Data Types

C Data Type Representation
char 16 bits

unsi gned char 16 bits

i nt 16 bits

short int 16 bits

unsi gned short int 16 bits

ql5 16 bits

enum 16 bits

poi nt er 16 bits with SDCC/ZDXCC

32 hits with ZDCC

| ong 32 bits

unsi gned | ong 32 bits

accuma 32 bits

accumb 32 bits

Use the accum a and accum b data types to select a specific register for
variable storage: variables declared as type accuma or accumb are
placed in registers r1rO and r3r2 respectively with SDCC/ZDXCC. They
are placed in r13r12 and r15r14 respectively with ZDCC. This change
was necessary with ZDCC because registers r0-r3 are clobbered by the
ZSPG2 calling convention. The accum a and accum b data types can be

Compiler Conventions 3-5



used to declare local variables; global accumulators are not supported.
From the compiler’'s point of view, accum a and accum b are 32-bit
variables that must be stored in a specified register. On the ZSP400, the
accum a and accum b data types are placed in r1rO and r3r2,
respectively, to allow the use of accumulator-specific operations.
Although the compiler treats accum a and accum b as 32-bit variables,
the accumulator instructions (for example, nac. a, nac2. a, hacn. a ... )
operate on a 40-bit accumulator. The high-order 8 bits for each
accumulator are in the %guard register. If 40-bit accumulators are
needed, the high-order bits can be accessed through inline assembly
instructions that read or modify the %guard register. In ZSPG2, since
every GPR pair supports accumulator operations, other accumulators
can be used by declaring them with:

register long acc_c asm“rX");

In fact, accum a and accum b declarations are equivalent to:
register long x asm(“rX’);

where “X” is the appropriate register.

It should be remembered that only accumulators r12-r15 have their guard
bits preserved across calls.

3.2.2 Register Usage

3.2.2.1 SDCC/ZDXCC Register Usage

3-6

Register usage SDCC/ZDXCC is summarized below. Registers r0
through r15 are general-purpose registers, and registers beginning with
‘%’ are control registers.

* Registers used by the compiler: r0-r15, %fmode, %smode, %amode,
%hwflag, %loop0, %loopl, %loop2, %loop3, %rpc, %pc, %cb0_beg,
%ch0_end, %chl_beg, %cbl_end, %guard.

e Stack pointer: r12
e Parameter registers: r4-r6
e Callee preserved registers: r0-r3, r7-r12, r14, r15, %guard

* There are no caller saved registers.

C Cross Compiler



* Return registers: r4 for 16-bit return values, and r5r4 for 32-bit return
values.

The mode registers are never modified by SDCC/ZDXCC except through
inline assembly. The circular buffer registers are never accessed or
modified except through predefined macros in the header file cbuf. h.
The file cbuf . h also has predefined macros to set and clear the cb0 and
cbl bits in %smode.

3.2.2.2 ZDCC Register Usage

Register usage by ZDCC is summarized below. Registers r0-r15 are
general-purpose registers, a0-a7 are address registers, n0-n7 are index
registers, g0-g7 are guard registers and registers beginning with ‘%’ are
control registers.

* Registers used by the compiler: r0-r15, a0-a7, n0-n7, g0-g7,
%fmode, %smode, %amode, %hwflag, %loop0-%loop3, %rpc, %pc,
%ch0_beg-%ch3_beg, %ch0_end-%cb3_end.

e Stack pointer: a7
e Parameter registers: r2-r7, a0, al, a6

* Callee preserved registers: r8-rl15, g6, g7, a2-a5, a7, n4-n7, %loop2,
%loop3

e Scratch registers: r0, rl, g0-g5, n0-n3, %loop0, %loopl
e Return registers: a0 for pointer values, r4 for 16-bit return values, and
r5r4 for 32-bit non-pointer values.

The mode registers are never modified by ZDCC except through inline
assembly. The circular buffer registers are never accessed or modified
except through predefined macros in the header file cbuf . h. The file

cbuf . h also has predefined macros to set and clear the cb0-cb3 bits in

Compiler Conventions 3-7



%amode. Table 3.5 shows the mode bits that may affect the behavior of
compiler-generated code.

Table 3.5  Effect of Mode Bits on Compiler-Generated Code

Mode Mode Affects Non- Required Entry | May be Modified
Register Register Bit | intrinsic Code | Value (before C | Within Function
function call)
SDCC | ZDCC | SDCC |zZDCC | SDCC | zDCC
ZDXC ZDXCC ZDXCC
C
%amode Id yes 0 no
st yes 0 no
cbX n/a yes n/a 0 n/a yes
%fmode sat! yes no 0 X yes yes
152 no X yes
sred yes X yes
mre* no X yes
%smode shd® yes n/a X n/a no n/a
lis yes yes 0 X no no
sis yes yes 0 X no no
cbx® yes yes 0 0 yes no
dir’ yes X no
ddr® yes X no

1. Witih SDCC/ZDXCC, the sat bit of %fmode can affect nonintrinsic code because of
the add and subtract instructions. Nonintrinsic code expects unsaturated arithmetic. If
you require saturated arithmetic for some intrinsics, it is safest to enable saturation
over as small a region of code as possible, because the sat bit also affects adds and
subtracts that must not be saturated (e.g. address arithmetic, stack pointer manipula-
tion, counters, etc. ). If you use the -minfer_mac option, the compiler also generates
mac and macn instructions, which are also affected by the sat bit.

2. With SDCC/ZDXCC, the q15 mode bit affects nonintrinsic code if the -minfer_mac
option is used.

3. The sre bit of %fmode affects nonintrinsic code because of the shra and shra.e
instructions. Only perform right shifts of signed variables when the sre bit is cleared.

3-8 C Cross Compiler



4. With SDCC/ZDXCC, the mre mode bit affects nonintrinsic code if the -minfer_mac
option is used.

5. This bit is ZSP400 specific and selects/unselects the use of shadow registers. Com-
piled code operates correctly with either shadow registers or nonshadow registers.

6. For ZSPGZ2, these bits affect the behavior of r14 and r15. They exist for compatibility
with ZSP400. They should never be set in code compiled with the ZDCC. When using
SDCC/ZDXCC, to prevent these bits from affecting nonintrinsic code, clear these bits
when the portion of code requiring circular buffers is exited.

7. This bit controls whether instructions are fetched from internal or external memory.
Compiled code operates correctly when it resides in internal or external memory,
though normally it resides in internal memory.

8. This bit controls whether data is fetched from internal or external memory. Compiled
code operates correctly when data resides in internal or external memory, though nor-
mally data resides in internal memory. Note that data includes the stack, and that
compiled code does not operate correctly if global data resides in one memory and
the stack resides in another memory.

3.2.3 Conventions Used for Passing Parameters

SDCC/ZDXCC's conventions for passing parameters are described
below.

* The first three (16-bit) word parameters (scalar type) are passed in
registers r4—r6.

* All other parameters are passed on the stack.

* A 16-bit value is returned in r4; a 32-bit value is returned in r5r4.

e A structure is returned using a hidden pointer, which is passed by
the caller in r4.

e A structure is passed using two arguments. The first argument is a
pointer to the structure, and the second argument is the structure to
be passed. The pointer to the structure is a 16-bit value and can be
passed in a register if it is one of the first three word-sized
arguments. The second argument, the structure, is passed on the
stack. For structures with a size of one or two words, the pointer
argument is eliminated.

ZDCC's conventions for passing parameters are described below.
Parameters are examined from first to last

* A pointer value will be passed in the first unused register in the
following list: a0, al, a6, r5r4, r7r6, r3r2.

* A 32-bit non-pointer value will be passed in the first unused register
in the following list; r5r4, r7r6, r3r2, a0, al, a6.

Compiler Conventions 3-9



* A 16-bit value will be passed in the first unused register in the
following list: r4, r5, 16, r7, r2, r3.

e All other parameters are passed on the stack.

e A pointer value is returned in a0. A non-pointer 32-bit value is
returned in r5r4. A 16-bit value is returned in r4.

e A structure is returned using a hidden pointer, which is passed by
the caller in a0.

Note that registers that were skipped so that a 32-bit parameter could be
passed can be used later when passing a 16-bit parameter. For example,
a function with prototype:

void f(int, long, int)

will expect its’ arguments to be in: r4, r6r7, and r5 respectively.

3.2.4 Run Time Stack

3-10

The C run time stack grows towards lower addresses in memory. The
stack pointer (r12 with SDCC/ZDXCC, a7 with ZDCC) decrements when
items are pushed on the stack. The initial memory location of the stack
is specified in the initialization file crt 0. o.

Table 3.6 shows the layout of a function’s stack frame.

Table 3.6  Stack Frame Layout

Callee saved registers

%rpc

Local variables and temporaries

Outgoing arguments
(The stack allocates enough space to
accommodate any call by the function.)

C Cross Compiler



Table 3.7 shows the two example stack frames for the functions f oo and
bar, after f oo calls bar.

Table 3.7  Stack Frame Example

high address Callee saved registers of foo foo's stack frame

locals/temps of foo

max args of all functions called by foo

callee saved registers of bar bar’'s stack frame

locals/temps of bar
low address

max args of all functions called by bar

Note that within the body of a function, the stack pointer points to the
beginning of the next stack frame. When a function is called, the compiler
places arguments into registers, if possible, and puts the remaining
arguments in the outgoing arguments of the caller’'s stack frame. The
compiler places any required arguments on the stack from lower to
higher addresses. Thus the first argument placed on the stack is the one
closest to the callee’s stack frame. The function call is made after all the
arguments have been properly placed.

3.2.5 Example Code for Function Prologue and Epilogue

3.2.5.1 SDCC/zZzDXCC

The following is a sample prologue that saves r 0-r 3, r 7-r 9, and % pc
and reserves 30 words of space on the stack. Note that with optimization,
this code will be reordered with non-prologue code for better scheduling
by sdopt.

Compiler Conventions 3-11



stdu
stdu
stu

stdu

stu
nov
sub

nov
add
| du
nov
| ddu
| du
| ddu
| ddu
add
nov
ret

3.25.2 ZDCC

3-12

pushd
nov. e
pushd
pushd
add

add
popd
popd

ro, r12, -2
r2, rl12, -2
r7, r12, -1
rg, ri12, -2
ri3, %pc
ri3, ri1z2, -1
r13, 30

ri2, r13

The appropriate epilogue code for the above prologue is shown below.
ZSP interrupt routines expect the stack pointer to point to a writable
location. This requirement prevents the use of the stack pointer to directly
restore the saved registers. Instead, the stack pointer is copied to r6, and
ré is used to restore the saved registers. After all the registers are
restored, r6 is copied back to the stack pointer.

re, ri2

ri3, 31

re, ri3

ri3, r6, 1
%pc, rl3
r8, r6, 2
r7, re,
r2, re,
ro, re,
re, -1
ri2, r6

NN P

The following is a sample epilogue that saves r 8, r 9, a2, and % pc and
reserves 20 words of space on the stack. Note that with optimization, this
code will be reordered with non-prologue code for better scheduling

r8, a7
rg8, %pc
r8, a7
a2, a7
a7, -20

The appropriate epilogue code for the above prologue is shown below.
a7, 20

a2, a7
r8, a7

C Cross Compiler



nov.

popd
ret

e

%pc, r8
r8, a7

3.2.6 Parameter Passing Examples

3.2.6.1 SDCC/zDXCC

nov
add
stdu
nov
add
stdu

nov
| dx
nov
| dx
nov
| dx
nov
| dx

3.2.6.2 ZDCC

void callee(int il,
long 16) {
gl obal

= | 5+ 6;

In the example below, function f oo calls function bar, passing two | ong
(32-bit) arguments from r1rO and r3r2. The first argument is placed in the
stack at r12 + 1, and the second argument is placed at r12 + 3.

Function bar has a frame size of 16 and accesses the passed
arguments in function f 0o’s outgoing argument stack space.

ri3, 1 I'l The first argunment |ocation on the stack
rl3, ri2

ro, ri3, 2 Il Store r0 at r12+1 and r1 at ri12+2.

ri3, 3

ri13, ri12 I'l Conpute r12+3 and store in ri3.

r2, ri3, 2 Il Storer2inrl12+43 and r3 in ri2+4.

The function bar retrieves arguments from f 00’s stack space by loading
the values from f 00’s outgoing argument space. The first word of f oo’s
outgoing arguments is located at r12+(bar's stack space)+1, or
r12+(16)+1.

r13, 17
ro, ri2
r13, 18
rl, ri2
ri3, 19
r2, rl2
r13, 20
r3, ri2

The following C code:

long I'l, int i2, long 12, long |3, long *pl, long 14, long |5,

Compiler Conventions 3-13



}

void caller() {
| ong a=7,

callee(l,2,3,4,5&,7,8,9);

}

3-14

—_—— = ————
OORAPFRPWNNRERE
1

call

nov
add

| dd

r4

r7r6

r5

r3r2

a0

al

a6

st ack+1
st ack+3

al,
al,
ao,
al,
ao,
al,
ao,
ré,
re,
r7,
r5,
r2,
r3,
ao,
al,
ail,

The arguments will be passed in the following locations:

The above code will produce the following calling code sequence:

8

a7, 1 15,
7

9

a7, 5

a7, 3 'l 6,
a0 14,
0x1 lil,
2 1,
0

0x3 1i2,
4 2,
0

5 '3,
a7’ I p1,
5

_callee

ao,
a0,
r4,
re,

fifth 32-bit non-poi nter paraneter passed on stack

sixth 32-bit non-pointer paraneter passed on stack
fourth 32-bit non-pointer paraneter passed in a6
first 16-bit paraneter passed in r4

first 32-bit non-pointer paraneter passed in r7r6

second 16-bit paraneter passed in r5
second 32-bit non-poi nter paraneter passed in r3r2

third 32-bit non-poi nter paraneter passed in a0
first pointer parameter passed in al

The function cal | ee retrieves | 5 and | 6 from cal | er’s stack space by
loading the values from cal | er’s outgoing argument space. The first
word of cal | er’s outgoing arguments is located at a7+(callee’s stack
space)+1, or a7+(0)+1.

a7

1

a0

a7, 3

C Cross Compiler



3.3 Run Time Environment

The compiler run time environment is initialized in the startup file crt 0. o
on Solaris platforms or crt 0. obj on Windows platforms. By default, the
startup file is automatically linked by the compiler. The initialization file
will fill the bss section with zeroes.

The run-time memory map contains three main sections: text, data, and
bss, in that order. The heap grows from lower addresses to higher
addresses and starts after the bss section. The stack grows from higher
to lower addresses, and starts at the address specified by the predefined
variable _stack start - 4, which has a default value of OXF7FB for
SDCC/ZDXCC and OXxFFEFFF for ZDCC. This can be modified as shown
below.

sdcc -W, -def sym __stack_start=0xd000 test.c

3.4 C Run Time Library Functions

The li bc. a libraries supplied with the C compiler contain the run time
library functions. These functions are equivalent to those found in other
C programming environments, having the same names and parameter
lists. Thus existing programs that use these functions may be recompiled
without any changes. The compiler provides a debugging form of the
library, | i bg. a, which allows you to debug standard library functions.

Run Time Environment 3-15



The library functions are grouped into the following categories:

e String functions (stri ng. h)

bcnp, bcopy, bzero, i ndex, menthr, nenctnp, mentpy, menmove,
nmenset, ri ndex, strcat, strchr, strcnp, strcpy, strcspn, strlen,
strncat, strncnp, strncpy, strpbrk, strrchr, strspn, strstr,
strtok.

e |/O functions (stdi 0. h)

fopen, fclose, fwite, fread, fgetc, fputc, fprintf,
printf, sprintf, vfprintf, vprintf, vsprintf, getc, putc,
get char, putchar

The fprintf and printf functions have been extended to allow
printing of the q15 data type. A “%g” format specifier will print a 16-bit
value in fixed-point notation.

¢ The filehandles st di n, st dout , and st der r are available for use with
fwite, fread, fgetc, fputc, and fprintf.

e Memory allocation functions (stdl i b. h)
mal | oc, free, nbtowc

¢ Interprocedural control flow functions (setj np. h)
setjnp, |ongjnp

In the case of 1/O functions, the SDK performs file 1/0 by sending a
message to the program running on the host (sdbug400, zsim400,
Zisim400, zdbug, zdxbug, zsimg2 or zisimg2). These messages will
cause the host program to perform the requested file I/O operation. All
host programs and all zdbug targets support file 1/0.

3.5 N-Intrinsics

3-16

SDCC N-Intrinsics provide support for DSP instructions. N-Intrinsics are
implemented as macros in the header file N_I ntri nsi c. h. The name
of an N-Intrinsic begins with an N_, followed by a suffix that indicates the
operation’s data type: s forint, | for | ong, and _h for high-order i nt
of a | ong.

C Cross Compiler



Table 3.8 N-Intri

To use N-intrinsics, add the following line in each of your C files:

#include <N Intrinsic. h>

N-intrinsics are implemented by the compiler using the assembly
instructions shown in Table 3.8. The older L-intrinsics are still supported
and are described in Appendix D, “L-Intrinsic Functions.”

nsic Functions

Intrinsic Function

Generated Code

Analogous L-Intrinsic

N _mac(accum acc, int x, int y) nac.acc X, y L maca, L _mach

N macn(accum acc, int x, int y) |macn.acc X, y L _macna, L _nacnb

N _nmac2(accumacc, long x, long y) | mac2.acc X,y L_mac2a, L_nac2b

N _mul (accum acc, int x, int y) nul.acc x, y L mula, L mulb

N mul n(accum acc, int x, int y) |miln.acc x, y None

N norml(int ret, long a) norme ret, a norm/|

N norms(int ret, int a) normret, a norms

N extract_h(int ret, long a) ret = af31:16] extract_h

N deposit_h(long ret, int a) ret[31:16] = a L_deposit_h
ret[15:0] = O

N abs | (long ret, long a) abs.e ret, a L_abs

N abs_s(int ret, int a) abs ret, a abs_s

N round_| (long ret, long a) round.e ret, a r ound

Nshla l(long ret, int a) shla.e ret, a L_shla

N shla_s(int ret, int a) shla ret, a shl a

N-Intrinsics

3-17



3.5.1 Vector N-Intrinsics

The ZDCC compiler also provides N-Intrinsics for common vector
operations. They are shown in Table 3.9. The vector N-Instrinsics will
produce more efficient code than the equivalent non-vector code.

Table 3.9 Vector N-Intrinsics

N-Intrinsic 1

Functionality 2

N vc_mac(accum acc, int *vecl, int incl,
int cnst, int |en)

for (i=0; i<len; i++) {
N mac(acc, cnst, vecl[i *incl]);

}

N vc_macn(accum acc, int *vecl, int incl,
int cnst, int |en)

for (i=0; i<len; i++) {
N _macn( acc, cnst, vecl[i *incl]);

}

N vv_mac(accum acc, int *vecl, int incl,
int *vec2, int inc2, int len)

for (i=0; i<len; i++) {
N_nac(acc, vecl[i *incl], vec2[i*inc2])

}

N vv_nacn(accum acc, int *vecl, int incl,
int *vec2, int inc2, int len)

for (i=0; i<len; i++) {
N_nacn(acc, vecl[i *incl], vec2[i*inc2]);

}

1. All increment values (i ncl, i nc2) must be -2, -1, 1, or 2.
2. The actual code generated will be more efficient than the functionally-equivalent code in this column.

Important:  If you use vector N-Intrinsics at optimization level 3 (- CB),
you must also use the -fno-i nl i ne option. Functions with
vector N-Intrinsics must not be inlined, since these intrin-
sics create labels. If these labels are inlined, they are dupli-
cated and cause an error.

3.5.2 ETSI Functions

The SDCC's N-Intrinsics also allow access to processor-supported ETSI
functionality, although the interface is different. For example, the ETSI

code:

y = norml (x);

can be rewritten with N-Intrinsics as:

N_norml (y, x);

3-18 C Cross Compiler




Another approach that preserves the ETSI defined interface would be to
use N_norm | to implement the ETSI function. For example, nor m |
could be implemented as:

static inline

int ret;

int norml(long src) {

N norml (ret,src);

return(ret);

}

You may implement some ETSI functions can be implemented using N-
Intrinsics, but you must set mode bits in % node accordingly. For
example, you can implement the ETSI function L_nac using N_rac, but
you must also set the SAT and Q15 mode bits in % node. This
correspondence between N-Intrinsics and ETSI functions is shown in

Table 3.10.

Table 3.10 ETSI to N-Intrinsic Mapping

fmode! Register Bits
ETSI Function N-Intrinsic sat | ql5 sre mre
abs_s N_abs_s X X X X
extract_h N_extract_h X X X X
L_abs N_abs_| X X X X
L_deposit_h N_deposit_h X X X X
L_mac N_mac 1 1 X 0
L_macN N_mac 0 1 X 0
L_msu N_macn 1 1 X 0
L_msuN N_macn 0 1 X 0
L_mult N_mul X 1 X 0
L_shl N_shla_| 1 X X X
mac_r N_mac 1 1 X 1
N-Intrinsics 3-19



Table 3.10 ETSI to N-Intrinsic Mapping (Cont.)

fmodel Register Bits
ETSI Function N-Intrinsic sat | ql5 sre mre
msu_r N_macn 1 1 X 1
mult N_mul X 1 X 0
mult_r N_mul 1 1 X 1
norm_| N_norm_| X X X X
norm_s N_norm_s X X X X
round N_round_| X X X X

1. 1= Set, 0= Cleared, x = Don’t Care

3.6 Circular Buffers

3-20

The cbuf . h header file provides the interface to the circular buffers. The
header file's macros generate the necessary assembly instructions.

To use a circular buffer, a pointer must be declared, the circular buffer
boundaries must be set, and the circular buffer must be enabled. With
SDCC/ZDXCC the pointer must be in r14 or r15.

register int *pt asn{"r14");

set _r14 cbuf (I ow, hi gh);
enabl e r14 cbuf;

With ZDCC, the pointer must be in a0 - a3.

register int *pt asn{"a2");

set _cbuf (BUF_I D | ow, hi gh);

enabl e_cbuf (CBUF_ID);

CBU-_| D mustbe A0_CBUF, Al CBUF, A2_(BUF or A3 _CBUF.
A circular buffer must have at least 4 ints or 2 longs.

Circular buffers can be disabled using the following macros with
SDCC/ZDXCC:

di sabl e_rn_cbuf;

C Cross Compiler




For ZDCC the macro is:
di sabl e_cbuf (CBBUF_ID;

There are special macros defined within cbuf . h to access the elements
in a circular buffer. These macros are the same for all compilers.

| oad_i nt_cbuf (dst, pt,i nc)
store_int_cbuf(src,pt,inc)

| oad_| ong_cbuf (dst, pt,i nc)
store_| ong_cbuf (src, pt,inc)

The i nc parameter determines the number of elements to increment the
pointer pt . The i nc parameter must be a constant rather than a variable.
For 1 oad_i nt _cbuf and store_int_cbuf, i nc must be in the range
1-50. For | oad_| ong_cbuf and store_| ong_cbuf, i nc must be in the
range 1-25.

It is legal to access a value pointed to by pt using * pt , so an increment
value of 0 is not needed.

The dst and sr ¢ parameters are variables used for the destination and
source values, respectively. Note that these parameters are not pointers
to a location where the destination/source will be stored/accessed, but to
the variables that will actually be stored/accessed.

Note:  You must disable circular-buffer arithmetic immediately after
the final use of pt, because the compiler may reuse the
register containing pt for other purposes. The code
generated in this case would not expect the register to have
circular arithmetic.

Because the registers supporting circular-buffer functionality are not
saved and restored by function calls/returns, circular buffers should not
be used with code containing function calls.

3.7 Accessing Control Registers

Macros have been defined in the header file <creg.h> to simplify
accessing control registers.

Accessing Control Registers 3-21



read_creg(creg,var) - Puts the value of a control register into
var.

wite_creg(creg,val) - Putsa value, which can be a variable or
an immediate, into a control register. The val argument can be made by
or-ing together the following masks for the following registers:

Macros have also been defined to manipulate specific bits of control
registers.

bitset _creg(creg, bitnum
bitclear_creg(creg, bitnum
bitinvert creg(creg, bitnum

The bithumber and value arguments can be filled with macros which
have been defined to the approiate value. The bithumber and mask to
access a specific bit has been defined to “bit name” [MASK|BIT]. For
example, to set the Q15 hit of %fmode, use the following macro:

bitset creg(% node, QL5 BIT);

3.8 Q15 Support

3-22

CC supports the Q15 data type. To use Q15 arithmetic, the q15 mode
bit in the %fmode register must be set, as follows:

bitset creg(% node, QL5 BIT);

The 15 mode bit affects Q15 multiplies and the N-Instrinsics N _nul ,
N mac, N macn, N mac2, and the vector intrinsics.

Q15 arithmetic can be disabled as follows:
bi tcl ear _creg(% node, QL5_BI T);
This release of the SDK does not support Q15 division.

The code produced for the Q15 data type is equivalent to that produced
for the i nt data type, except for the following three cases:

* The product of two Q15s is calculated with a nul instruction rather
than an i mul instruction.

C Cross Compiler



* The 16-bit result of a Q15 product is the high-order 16 bits of the
result produced by a nmul instruction. The 16-bit result of an i nt
product is the low-order 16 bits of the result produced by an i nul
instruction.

e The product of two Q15 constants is not simplified by the compiler.

The fprintf and printf functions have been extended to allow
printing of the q15 data type. A “%g” format specifier will print a 16-bit
value in fixed point notation.

3.9 Inline Assembly

Inline assembly that references C variables can be generated by using
the asmdirective.

3.9.1 Syntax

The basic syntax of the asmdirective is:

asm(

“paranet eri zed assenbl y” :

out put vari abl e,
i nput expression,

explicitly cl obbered r

3.9.2 Parameterized Assembly

.egister, e )

The par anet eri zed assenbl y consists of a text string containing the
desired assembly output with parameters that will be replaced with

registers or constants according to the arguments in out put vari abl e
and i nput expressi on. The syntax of a parameter is shown in Table

3.11.

Table 3.11 Parameter Output Syntax

Format

Output

%

register name or constant

%m

accumulator name

%n

high register name

Inline Assembly

3-23



In the table above, n is the index of the desired argument in out put
vari abl e or i nput expressi on. The three formats—% %n and Yo—
control the way an argument is printed in the generated assembly. For
example, a variable of | ong type that the compiler has placed in r1 and
rO will be printed as rO when the %format is specified, as a when the
%nformat is specified, or as r 1 when the % format is specified.

3.9.3 Variables and Expressions

The syntax for an out put vari abl e and i nput expressi on is:
“constraint” (expressionjvari abl e)

A constrai nt is used to describe the requirements that an instruction
places on an argument. For example, an instruction that requires an
argument to be in a particular register would put a constraint on that
argument to ensure that the argument is placed in an allowed register.

In example 3 in Section 3.9.5, “Examples of asmDirective”, the acc
variable is constrained to be in an accumulator register. The supported
constraints are shown in Table 3.12.

Table 3.12 Argument Constraints
Constraint | Effect Availability
= output variable All compilers
r general-purpose register All compilers
e address register ZDCC
h index register ZDCC
c accumulator register All compilers
n constant All compilers
<n> same as indexed argument All compilers
Note that a constant argument can be used with an r constraint. The
SDK copies the constant to a register and uses the register as the
argument. You can combine constraints, which can be useful for
instructions that allow different types of arguments. For example, the
shl a instruction can accept either a register or an immediate argument.
3-24 C Cross Compiler



The appropriate constraint for this argument would be rn. In example 4
in Section 3.9.5, “Examples of asmDirective”, the input parameter is
constrained to be either a register or an immediate. Sometimes it is
necessary for two arguments to be in the same register. This requirement
can be described by constraints. The first argument should be described
with whatever constraint is appropriate, and the second argument’s
constraint must be the index of the first argument. For example, the first
argument of the add instruction is an output/input argument. You must
list this argument as an out put vari abl e and an i nput

expr essi on. The constraint of this argument when it appears as an

i nput expr essi on should be the index of the argument when it
appears as an out put vari abl e. In example 3 in Section 3.9.5,
“Examples of asmDirective”, the output argument and the first argument
illustrate this technique.

3.9.4 Explicitly Clobbered Registers
The syntax for an explicitly cl obbered register is:
“regi ster nane”

This entry tells the compiler that the assembly code generated will
clobber the specified register. Thus the generated assembly code may
use the specified register for scratch purposes.

3.9.5 Examples of asmDirective

The examples in the subsections below illustrate the usage of the asm
directive.

3.9.5.1 Example 1
asm “norme %), %":
“=r” (ret)
r’ (a));

The example shown above has one output argument, r et , and one input
expression, a. If the variable r et is in rO and the variable a is in r4, this
directive produces:

norme r0, r4

Inline Assembly 3-25



3.9.5.2 Example 2
asm(“abs r5, %\n\tst r5, %W
“e” (addr), “r” (val)
“r8%);

The example shown above stores the absolute value of val at addr.
Two instructions are generated by this directive. There are two input
expressions and no output arguments. Note that register r5 is clobbered
by this directive. If addr is in a0 and val is in rl5, this directive

produces:
abs r5, rl15
st r5, a0

3-26 C Cross Compiler



3.9.5.3 Example 3
asm “mac. %0 %R, %02"
“=c” (acc)
“0" (acc), “r” (val));

The example above adds the 32-bit product of the high and low 16 bits
of val to acc. Note that the high part of val is obtained with the %2
operand and that the accumulator is printed with the %0 operand. Also
note that acc is both an input and an output argument, and that the
constraint for acc when it appears as an output argument is c, an
accumulator, and when it appears as an input argument is 0, which tells
the compiler that these two arguments must be in the same location. If
acc isin r0 and val is in r3r2, the following code is generated:

mac.a r2, r3

3.9.5.4 Example 4

asm “nmov %snode, %"

“rn” (val));

The example shown above sets %snode to val . Note that %snode is not
specified as a clobbered register, because %snode has no meaning to the
compiler. If val is a symbolic constant with the value 3, the following
code is generated:

nmov % node, 3

You can find additional examples of using the asmdirective in the header
file N.Intrinsic.h.

3.9.5.5 Example 5
asm “bits % snode, 77);

The example shown above sets bit 7 in %snode. This example illustrates
the general rule that if the assembly statement contains an argument (as
in Example 4, which contains the argument 99), a reference to a register
must contain an additional per cent (% sign. Example 5 contains no
argument, so a single %preceding snode is used.

Inline Assembly 3-27



3.9.6 Optimization of Inline Assembly

For purposes of optimization, the compiler assumes that inline assembly
has no effect except to modify the output variables. Thus inline assembly
can be removed by optimization if none of the output variables is
subsequently used. Inline assembly that must not be deleted or
significantly moved should contain the keyword vol ati | e following the
asmdirective, as shown below.

asm vol atile(“bits %snode, 77);

The vol ati | e keyword is implicit for inline assembly with no output
variables. Thus, the use of vol ati | e in the above example is redundant.

3.10 Assembly Optimizer and Handwritten Assembly

3-28

The assembly optimizers can be used to automatically generate the
prologue and epilogue for an assembly function and then to schedule the
entire function.

sdopt -asm assenbl yfile

The output will be placed in standard output. The assembly optimizers
expect input of the following format:

I PROLOCAUE( <f uncti on nane>)
<function body>
| EPI LOQLE

This will be transformed by the assembly optimizer to:

. set REGSAVE S| ZE <function name> <stack space used>
<function nanme>:

__FUNC START <function nane>:

<optimzed assenbly code wi th prol ogue/ epi | ogue>

__ FUNC END <function nane>:

ret

All registers that must be preserved according to the C calling convention
will be preserved. Note that the name REGSAVE_SI ZE <f uncti on
nane> can be used if the size of the stack space used by the
prologue/epilogue is needed. Any input in the assembly file outside of the

C Cross Compiler



! PROLOGUE and ! EPI LOGUE markers will be copied without
modification.

3.11 Debugging Options

You can debug code compiled using the GCC-supplied - g option, which
generates debugging information. You can attempt debugging with
optimization turned on, though optimization makes debugging difficult.
When debugging optimized code, use the - mo_sdopt option, because
sdopt , zdxopt and zdopt do not preserve the location of debugging
information.

Using the - g option with optimization modifies the code generated in two
ways. First, the debugging version of the C library is linked, rather than
the optimized version. Second, leaf functions save and restore %rpc
(without the - g option, this save and restore is removed by optimization).
The - g option saves and restores this register, because the debugger
requires it to examine the call stack.

3.12 Code Statistics

CC creates four labels and symbols that are useful in analyzing the code
generated by the compiler.

Every function will have a label placed on its first instruction and after its
last instruction with the following formats:

___FUNC _START <function nane>
__FUNC END <function nane>

The difference of these two labels will give the code size of a function.
A function will also have a label placed on its return instruction:

__FUNC EXIT_<function name>

This label is used for function profiling. Every function will also have an
absolute symbol that shows the number of words of stack space used
per invocation of the function.

___FUNC _FRAME_SI ZE <function nane>

Debugging Options 3-29



3.13 Example Compilations

3.13.1 Example 1

cc test.c -Tdata=0x1

This command invokes the C compiler, assembler, and linker and
produces an executable file with the default name a. out .

The -Tdat a=0x1 command places the data at address 0x1 to prevent a
NULL pointer from being a valid pointer.

3.13.2 Example 2

cc -c test.c

This command invokes the C compiler and assembler only, producing an
object file with the default name test. obj (Windows) or test. o (UNIX).

3.13.3 Example 3

cc -Stest.c

This command invokes the C compiler only, producing an assembly file
with the default name test. s.

3.13.4 Example 4

cc -8 test.c

This command invokes the C compiler with the highest level of
optimization, that is, including all level -C2 optimizations, as well as
function inlining and loop unrolling. The assembler and linker are also
invoked, and the output is an executable file with the default name a. out .

3-30 C Cross Compiler



Chapter 4
Assembler

The SDK Assembler (SDAS/ZDAS) is based on the GNU assembler, AS,
from the Free Software Foundation. It is described in Using AS: The
GNU Assembler, by Dean Elsner, et. al., Free Software Foundation,
January 1994. The description of SDAS/ZDAS in this chapter, for the
most part, includes only the differences from AS. SDAS is the assembler
for the ZSP400 architecture. ZDAS is the assembler for the ZSPG2
architecture. In this chapter, unless otherwise noted, SDAS refers to both
the ZSP400 and ZSPG2 assemblers.

The assembler is invoked from the shell using the following command:
sdas [options] sourcefile

SDAS processes an assembly source file with the . s file extension and
produces a relocatable object file in ELF format with the default file
extension . obj (Windows) or . o (UNIX).

4.1 Assembly Language Syntax

The basic format of a SDK assembly language statement is:

[ label: ] [ statement ] [ !conmment ]

Labels are identifiers that start at the beginning of a line, with no leading
spaces or tabs, and end with a colon. Identifiers begin with a letter (case
is significant) or an underscore, and can continue with more letters,
digits, and underscores. Assembly language instructions can be on the
same line as a label.

Examples:
Start: 1“Sart” is a |l abel
start: I“start” is another (different) I abel

ZSP SDK Software Development Kit 4-1



bnz start l“start” is a | abel reference

| oop: add r0, r1 1“loop” is a label
bnz Start: I Illegal reference (extra col on)
End I Illegal |abel (mssing col on)

Symbols beginning with ‘L are locally resolved, and are therefore not
visible to the linker or to other modules.

Assembler statements can be assembler directives or assembly
language instructions. Assembler directives start with a period (*.).

Comments start with an exclamation mark (! ) and continue until the end
of the line. The symbol ‘# at the beginning of the line indicates that it is
a comment.

Note that files with the . S extension can be assembled using sdcc, which
causes the C preprocessor to run before the assembler. This enables
users to use C-style comments and #def i nes in their assembly code.
However using a - g option will not cause any debug symbol generation,
since the source file is an assembly program. To turn on debug
information for an assembly program with a . S extension, you can use
sdcc with the -V and -dbg options (the - dbg option is described in
Section 4.1.1.4, “Debugging Option (-dbg),” page 4-3).

All assembly programs must be contained within a section.

Putting . section “.text”, “ax” before any assembly code ensures
that the code gets assembled into the .text section. Please refer to the
GNU assembler manual for more information on the section syntax and
flag definitions.

4.1.1 Assembler Options

Please refer to the GNU assembler manual for a full description of all
options available to the assembler. A few of the more frequently-used
options as well as the options specific for the SDK are described below.

4.1.1.1 Suppress warnings (-W)

4-2

This options prevents warnings from the assembler from being displayed
on the screen.

Assembler



4.1.1.2 Output file (-0)

Using - o obj f i | e assembles the output into the object file specified. By
default, if you do not use the - o option, the resulting object file is named
a.out.

4.1.1.3 Include path (-1)

The -1 dir option is used to add the specified directory to the search
list used by . i ncl ude directives.

4.1.1.4 Debugging Option (-dbg)

The - dbg option adds debugging information to the executable file, which
allows you to debug the source file rather than the disassembled text.
The usage is:

sdas -dbg test.s

where test. s is the name of the assembly file.

4.1.2 Assembler Directives

4.1.2.1 .walign

4.1.2.2 .wspace

The following subsections describe some frequently-used assembler
directives, as well as those that are specific to the SDK assembly
language.

The .wal i gn directive aligns the location counter on the next word
boundary specified by an integer argument. If the location counter is
already aligned, no action is taken. Intervening words are filled with nop
instructions. For example,

.walign 32 I Align to the next 32-word boundary.

The .wspace directive allocates space in a segment as specified by an
integer argument. The location counter is incremented, regardless of
alignment. For example,

.wspace 7 I Increnent the | ocation counter by seven.

Assembly Language Syntax 4-3



4.1.2.3 .word

4.1.2.4 .global

4.1.2.5 .section

An optional fill value can also be given. If no fill value is given, the space will be filled
with zeroes.

.wspace 7, 0xd800! (reate 7 words of 0xd800

The . wor d directive allows a user to specify zero or more comma
separated values to be assembled into memory.

The . gl obal directive is used to declare a global symbol. If this directive
is not used, a symbol defined in a partial program is visible only within
its scope. The . gl obal directive makes the symbol visible to the linker.

The .section directive assembles the code following it into the section
name specified.

n o u

Example: .section, “.text”, “ax”

This defines a section named “.text” - the characters following it tell the
assembler that the code following the directive is allocatable and is a part
of the instruction memory. Please refer to the GNU assembler manual for
more information.

Although GNU assembler documentation says unnamed sections go to
the default .text section, it is necessary to specify sections explicitly for
the ZSP SDK tools.

4.1.3 Assembler Special Cases

4-4

For all instructions that require a register pair, the even register must be
specified as the operand. For the ZSP400 assembler only, If an odd
register is specified, the even register of the register pair is used as the
actual operand in the instruction, and the assembler displays a warning
message. With the ZSPG2 assembler, zdas, an odd register will not be
converted to an even register and an error will be message will be
shown.

Assembler



For the ZSP400 architecture, a target function must be placed at an even
address. If the value is odd, an error message is displayed. A function
can be forced to start on an even address by using the . wal i gn 2
directive. For the ZSPG2 architecture, there are no alignment
requirements for call targets.

Assembly Language Syntax 4-5



4-6

Assembler



Chapter 5
Linker

The SDK Linker (SDLD/ZDLD) is based on the GNU linker, LD, from the
Free Software Foundation. LD is described in Using LD: The GNU Linker,
by Steve Chamberlain, Free Software Foundation, January 1994. SDLD
is the linker for the ZSP400 architecture. ZDLD is the linker for the
ZSPG2 architecture. Unless otherwise noted, SDLD refers to both the
ZSP400 and ZSPG2 linkers.

The linker processes the object files generated by the assembler
(designated with the . obj extension on Windows or . o extension on
UNIX) and produces an executable file in ELF format with the default
name a. out .

The linker is invoked from the shell using the following command:

sdl d [options] sourcefile

5.1 Sections

By default, the linker generates .text, .data and .bss sections. The .text
sections contains code, .data contains data, and .bss contains
uninitialized data. If there are additional user-defined sections specified
in the linker script file, the linker will generate them also.

By default, .bss follows .data in Data memory unless relocated using a
linker script command.

The following section names have special meaning only on the ZSP400
linker:

e .exttext_O through .exttext 15
e .extdata_ O through . extdata_15

ZSP SDK Software Development Kit 5-1



5.1.1 Symbols

5-2

Code or data in these sections is placed in the appropriate external
instruction or data memory, with the particular external page selected by
the number in the section name.

On the ZSP400 architecture, the offset of a cal | i mredi at e instruction
must be even. If the assembler cannot resolve this offset, the linker will.
If the offset is odd, the linker displays an error message. Because the
assembler will automatically align cal | i medi at e instructions on an
even address, this error occurs only if the call target was on an odd
address. To resolve this error, align the call target on an even address,
using the . wal i gn 2 directive.

By default, program execution begins at __start. The entry point can be
altered by specifying an alternate address, using the - e option. For
example, the following command will cause execution to begin at address
Oxabcd:

sdld -e Oxabcd

The C stack region will always be set to the internal data memory. The
linker uses four symbols for stack-range checking:

e stack_start: beginning of C stack, default setting is OXxF7FF with
SDLD and OxFFEFFF with ZDLD.

e  stack_end: ending address of C stack
e  stack_size.linker_defi ned: stack size calculated by linker
e stack_size.user_required: user required stack size set in

command line option
You can inspect the values of these symbols in the map file.

The value of the symbol __stack_start or __stack_end can be set in
a linker script file or by using the command-line option def sym
syn¥Val ue.

The user-required stack size can be set using the command-line option
st ack_si ze=Val ue. The linker will report an error when the stack size is
inadequate.

Linker



5.1.2 Linker command file

A linker command file (also called a linker script file) is a file containing
linker commands that explicitly define symbols and locate sections in
memory. A linker command file can be specified when the linker is
invoked. An example linker command file is shown below.

SECTI ONS
{
.text 0x2000: {*(.text)}

. data 0x3000: {*(.data)}
vect ors 0x0000: {*(vectors)}

}

The example above declares the output sections .text, .data, and vectors.
Each output section is formed by the corresponding input sections from
all files (as indicated by the *").

Refer to the GNU Id man page for more information.

5.1.3 Linker options

The following subsections describe some frequently-used linker options,
as well as those that are specific to the SDK assembly language.

Option Description

-T linkercommandfile Replaces the linker's default script file with the
specified linkercommandfile.

-0 outputfile Names the output file. By default, the output
file name is a. out .

-I archive Adds archive file archive to the list of files to
link. The linker will search for files
I'i bar chi ve. a for every archive specified
using this option.

-L searchdir Adds searchdir to the list of directories to
search for archive libraries and linker scripts.
Multiple paths can be specified by using the -
L option multiple times.

-M Prints the link map to st dout . A link map
contains information on the mapping of
symbols.

Sections 5-3



5-4

Option

Description

--defsym symbol=expression

-Tbss addr

-Ttext addr

-Tdata addr

Linker

Creates a global symbol in the output file
containing the absolute address specified by
the expression. This option can be used
multiple times to create multiple symbols. Valid
formats for expression are hexadecimal
constants or the names of existing symbols.

Locate the .bss section at the address
specified by addr.

Locate the .text section at the address
specified by addr.

Locate the .data section at the address
specified by addr.



Chapter 6
Utilities

This chapter describes the SDK utility programs.

The SDK provides additional utilities for manipulating files that are

generated by the tools during project creation. These SDK-specific

utilities, described in Table 6.1, replace their GNU counterparts. Tools for
the ZSP400 architecture start with an “sd” prefix. Tools for the ZSPG2

architecture start with a “zd” prefix. Unless otherwise specified, the

description of a utility applies to both the ZSP400 and ZSPG2 versions

of the tools.
Table 6.1  SDK Utilities and GNU Counterparts
GNU

Utility Equivalent | Function

sdar ar Creates, modifies, and extracts files from an archive.
zdar

sdnm nm Lists symbols from object files.

zdnm

sdobj dunp | obj dunp Displays information from object files.

zdobj dunp

sdranlib |ranlib Generates an index for an archive.

zdranlib

sdstrings |strings Prints the printable characters in the files.
zdstrings

sdsi ze si ze Lists section sizes and total size of object file.
zdsi ze

sdstrip strip Discards symbols from object files.

zdstrip

sdobj copy | obj copy Copies and translates object files.

zdobj copy

ZSP SDK Software Development Kit

6-1




6.1 sdar

6-2

Format
sdar [-]p[nod [rel pos]] archive [nenber...]
Description

sdar creates, modifies, and extracts from archives. An archive is a single
file holding a collection of other files in a structure that allows you to
retrieve the original individual files (called members of the archive). The
original files’ contents, mode (permissions), timestamp, owner, and group
are preserved in the archive, and can be restored on extraction.

When you specify the modifier s, sdar creates an index to the symbols
defined in relocatable object modules in the archive. Once created, this
index is updated in the archive whenever sdar makes a change to its
contents (save for the ‘q’ update operation). An archive with such an
index speeds up linking to the library, and allows routines in the library
to call each other without regard to their placement in the archive.

You may use ‘sdnm -s’ or ‘sdnm - - pri nt - ar nap’ to list this index table.
If an archive lacks the table, another form of ar called sdranl i b can be
used to add just the table.

Options

Utilities



Table 6.2

The p keyletter specifies what operation to execute. It may be any of the
following, but you must specify only one of them:

sdar p Keyletter Options

Option

Description

d

Deletes modules from the archive. Specify the names of modules to be deleted as
menber . . . ; the archive is untouched if you specify no files to delete. If you specify the
‘v’ modifier, ar lists each module as it is deleted.

Prints the specified members of the archive, to the standard output file. If the ‘v’ modifier
is specified, show the member name before copying its contents to standard output. If
you specify no member arguments, all the files in the archive are printed.

Inserts the files member... into archive (with replacement). This operation differs from ‘q’
in that any previously existing members are deleted if their names match those being
added. If one of the files named in member... does not exist, ar displays an error
message, and leaves undisturbed any existing members of the archive matching that
name. By default, new members are added at the end of the file; but you may use one
of the modifiers ‘a’, ‘b’, or ‘i ’ to request placement relative to some existing member. The
modifier ‘v’ used with this operation elicits a line of output for each file inserted, along
with one of the letters ‘a’ or ‘r’ to indicate whether the file was appended (no old member
deleted) or replaced.

Displays a table listing the contents of archive, or those of the files listed in member...
that are present in the archive. Normally only the member name is shown; if you also
want to see the modes (permissions), timestamp, owner, group, and size, you can
request that by also specifying the ‘v’ modifier. If you do not specify a member, all files
in the archive are listed. If there is more than one file with the same name (say, fi €’) in
an archive (say ‘b. @), ‘ar t b.a fie’ lists only the first instance; to see them all, you
must ask for a complete listing--in our example, ‘ar t b. a’.

Extracts members (named member) from the archive. You can use the ‘v’ modifier with
this operation, to request that ar list each name as it extracts it. If you do not specify a
member, all files in the archive are extracted.

A number of modifiers (mod) may immediately follow the p keyletter, to
specify variations on an operation’s behavior:

sdar 6-3




Table 6.3

sdar p Keyletter Modifiers

Option

Description

f

Truncates names in the archive. GNU ar will normally permit file names of any length.
This will cause it to create archives which are not compatible with the native ar program
on some systems. If this is a concern, the ‘f * modifier may be used to truncate file names
when putting them in the archive.

Preserves the original dates of members when extracting them. If you do not specify this
maodifier, files extracted from the archive are stamped with the time of extraction.

Normally, ‘ar r’... inserts all files listed into the archive. If you would like to insert only
those of the files you list that are newer than existing members of the same names, use
this modifier. The ‘U’ modifier is allowed only for the operation ‘r’ (replace). In particular,
the combination ‘qu’ is not allowed, since checking the timestamps would lose any speed
advantage from the operation ‘q'.

Quick append at end of files

6-4

Utilities




6.2 sdstrip

Format
sdstrip
[-R sectionnanme | --renove-section=secti onnane]
[-s | --strip-all]
[-S| -g | --strip-debug]
[-N synbol nane | --strip-synbol =synbol nane]
[-o file]
[-p |--preserve-dates]
[--hel p]
objfile ..
Description

sdstri p discards all symbols from the object files objfile. The list of
object files may include archives. At least one object file must be
specified. sdst ri p modifies the files named in its argument, rather than
writing modified copies under different names.

Options

sdstrip 6-5



Table 6.4  sdstrip Options

Option

Description

--hel p

Shows a summary of the options to strip and exit.

-Rsectionnane |
--renove- section=secti onnane

Removes the named section from the file. You may give this
option more than once. Note that using this option
inappropriately may make the object file unusable.

-Rsectionnane |
--renove-secti on=secti onnane

Removes any section named sect i onnamne from the
output file. You may give this option more than once. Note that
inappropriate use of this option inappropriately may make the
output file unusable.

-s | --strip-all

Removes all symbols.

-S|-g | --strip-debug

Removes debugging symbols only.

-Nsynbol nane |
--stri p-synbol =synbol nane

Removes symbol synbol name from the source file. You may
give this option more than once, and may be combined with
other strip options.

-ofile

Puts the stripped output in fi | e, rather than replacing the
existing file. If you use this argument, you can specify only
one obj fil e argument.

6-6 Utilities




6.3 sdranlib

Format
sdranli b archi ve
Description

The sdranlib utility generates an index to the contents of an archive and
stores it in the archive. The index lists each symbol defined by a member
of an archive that is a relocatable object file.

You may use ‘sdnm -s’ or ‘sdnm --print-armap’ to list this index.

An archive with such an index speeds up linking to the library and allows
routines in the library to call each other without regard to their placement
in the archive.

sdranlib 6-7



6.4 sdnm

Format

sdnm [-g ] -s| -A|] -0o] -u| -1 ] objfile

Description

The sdnm utility lists the symbols from object files obj fi | e. If no object
files are given as arguments, sdnmassumes the file a. out .

Options

Table 6.5  sdnm Options

Option

Description

-A|l-o0|--print-file-nane

Precedes each symbol by the name of the input file where it was
found, rather than identifying the input file once only before all of its
symbols.

-g | --extern-only Displays only external symbols.

-p | --no-sort Prints the symbols in the order they are encountered rather than
sorting them first.

-S | --print-arnap When listing symbols from archive members, includes the index,
which is a mapping (stored in the archive by ar or ranl i b) of what
modules contain definitions for what names.

-t radix | --radix=radi x Uses r adi x as the radix for printing the symbol values. It must be
‘d’ for decimal, ‘0’ for octal, or ‘x’ for hexadecimal.

-u | --undefined-only Displays only undefined symbols (those external to each object
file).

-1 | --1ine-nunbers Uses debug information to display filename and line number for

symbols.

6-8 Utilities




6.5 sdsize

Format

sdsize [ -A|B| --format=compatibility ][ -x | --
radi x=nunber ][ objfile... ]

Description

The sdsize utility lists the section sizes, and the total size, for each of the
object or archive files obj fi | e in its argument list. By default, one line
of output is generated for each object file or each module in an archive.

obj fil e... are the object files to be examined. If none are specified, the
file a. out will be used.

Options

Table 6.6  sdsize Options

Option

Description

-A|-B | --format=conpatibility Using one of these options, you can choose whether the

output from sdsi ze resembles output from System V UNIX
size (using - A, or ‘- - f or mat =sysv’), or Berkeley Software
Distribution (BSD) size (using - B, or ‘- -

f or mat =ber kel ey’). The default is the one-line format
similar to BSD format.

--hel p

Shows a summary of acceptable arguments and options.

-d|-0|-x | --radi x=nunber Using one of these options, you can control whether the

size of each section is given in decimal (*-d’, or ‘- -

r adi x=10"; octal (- 0',

or ‘- -radi x=8"); or hexadecimal (‘- x’, or ‘- -radi x=16"). In
‘- -radi x=nunber’, only the three values (8, 10, 16) are
supported.

Example

Here is an example of formatting the output from sdsi ze closer to
System V conventions:

sdsize --fornat=SysV filel

filel:

sdsize 6-9



6-10

Utilities

section
. text
.data

. bss
Tot al

si ze
294880
81920
11592
388392

addr
8192
303104
385024



6.6 sdstrings

Format

sdstrings [-min-len] [-n mn-len] [-t radiX]
[--print-file-nane] [--bytes=m n-len][--radi x=radi x]
file...

Description

For each file given, the sdstrings utility prints the printable character
sequences that are at least 4 characters long (or the number given with
the options below) and are followed by an unprintable character. By
default, only strings from the initialized and loaded sections of object files
are printed; for other types of files, it prints the strings from the entire file.

sdstri ngs is mainly useful for determining the contents of nontext files.
Options

Table 6.7  sdstrings Options

Option Description

-f | --print-file-name Prints the name of the file before each string.

-mn-len | -n nmin-len | Prints sequences of characters that are at least i n-l en

--bytes=nin-len characters long, instead of the default 4.

-t radix | --radix=radix Prints the offset within the file before each string. The single
character argument specifies the radix of the offset:'o’ for octal,
‘x’ for hexadecimal, or ‘d’ for decimal.

sdstrings 6-11



6.7 sdobjdump

Format
sdobj dunp
[ -d | --disassenble ]
[ -f | --file-headers ]
[ -] section | --section=section ]
[ -t | --syns ]
[ -h | --section-headers ]

[ --start-address=address ]
[ --stop-address=address ]
[ --help ]
objfile..

Description

The sdobjdump utility displays information about one or more object files.
The options control what particular information to display. This
information is most useful to programmers who are working on the
compilation tools, as opposed to programmers who just want their
program to compile and work.

obj fil e... are the object files to be examined. When you specify
archives, objdump shows information on each of the member object files.

Options

The long and short forms of options, shown here as alternatives, are
equivalent. At least one option from the list must be given.

6-12 Utilities



Table 6.8

sdobjdump Options

Option

Description

-d | --disassenbl e

Displays the assembler mnemonics for the machine instructions from
obj file. This option only disassembles those sections which are
expected to contain instructions.

-f | --fil e-header

Displays summary information from the overall header of each of the
obj fil e files.

-h| --section-header |
- - header

Displays summary information from the section headers of the object
file. You may relocate file segments to nonstandard addresses, for
example by using the - Ttext, - Tdat a, or - Tbss options to | d.

--hel p

Prints a summary of the options to objdump and exit

-j nare | --section=nane

Displays information only for named section.

--start-
addr ess=addr ess

Starts displaying data at the specified address. This affects the output
of the -d, -r and - s options.

- - st op- addr ess=addr ess

Stops displaying data at the specified address. This affects the output
of the -d, -r and - s options.

-t | --syns

Prints the symbol table entries of the file. This is similar to the
information provided by the ‘nm program.

sdobjdump

6-13




6.8 sdobjcopy

6-14

Format
sdobj copy
[ -O bfdnane | --output-target=bfdnane ]
[ -b byte | --byte=byte ]
[ -i interleave | --interleave=interleave ]

[ --gap-fill=val ]
[ --pad-to=address ]
[ --set-start=val ] [ --adjust-start=incr ]
infile [outfile]
Description

The sdobjcopy utility copies the contents of an object file to another
object file. It uses the GNU BFD Library to read and write the object files.
It can write the destination object file in a format different from that of the
source object file. The exact behavior of sdobj copy is controlled by
command-line options.

sdobj copy generates S-records if you specify an output target of ‘srec’
(use - O srec’).

sdobj copy generates binary output if you specify an output target of
‘bi nary’ (use ‘- O bi nary’).

sdobj copy generates a raw binary file if you specify an output target of
‘binary’ (e.g., use ‘- O bi nary’). When sdobj copy generates a raw binary
file, it will essentially produce a memory dump of the contents of the
input object file. All symbols and relocation information will be discarded.
The memory dump will start at the load address of the lowest section
copied into the output file.

When generating an S-record or a raw binary file, it may be helpful to
use ‘- S to remove sections containing debugging information. In some

Utilities



cases *

- R will be useful to remove sections which contain information

which is not needed by the binary file.

infile

outfile

The source and output files, respectively. If you do not specify outfil e,
obj copy creates a temporary file and destructively renames the result
with the name of infil e.

Options
Table 6.9  sdobjcopy Options
Option Description
-O bfdname | Write the output file using the object format bfdname.

- -out put - t ar get =bfdname

-b byte | --byte=byte

Keep only every byteth byte of the input file (header data is not
affected). byte can be in the range from 0 to interleave-1, where
interleave is given by the -i or --i nter| eave option, or the default
of 4. This option is useful for creating files to program ROM. It is
typically used with an srec output target.

-i interleave|--
interl eave=i nt erl eave

Copy only one out of every interleave bytes. Select which byte to copy
with the - b or - - byt e option. The default is 4. obj copy ignores this
option if you do not specify either -b or --byte.

--gap-fill wval

Fill gaps between sections with val. This operation applies to the load
address (LMA) of the sections. It is done by increasing the size of the
section with the lower address, and filling in the extra space created
with val .

--pad-to address

Pad the output file up to the load address addr ess by increasing the
size of the last section. The extra space is filled in with the value
specified by --gap-fill (default zero).

--set-start val

Set the address of the new file to val . Not all object file formats
support setting the start address.

sdobjcopy

6-15



6-16 Utilities



Chapter 7
ZISIM Simulator

This chapter describes the SDK ZSP architecture simulator.

The ZSP SDK functional-accurate simulator, ZISIM, simulates the
behavior of the LSI40xZ series of ZSP devices, ZSP400, and ZSPG2
architecture-based designs at the architectural level, including the
memory model, the operand register file, and the control register file.

7.1 Using ZISIM

ZSIM can be accessed as a target through the debugger or as a stand-
alone program. This chapter describes the interface to ZISIM as a stand-
alone program. ZISIM can be used in batch mode or interactively, as
described in the following subsections. The commands supported in both
modes of operation are described in Section 7.2, “ZISIM Commands,”
page 7-4.

7.1.1 Batch Mode

The simulator can be invoked in batch mode from the command line
using the - exec option, as shown below.

% zi si 00 executeable file -exec [options] for ZSP400
architecture

% zi sinmg2 executabl e file -exec [options] for ZSP&
architecture

The simulator can also be invoked in batch mode using a script file
containing ZSIM commands that load, execute, and gather results for a
specified executable. Script files may contain any valid ZISIM commands.
Comments must be preceded by the comment specifier (#). ZISIM
ignores all commands between the # character and the end of line.
ZISIM also ignores empty lines.

ZSP SDK Software Development Kit 7-1



7.1.2

7-2

A simple script file that turns-on instruction tracing and then executes the
program t est. exe is shown below.

| oad test.exe
enabl e trace wite
run 100000

exit

Assuming the file bat ch. scr contains the commands shown above, you
can generate a trace file for t est . exe as follows:

% zi si 00 -s batch.scr > test.trace (Unix for ZSP400
architecture)

%zisinmg2 -s batch.scr > test.trace (hix for ZSP&
architecture)

C\zisin00 -s batch.scr > test.trace (Wndows for ZSP400
architecture)

C\zising2 -s batch.scr > test.trace (Wndows for ZSPQ
architecture)

Refer also to Section 7.2.21, “script,” page 7-15.

Interactive Mode

In interactive mode, ZISIM is invoked from the shell using the following
command:

zi simd00 [executable file] [options]
zisimg?2 [executable_file] options

An executable file may or may not be specified, followed by zero or more
command-line options separated by spaces The executable file is a ZSP
binary file generated using the SDK compiler, assembler, and linker tools,
as explained in other chapters of this document. ZISIM processes the
source file according to the specified command-line options (refer to
Table 7.1). If no options are specified, ZISIM initializes itself, then
prompts the user with the ZISIM prompt:

zi sin{1}>

The simulator is now ready to accept and respond to ZISIM commands,
which are described in Section 7.2, “ZISIM Commands,”. An executable
file may be loaded from within ZISIM using the | oad exe command.

ZISIM Simulator



An example interactive simulation session is described in Section 7.4,
“Example Session Using ZISIM”. Refer also to the description of using
ZISIM use as the target of the SDK’s Debugger in Section 9.2.1,
“Functional-Accurate Simulator Connection.”

Table 7.1  ZISIM Command-line Options
Option Description
-¢c NUM Limits number of executed instructions to NUM By default, NUM =
2000000000. Execution continues until a breakpoint is reached or the
number of executed instructions hit the limit. Use this option to ensure
termination of an algorithm.
-h Prints brief usage summary.

-i  mode_register=value

Initializes an architectural control (mode) register with specified value.
Note that the control register is written without its usual percent (%
sign, and there are no spaces around the equal sign (=). For example,
the option to set %SMODE control register is:

-i snode=0x1234.

The option to set r0O register is

-i r0=0x9876.

Refer to Appendix B, "ZSP400 Control Registers" for information on
ZSP400 core-based device control registers.

-m Enables memory trace. ZISIM prints a trace of the execution program
to standard output whenever a write to a memory occurs. The format
of this output is similar to option -t.

- hoi boot Fetches instructions from external ROM space. If you do not specify

this option, instructions are fetched from internal ROM space. ROM is
mapped from 0xf800 to Oxffff. This option is specific to zisim400.

-radi x {dec| hex}

Displays data in specified radix, either decimal or hexadecimal.

-reg

Enables register trace. All the architectural registers will be displayed
after executing an instruction.

-s sourcefile

Reads all the simulator commands from file.

-t

Enables flow trace. ZISIM prints a trace of the executing program to
standard output. The information printed includes the instruction
sequence number, instruction address, the disassembled instruction
and operands, and the resulting architectural state. Example output for
the -t option is shown in Section 7.4, “Example Session Using ZISIM,”
page 7-24.

- exec

Invokes the simulator in noninteractive mode.

Prints version number and exit.

Using ZISIM 7-3




7.2 ZISIM Commands

This section describes commands recognized by the ZISIM command
line. Table 7.2 provides a brief summary of commands. The output of any
ZISIM command can be sent to a file using the standard redirection
identifier (>). For example, the command show attr > fil enane dumps
the output of the show command to fi | enane.

Table 7.2 ZISIM Command Summary
Command | Modifier | Argument Description
alias - [t ag command_sequence] Creates alias (t ag) for command
sequence.
cl ear br eak breakpoint_number Clears specified breakpoint.
dnem {int | ext} addr si ze Clears internal or external data memory.
i mem {int | ext} addr size Clears internal or external instruction
memory.
stats - Clears statistics information.
di sabl e br eak breakpoint Disables specified breakpoint.
trace {mem|reg | wite} Disables run-time instruction tracing.
dunp dnem {int |ext}fil ename addr si ze | Dumps internal or external data memory
range to a text file.
i mem {int |ext}fil ename addr si ze | Dumps internal or external instruction
memory range to a text file.
enabl e br eak breakpoint_number Enables breakpoint.
trace {mem|reg | wite} Enables run-time instruction tracing.
exit - - Exits simulation session.
fill dnem {int | ext} addr si ze val ue Fills internal/external data memory
range with val ue.
i mem {int | ext} addr size val ue Fills internal/external instruction memory

range with val ue.

(Sheet 1 of 3)

7-4

ZISIM Simulator




Table 7.2

ZISIM Command Summary (Cont.)

Command | Modifier | Argument Description
hel p - {cat egory | conmand} Prints list of commands in a category or
command usage.
| oad dnem {int |ext}fil enane addr si ze | Loads internal/external data memory
from file.
exe filename Loads ZSP executable into instruction
memory from file.
i mem {int |ext}fil ename addr si ze | Loads internal/external instruction
memory from file.
reset - {hard | soft} Resets simulator.
run - [number _of _i nstructi ons] Runs for specified number of simulation
instructions.
scri pt - fil ename Loads and execute ZISIM script file.
set attr {history | radi x | run} val ue Assigns val ue to specified attribute.
br eak pc addr Creates a new breakpoint at the
specified PC address.
br eak synbol | abel Creates a new breakpoint at the
specified label.
reg regi ster val ue Assigns val ue to specified register.

(Sheet 2 of 3)

ZISIM Commands

7-5




Table 7.2 ZISIM Command Summary (Cont.)
Command | Modifier | Argument Description
show attr {run| history | radi x | versi on} | Shows value of the specified attribute.
bits register Displays the bit-level states for the
specified register.
br eak - Displays list of defined breakpoints.
dnem {int | ext} addr size Shows contents of a region of
internal/external data memory.
i mem {int | ext} addr si ze Shows contents of a region of
internal/external instruction memory.
reg {category | reg}... Shows contents of register or register
set.
stats [opcode] Shows current run-time statistics.
trace - Shows trace information during
simulation.
step - - Advances simulation by one instruction.
Same as run 1.
unal i as - alias Deletes al i as.

(Sheet 3 of 3)

Table 7.3 ZISIM400 specific commands
Command | Modifier | Argument Description
set size [dmeml|imem] size Set internal instruction or internal data
memory size starting from 0. Default
size is maximum value of 0xf800 words.
show size [dmemlimem] Show size of internal instruction or data
memory

7-6

ZISIM Simulator




Table 7.4  ZISIMG2 specific commands

Command

Modifier | Argument

Description

set

size

[dmem|imem] [int|ext] beg_value
end_value

Set the size of internal/external
instruction or data memory starting
from beg_value to end_value including
the boundary. Each memory block
could overlap one another. Default
value for each of them is from 0 to
O0xOOffffff words.

show

size

[dmem|imem] [int|ext]

Show the current size of internal/exter-
nal instruction or data memory.

7.2.1 alias

The al i as command allows the user to create ZISIM commands by
aliasing new commands to existing commands or sequences of
commands. Sequences of commands must be contained in quotes and
separated by semicolons. Issuing the al i as command without

arguments shows all current aliases.

Format

alias tag conmmand_sequence

ZISIM Commands

7-7



Examples

zisin{32} alias rO showreg r0
zisin{32} alias adv “step ; show pipe ; showreg gpr”
zisin{32} alias

adv step ; show pipe ; show reg gpr
ro show reg r0
Zi si n{ 33}

7.2.2 clear break

This command deletes a breakpoint from the current list of defined
breakpoints. The breakpoint number is assigned when a breakpoint is
set. Use the show break command to display a list of breakpoints.

Format

clear break breakpoi nt_nunber

Example

zisin{32} clear break 5

7.2.3 clear dmem

This command clears the contents of internal or external data memory.
User specifies internal or external memory, the starting address, and the
size of the region to clear.

Format

clear dmem{int|ext} addr size

Example

zisin{32} clear dnemint 0x1000 0x0100

7.2.4 clear imem

7-8

This command clears the contents of internal or external instruction
memory. User specifies internal or external memory, the starting
address, and the size of the region to clear.

Format

clear imem{int|ext} addr size

ZISIM Simulator



Example
zi sin{32} clear inemext 0x7000 0x1000
7.2.5 clear stats
This command clears all run-time statistic information.
Format
clear stats

7.2.6 disable break

This command disables a breakpoint from the list of active breakpoints.
Use the show br eak command to display a list of current breakpoints.

Format
di sabl e break breakpoi nt _nunber
Example
Zi sin{32} disable break 4
7.2.7 disable trace

This command disables specified trace. See the enabl e t race command
for a description of the trace types.

Format
disable trace {nemjreg|wite}

Examples

zi si {32} disable trace pipe
Zi sin{32} disable trace reg

7.2.8 dump dmem
This command generates a text file representing the contents of the
specified address range of internal or external data memory. The user

specifies internal or external memory, the starting address, and the size
of the region to dump.

ZISIM Commands 7-9



Format

dunp dmem{int|ext} fil ename addr size

Example

zi sin{32} dunp dmemext data.dat 0x0000 Oxffff

% cat dat a. dat
0000 /* 0x0000 */

0000 /*
0000 /*
0000 /*
0000 /*
0000 /*
0000 /*
28e2 /*
2féa /*
325d  /*

%

7.2.9 dump imem

7-10

This command generates a text file representing the contents of the
specified address range of internal or external instruction memory. The
user specifies internal or external memory, the starting address, and the

0x0001
0x0002
0x0003
0x0004
0x0005
0x0006

0x00f d
0x00f e
0xO00f f

*/
*/
*/
*/
*/
*/

*/
*/
*/

size of the region to dump.

Format

dunp inem{int|ext} fil enane addr size

Example

zisin{32} dunp imemint inmemdat 0x1000 0x30

%cat i nem dat

0000 /*
0000 /*
0000 /*
0000 /*
0000 /*
0000 /*
0000 /*
0000 /*

%

ZISIM Simulator

0x1000
0x1001
0x1002
0x1003

0x102c
0x102d
0x102e
0x102f



7.2.10 enable break

This command enables a breakpoint from the current list of defined
breakpoints. Use the show br eak command to display a list of current
breakpoints.

Format
enabl e break breakpoi nt _nunber
Example

zisin{32} enable break 1

7.2.11 enable trace

7.2.12 exit

This command enables a predefined trace type. There are three types of
predefined run-time tracing. Run-time traces generate text output
instruction by instruction. The three trace types are:

* nmem

Displays address and data for any memory location which is
updated. Information is generated after the instruction is executed.

* reg
Displays all registers and register values every instruction.
* wite

Displays architectural state changes associated with memory or
registers for each instruction.

Format

enabl e trace {nemreg|wite}

Example

Zi sin{32} enable trace wite

This command terminates the current simulation session.
Format

exit

ZISIM Commands 7-11



7.2.13 fill dmem

This command fills internal or external data memory range with specified
value. User specifies internal or external memory, the starting address,
and the size of the region to fill.

Format
fill dnem{int|ext} addr size val ue

Example

zisin{32} fill dmemext 0x1000 Oxff 0x0505

7.2.14 fill imem

7.2.15 help

7-12

This command allows you to specify internal or external memory, the
starting address, and the size of the region to fill.

Format

fill inem{int|ext} addr size val ue
Example

zisin{32} fill inmemext 0x1000 Oxff O0x0505

This command displays help information. Help is available for individual
commands as well as for command categories. Specifying a command
displays the description and usage for that command. Requesting help
for a specified category displays the instructions associated with that
category. Commands are categorized according to their function (for
instance, all show commands).

Issuing the hel p command with no other specifiers displays help on the
command categories.

Format

hel p [ cat egor y| comrmand]

Examples

zi sin{32} help

ZISIM Simulator



zisin{32} help all
zi si {32} hel p show
zi sin{32} hel p show reg

7.2.16 load dmem

This command loads internal or external data memory from specified text
file. User specifies internal or external memory, the starting address, and
the size of the region to load. The format of the text file should be the
same as the file produced by the dunp command. The first column
contains the data that will be loaded, with each data on a single line.
Data must be in hex format with out Ox prefix. Comments must be
enclosed by /* */ "

Format

load dnrem{int|ext} fil ename addr size
Example

zisin{32} load dmemint data.dat 0x1000 OxOf f f
The output format of the file is:

Otat dat a. dat

2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a0of /* 0x0004 */
80cO /* 0x0005 */

7.2.17 load exe

This command loads a valid ZSP executable into instruction memory.
This command performs the same function as specifying the executable
filename when ZISIM is invoked. Without the filename specified, this
command reloads the previous executable program into memory.

Format

| oad exe {fil enane}

ZISIM Commands 7-13



Example

zi sin{32} | oad exe test.exe
or
zisin{32} load test.exe

7.2.18 load imem

7.2.19 reset

7-14

This command loads internal or external instruction memory from
specified text file. You must specify internal or external memory, the
starting address, and the size of the region to load. You must ensure that
the format of the text file is the same as the file produced by the dunp
command. The first column contains the data that will be loaded, with
each data on a single line. Data must be

in hex format without the Ox prefix. Comments must be enclosed

by 1* */ "

Format

load imtem{int|ext} fil ename addr size

Example

%cat inst.txt

2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a0of /* 0x0004 */
80cO /* 0x0005 */
bc4c /* 0x0006 */
6f4c /* 0x0007 */

zisin{32} load imemint inst.txt 0x1000 8

This command resets the state of the simulator. A soft reset initializes all
aspects of the simulator except the memory. A hard reset also initializes
memories. Issuing the reset command without options performs a soft
reset.

Format

reset [soft]|hard]

ZISIM Simulator



7.2.20 run

7.2.21 script

Examples

Zi si {32} reset soft
zisin{32} reset hard

Note that the reset command does not reload the program into memory.
In order to restart the program, perform one of the following sequence of
commands:

Zi si {32} reset
zisin{32} set reg pc <start_address>

or

zisin{32} reset hard; |oad
zi sin{33} |oad

Note: zising2 doesn’t support reset soft feature.

This command advances the simulator the specified number of
instructions. The simulator uses the value of the run attribute if no
instruction count is specified. Simulation halts if instruction count is
reached, the maximum instruction count is reached, or a system halt
occurs.

Format
run [nunber _of _instructions]
Examples

zisin{32} run
zisin{32} run 100

This command loads and processes the script file. Script files may
contain any valid ZISIM commands. Comments are allowed in the script
file; the comment specifier is the # character. ZISIM ignores all
commands between the # character and the end of line. Empty lines are
also ignored.

Format

ZISIM Commands 7-15



script filenane
Example
zisin{32} script standard.scr

Sample Script File
A simple script is shown below.

# This exanpl e script denonstrates howto turn on
# instruction tracing using a command.

| oad test.exe

enabl e trace wite

run

exit

7.2.22 set attr

The set attr command allows you to set three internal ZISIM variables.
Table 7.5 shows the configurable ZISIM attributes.

Table 7.5  Configurable ZISIM Attributes

Attribute Value Description

hi story any integer Number of commands to maintain in history
buffer.

radi x [int | hex] Radix (integer or hexadecimal) used to generate
output.

run any integer Default instruction count for the run command
(when issuing the run command with no
argument). If undefined, the default value of the
run attribute is 2000000000.

Format

set attr [history|radix|run] val ue

Examples

zisin{32} set attr run 1000
Zisin{32} set attr radix hex

7-16 ZISIM Simulator



7.2.23 set break

This command creates and enables a new breakpoint at specified
address. Execution halts when the PC reaches the specified address.
When a new breakpoint is created, ZISIM tags it with a breakpoint
number which is used for other breakpoint commands (use the show
break command to view a list of current breakpoints).

Format

set break pc addr
set break synbol | abel

Example
zi sin{2} set break pc 0x0010
Breakpoint 1 on PC at address 0x0010

zisin{3} set break synbol main
Breakpoint 2 on PC at address Oxf9b9 of main

7.2.24 set reg
This command assigns a value to the specified register.
Format

set reg regi ster val ue

Example

zisin{32} set reg r0 0x1234

7.2.25 set size

7.2.25.1 zisim400

This command sets the size of internal data memory or instruction
memory. The default size of internal data or instruction memory is 63488
words (62K words), which is also the maximum size that can be set.

This command does not apply to external memory. (The simulator has
1M words for each external instruction and external data memory.)

Format

set size {dnenjinen} size

ZISIM Commands 7-17



7.2.25.2 zisimg2

Examples
Zi si {32} set size dnem 0x4000

This command sets the size of internal data memory to 16 Kwords.
Zi sin{32} set size i nem 0x4000

This command sets the size of internal instruction memory to 16 Kwords

This command sets the size of internal/external data memory or
instruction memory. The default size of internal/external data or
instruction memory is Oxffffffwords (16M words) starting from 0, which is
also the maximum size that can be set.

This command does not apply to external memory. (The simulator has
1M words for each external instruction and external data memory.)

Format
set size {dnenjimen} {int|ext} beg val ue end _val ue

Exanpl es
zisin{32} set size dnmemint O Oxffff

This command sets the size of internal data memory to 16 Kwords.

zisin{32} set size imemint O Oxffff

This command sets the size of internal instruction memory to 16 Kwords.

7.2.26 show attr

7-18

This command shows the value of the specified attribute. You can view
the value of the three attributes which are configurable with the set attr
command as well as view version information for ZISIM.

Format

show attr {run| history|radi x| versi on}

Example

ZISIM Simulator



zisin{1} show attr run
zisim{2} show attr history
zi sin{3} show attr radix
zi sin{4} show attr version

7.2.27 show bits

This command displays the bit field values for the specified register. Do
not use the % specifier for control registers.

Format

show bits register

Example

Zi si {32} show bits hwfl ag
hwf | ag = 0x0000

er:

ex:

ir:

z:

gt:

ge:

c:

gsv:

Sv:

gv:

V:

[cNeololololololololoNe)

7.2.28 show break

This command displays the list of currently defined breakpoints.
Format

show br eak

Example

zi si {32} show br eak

Num | D Addr ess Status
2 PC 0x2000 Active
1 PC 0xf9b9 Active

ZISIM Commands 7-19



7.2.29 show dmem

This command displays a range of internal or external data memory. You
must specify internal or external memory, the starting address, and the
size of the region to display. The default settings for the show dnem
command are shown in Table 7.6.

Table 7.6 Default Arguments for show dmem

Argument | Value

{int | ext} int

addr 0x0

size 16
Format

show dmem {int|ext} addr size
Example
Zi si {32} show dmemint Oxf000 0x10
For zisinmg2, user can use a synbol instead of an absol ute

address val ue.
zi sin{1} show dnemint arrayl 20

7.2.30 show imem

7-20

This command displays a range of internal or external instruction
memory. User specifies internal or external memory, the starting
address, and the size of the region to show. The size and addr fields may
be omitted, in which case defaults are used. The default settings for the
showi nemcommand are shown in Table 7.7.

Table 7.7 Default Arguments for show imem

Argument | Value

{int | ext} int
addr 0x0
size 16

ZISIM Simulator



Format

show imem{int|ext} [addr] [size]
Example

zi si {32} show imemint Oxf000 0x10

For zisinmg2, user can use a synbol instead of an absol ute
addr ess val ue.
zi sin{1} showinemint foo_function 20

7.2.31 show reg

This command displays the value of a specified register or the value of
a category of registers. More than one category and/or register can be
specified. The register categories are:
* gpr

All general purpose registers, r0-ri15.
e cfg

All control registers (such as %smode and %hwflag). Do not include
the percent sign (%) in the register name.

e addr

All address and index registers for the ZSPG2 architecture. Thus, it
is specific for zisimg2.

Format

show reg {category|register} ...

Examples

zi si {32} show reg

zi sin{32} show gpr

zi sin{32} show cfg r0

zi sin{32} show gpr hwfl ag snode

ZISIM Commands 7-21



7.2.32 show size

7.2.32.1 zisim400

7.2.32.2 zisimg2

This command shows the size of internal data or instruction memory. The
output is not affected by the radix attribute.

Format
show si ze {dmenji men
Examples

zi sin{32} show si ze dnem
zi sin{32} show size i nem

This command shows the size of internal/external data or instruction
memory. The output is not affected by the radix attribute.

Format
show si ze {dmenjinen}{int|ext}
Examples

zi sin{32} show size dnemi nt
zi sin{32} show size inemint

7.2.33 show stats

7-22

This command displays run-time statistics collected by ZISIM. If no
argument is specified, ZISIM displays overall statistical information. If the
opcode argument is specified, ZISIM displays instruction opcode
statistics.

Format

show stats [ opcode]

Examples

zi si {32} show stats
zi sin{32} show stats opcode

ZISIM Simulator



7.2.34 show trace

This command shows currently enabled/disabled trace information.
Traces currently set to ON are enabled during simulation.

Format

show trace

Example

zi si {32} show trace

***(info) Supported trace infornation:
- Instruction trace: GF

- Register trace: aF

- Menory trace: aF

Zisin{33}> enable trace wite
***(info) Instruction trace is ON
zi sin{34}> show trace

***(info) Supported trace infornation:
- Instruction trace: ON

- Register trace: aF

- Menory trace: CF
7.2.35 step
This command single-steps the simulator. Issuing the st ep command is
equivalent to issuing the command run 1.
Format
step
Example
zi sin{32} step
7.2.36 unalias

This command deletes an alias. (Use the al i as command to display a
list of currently defined aliases.)

Format

unalias alias

Example

ZISIM Commands 7-23



zisin{32} unalias adv

7.3 1/0 Port Usage

ZISIM400 models serial /0 as a memory-mapped device. Programs
perform terminal I/O by reading from and writing to the appropriate
address locations. The simulator defines two serial ports and one host
processor interface (HPI) port. Each port has a transmit buffer and a
receive buffer. Table 7.8 shows the memory addresses and
corresponding files for the 1/0 ports for the LSI402ZX, LSI403Z, and
ZSP400-core based devices.

Table 7.8  1/0O Device Memory Map and Associated Files

Read Write
I/O Port Address File Address File
Serial Port 0 0xF901 spOi n 0xF900 spOout
Serial Port 1 0xFAO1 splin 0xFAQ0 splout
Host Interface Port | OXFBO1 hpiin 0xFBOO hpi out

The format of input and output files is the same. Data must be in decimal
digits, with each data on a single line. If the input file is not present in
the current running directory at the time of the request, the simulator will
print an error message to standard output and exit.

7.4 Example Session Using ZISIM

7-24

This section contains an example simulation session using ZISIM in
interactive mode.

In the example simulation, deno. exe is invoked using the -t (enable
trace) command-line option. Trace information is displayed in five fields:

(0) 0x2000 2cfb novl r12, Ooxfb I r12 = Ox00fb
* The first field is the instruction sequence number (in parenthesis).

ZISIM Simulator




* The second field is the program counter (PC) of the executed
instruction.

* The third field is the instruction opcode.
* The fourth field is the disassembled instruction, including operands.

¢ The fifth field describes the result of the executed instruction.

The trace shown in this example is for the ZSP400 core. The text is
linked and loaded at 0x2000.

Example Session Using ZISIM 7-25



(shell pronpt) zisin00 deno. exe -t

RS RS S SRS SRS E S SRR SRR SRS EEEEEEEEEEEEEEEEEE S

ZISIM 1. 206
ZSP400
Instruction Set S mlator

LS Logic

IR R RS S SRS SRS SRR SRR EEEEEEEEEEEEEEEEEEEEEEE S

***(info) Starting address: 0x2000

.text : Loading to INT-INST nenory ... 0x2000 -> 0x2950 (0x0951)
.data : Loading to | NT-DATA nenory ... 0x0001 -> Ox005f (0x005f)
Loadi ng "deno. exe" successful ly.

zisin{1}_

If you do not specify a test for initialization, you can load a test from the
ZISIM command line. Check the contents of the instruction memory to
confirm proper loading of the test. These steps are demonstrated below.

zi si{1}show i nemint 0x2000 4

0x2000 Ox2cfb novl r12, Oxfb
0x2001 0x3cf7 novh r12, Oxf7
0x2002 Oxa6d0 nov r13, 0xO
0x2003  0x2460 novl r4, 0x60
zisin{2}> _

Instruction fetch begins at the entry point you specify in an executable
program. You can change this before execution begins by setting the PC
to the desired value using the set reg command.

The simulator output below demonstrates use of the PC breakpoint: a
breakpoint is set for address 0x10 and the simulator advances until the
PC reaches address 0x10.

7-26 ZISIM Simulator



zisin{3}> set break pc 0x2050
Breakpoint 1 on PC at address 0x2050
zi sin{4}> set break synbol nain
Breakpoi nt 2 on

zi sin{5}> run
(0) 0x2000 2cfb novl r12, oxfb ! r12 = 0x00fb
(1) 0x2001 3cf7 novh r12, oxf7 ! r12 = oxf7fb
(2) 0x2002 a6d0 mov ri3, oxo0 ! ri13 = 0x0000
(3) 0x2003 2460 novl r4, 0x60 ! r4 = 0x0060
(4) 0x2004 3400 rovh r4, 0x0 ! r4 = 0x0060
(5) 0x2005 bc54 nov r5, r4 ! r5 = 0x0060
(6) 0x2006 a051 add r5, Ox1 ! hwfl ag = 0x0030
(6) 0x2006 a051 add r5, 0x1 ! r5 = 0x0061
(7) 0x2007 6054 st r5 r4, 0 I | NT- DATA 0x0060] = 0x0061
(8) 0x2008 bbld nov rpc, ri3 ! rpc = 0x0000
(9) 0x2009 2510 novl r5, 0x10 ! r5 = 0x0010
(10) 0x200a 3520 movh r5, 0x20 ! r5 = 0x2010
(12) 0x200c a750 call r5 ! rpc = 0x200d
(PCBREAKPANT #2)................ I nstruction Count =000013 PC=0x2010
zi si n{6}> show reg gpr

r0 = 0x0000 r1 = 0x0000

r2 = 0x0000 r3 = 0x0000

r4 = 0x0060 r5 = 0x2010

r6 = 0x0000 r7 = 0x0000

r8 = 0x0000 r9 = 0x0000

r10 = 0x0000 ril = 0x0000

ri2 = Oxf7fb r13 = 0x0000

r14 = 0x0000 r15 = 0x0000

PC at address 0x2010 of main

zisin{7}> disable trace wite

zisin{8}> run
Hello Worl d!

After the final command,

flow trace.

the simulator will no longer print the instruction

I nstructi on Count =000673 PC=0x200e

Execution halts when a breakpoint is reached, a system halt occurs, or
the maximum instruction count is reached. A system halt refers to setting
halt mode as defined by the %smode control register. Execution statistic

information can be seen by using show st at s command.

zi sin{9}> show stats
i nstructions executed

673
88
65
23
56
37
19

load instructions ( 13.08%
- single ( 9.66%
- doubl e ( 3.42%
store instructions ( 8.32%
- single ( 5.50%
- doubl e ( 2.82%

Example Session Using ZISIM

7-27



104 discontinuities ( 15.45%
15 - calls ( 2.23%
63 - conditional ( 9.36%
10 - agnx ( 1.49%
25 mspredicts ( 39.68% of conditional branch)

Terminate the simulation session with the exit command.

zisin{10}> exit
***(jnfo) Exiting ZISIM

7-28 ZISIM Simulator



Chapter 8
ZSIM Simulator

This chapter describes the ZSP SDK cycle-accurate architecture
simulator.

The ZSP SDK simulator ZSIM is a cycle-accurate simulator for ZSP400
and ZSPG2 architecture-based devices. ZSIM models the architectural
features necessary for cycle-by-cycle tracing of architectural state,
including the execution pipeline, instruction and data caches, internal and
external instruction/data memories, and register files.

8.1 Using ZSIM

ZSIM can be accessed as a target through the debugger or as a stand-
alone program. This chapter describes the interface to ZSIM as a stand-
alone program. ZSIM can be used in batch mode or interactively, as
described in the following subsections. The commands supported in both
modes of operation are described in Section 8.2, “ZSIM Commands,”
page 8-5.

8.1.1 Batch Mode

The simulator can be invoked in batch mode from the command line
using the - exec option, as shown below.

% zsi nj 400/ g2] executeabl e file -exec [options]

The simulator can also be invoked in batch mode using a script file
containing ZSIM commands that load, execute, and gather results for a
specified executable. Script files may contain any valid ZSIM commands.
Comments are allowed and must be preceded by the comment specifier
(#). ZSIM ignores all commands between the # character and the end of
line. ZSIM also ignores empty lines.

ZSP SDK Software Development Kit 8-1



8.1.2

8-2

A simple script file that turns on instruction tracing and then executes the
program t est. exe is shown below.

| oad test.exe
enabl e trace wite
run 100000

exit

Assuming the file bat ch. scr contains the commands shown above, a
trace file for t est . exe could be generated as follows:

% zsi 00 -s batch.scr > test.trace (Unix for ZSP400
architecture)

%zsing2 -s batch.scr > test.trace (Lhix for ZSP&Q
architecture)

C\zsiml00 -s batch.scr > test.trace (Wndows for ZSP400
architecture)

C\zsinmg2 -s batch.scr > test.trace (Wndows for ZSP@
architecture)

Refer also to Section 8.2.26, “script,” page 8-21.

Interactive Mode

In interactive mode, ZSIM is invoked from the command line using the
following command:

For ZSP400 architecture:

zsi mi00 [executable_file] [options]
For ZSPG2 architecture:

zsinmg2 [executeable file] [options]

You may optionally specify an executable file, followed by zero or more
command-line options, which must be separated by spaces

The executable file is a ZSP binary file generated using the SDK
compiler, assembler, and linker tools, as explained in other chapters of
this document. ZSIM processes the source file according to the specified
command-line options (refer to Table 8.1).

If no options are specified, ZSIM initializes itself, then prompts the user
with the ZSIM prompt:

ZSIM Simulator



zsin{1}>

The simulator is now ready to accept and respond to ZSIM commands,
which are described in Section 8.2, “ZSIM Commands” on page 8-5. An
executable file may be loaded from within ZSIM using the | oad exe
command.

An example interactive simulation session is described in Section 8.4,
“Example Session Using ZSIM” on page 8-34. Refer also to the
description of using ZSIM use as the target of the SDK’s Debugger in
Section 9.2.2, “Cycle-Accurate Simulator Connection,” page 9-4.

Table 8.1  ZSIM Command-line Options

Option Description

- exec Invokes the simulator in noninteractive mode.

-C num Specifies maximum cycle count. Execution aborted after num cycles.
-h Prints brief usage summary.

-i mode_regi st er=val ue

Initializes an architectural control (mode) register with specified value.
The control register is written without its usual percent (% sign, and
there are no spaces around the equal sign (=). For example, the option
to set %smode control register is:

-i  snode=0x1234.

The option to set r0 register is

-1 r0=0x9876.

Refer to Appendix B, "ZSP400 Control Registers" for information on
ZSP400 core-based device control registers or Appendix D“ZSPG2
Control Registers”

-m Turns on memory trace.

-p Turns on pipeline trace.

- pf Turns on all profile information.

-pfiu Turns on instruction unit profile information.
- pf pi pe Turns on pipeline unit profile information.

(Sheet 1 of 2)

Using ZSIM 8-3



Table 8.1 ZSIM Command-line Options (Cont.)

Option Description
-q Suppresses startup banner.
-radi x {dec | hex} Displays data in the specified radix, either decimal (dec) or

hexadecimal (hex).

-reg Turns on register trace.

-s sourcefile Executes the specified script file following initialization.
-t Turns on instruction trace.

-V Prints ZSIM version number.

(Sheet 2 of 2)

Table 8.2 Command-line Options for zsim400

Options Description

-wed num Sets EXT-DATA memory wait state to be num Default is 1.

-wei num Sets EXT-INST memory wait state to be num Default is 1.
-sid num Sets INT-DATA memory size to be num Default is 63488 words.
-sii num Sets INT-INST memory size to be num Default is 63488 words.

-menpcr num | Sets the MEMPCR address to be num Default is 0xf807.

- honenpcr Indicates that the system does not have MEMPCR.

- noi boot Sets the IBOOT signal LOW to boot from external ROM. If this option is not specified,
instructions are fetched from internal ROM space. ROM is mapped from 0xf800 to
OXxffff.

- pfdu Turns on data unit profile information.

8-4 ZSIM Simulator



Table 8.3 Command-line Options for zsimg2

Options Description
-pflsu Turn on Load Store Unit profile information
-tic Turn on instruction cache trace every cycle

-svtadd ADDR

Set system vector table address to be ADDR

-idealmss

Use ideal memory subsystem with zero delay for internal memory and no check-
ing for banking conflict between 2 data access ports.

-bimlib LIBNAME

Use bus interface library LIBNAME to run in co-simulation enviroment such as
SWIFT or CVE Seamless.

-cpilib LIBNAME

Use co-processor library LIBNAME. SDK tools comes with an example G711 co-
processor library called libzcpig711.so on Solaris or libzcpig711.dll on Windows
platform.

8.2 ZSIM Commands

The ZSIM commands are described briefly in Table 8.4 and in detail in
the following subsections.

The output of any ZSIM command can be sent to a file using the
standard redirection identifier (>). For example, the command

show attr > nydi spl ay writes the output of the showcommand in the
file nydi spl ay.

Table 8.4  ZSIM Command Summary

Command | Modifier | Argument Description
alias - [t ag command_sequence] Creates alias (t ag) for command
sequence.

(Sheet 1 of 4)

ZSIM Commands 8-5




Table 8.4

ZSIM Command Summary (Cont.)

Command | Modifier | Argument Description
clear br eak br eakpoi nt _nunber Clears specified breakpoint.
dnem {int | ext} addr size Clears internal or external data memory.
i cache |- Clears instruction cache.
i mem {int | ext} addr size Clears internal or external instruction
memory.
stats - Clears statistic information.
di sabl e br eak br eakpoi nt _nunber Disables specified breakpoint.
profile [[du|iu ] pipe] Disables profile information.
trace {pi pe | reg} Disables run-time tracing.
dunp dnem {int | ext}filenane addr si ze | Dumps internal or external data memory
to a text file fi | ename.
i mem {int | ext}filenane addr si ze | Dumps internal or external instruction
memory to a text file fi | enamne.
enabl e br eak br eakpoi nt _nunber Enables breakpoint.
profile |{iu| pi pe} Enables module profile information.
trace {mem| pi pe | reg | wite| icache}|Enables run-time cycle tracing.
exit - - Exits simulation session.
fill dnem {int | ext} addr size val ue Fills internal/external data memory
segment with val ue.
i mem {int | ext} addr size val ue Fills internal/external instruction
memory segment with val ue.
hel p - {cat egory | command} Prints list of commands in a category or
command usage.
i step - - Advances the simulator by one

instruction.

(Sheet 2 of 4)

8-6

ZSIM Simulator




Table 8.4  ZSIM Command Summary (Cont.)
Command | Modifier | Argument Description
| oad dnem {int | ext}filenane addr Loads internal/external data memory
from file.
exe fil ename Loads ZSP executable into instruction
memory.
i mem {int | ext}filenanme addr Loads internal/external instruction
memory from file.
r eset har d {hard | soft} Reset simulator (hard or soft).
run - [number _of _cycl es] Runs for specified number of simulation
cycles.
script - fil ename Loads and executes ZSIM script file.
set attr {history | radix | run} val ue Assigns value to specified attribute.
br eak pc addr Creates a new breakpoint at the
specified PC address.
br eak symbol | abel Creates a new breakpoint at the
specified label.
reg regi ster value Assigns val ue to specified register.

(Sheet 3 of 4)

ZSIM Commands

8-7




Table 8.4  ZSIM Command Summary (Cont.)
Command | Modifier | Argument Description
show attr {history | radix | run | versi on} | Shows value of the specified attribute.
bits register Displays the bit-level states for the
specified register.
br eak - Shows list of defined breakpoints.
dnem {int | ext}addr size Shows contents of a region of
internal/external data memory.
i cache |- Shows current instruction cache
contents.
i mem {int | ext} addr size Shows contents of a region of
internal/external instruction memory.
pi pe - Shows contents and state of execution
pipeline.
profile | — Displays supported profile information.
reg {category | reg}... Shows contents of register or register
set.
rule - Shows the affected grouping rule in the
current cycle.
si ze {dnem| i men} Shows size of internal data or
instruction memory.
stats - Shows current run-time statistics.
trace - Shows the current status of all tracing
attributes.
step - - Advances simulation by one cycle.
Same as run 1.
unal i as - alias Deletes al i as.

(Sheet 4 of 4)

8-8

ZSIM Simulator




Table 8.5

ZSIM400 specific commands

Command | Modifier Argument Description

clear dcache - Clear data cache.

set delay [edataleinst] num Sets wait state for external memory.
Default for both external data and
instruction memory is 1.

set size [dmemlimem] size Set internal instruction or internal data
memory size starting from 0. Default
size is maximum value of 0xf800
words.

show size [dmemlimem] Show size of internal instruction or
data memory

show dcache - Show data cache contents.

enable profile du Enable profile information on Data
Unit.

disable profile du Disable profile information on Data

Unit.

ZSIM Commands

8-9



Table 8.6

ZSIMG2 specific commands

Command

Modifier

Argument

Description

set

latency

[dmem]imem] [intjext] num

Set wait state latency for inter-
nal/external instruction or data
memory. Default value for internal
memory is 2 and external memory is
5.

show

latency

[dmem|imem] [int|ext]

Show wait state latency for inter-
nal/external instruction or data
memory.

set

size

[dmemlimem] [int|ext] beg_value
end_value

Set the size of internal/external
instruction or data memory starting
from beg_value to end_value includ-
ing the boundary. Each memory block
could overlap one another. Default
value for each of them is from 0 to
O0xOOffffff words.

show

size

[dmemlimem] [int|ext]

Show the current size of inter-
nal/external instruction or data
memory.

show

operands

instruction_number

Show operand values of an instruction
number. Instruction number can be
obtained by looking at the output of
“show pipe” command.

show

stats

grouping

Display the statistic of grouping rule.

enable

profile

Isu

Turn on profile information of Load
Store Unit.

disable

profile

Isu

Turn off profile information of Load
Store Unit.

8-10

ZSIM Simulator




8.2.1 alias

This command creates an alias for a ZSIM command. This command
allows you to customize the ZSIM commands by aliasing new commands
to existing commands or sequences of commands. Sequences of
commands must be contained in quotes and separated by semicolons.
Issuing the al i as command without arguments displays all current
aliases.

Format

alias [tag] [command_sequence]

Examples

zsin{32} alias r0 showreg r0
zsin{32} alias adv “step ; show pipe ; showreg gpr”
zsin{32} alias

adv step ; show pipe ; showreg gpr
ro show reg r0
zsi n{ 33}

8.2.2 clear break

This command deletes a breakpoint from the current list of defined
breakpoints. The breakpoint number is assigned when a breakpoint is
set. Use the show break command to display a list of breakpoints.

Format

clear break breakpoi nt_nunber

Example
zsin{32} clear break 5

8.2.3 clear dcache

This command invalidates the contents of the data cache.
Format

cl ear dcache

ZSIM Commands 8-11



Example
zsin{32} clear dcache

8.2.4 clear dmem

This command clears the contents of internal or external data memory.

User specifies internal or external memory, the starting address, and the
size of the region to clear.

Format

clear dnrem{int|ext} addr size

Example
zsi {32} clear dmemint 0x1000 0x0100
8.2.5 clear icache
This command clears the contents of the instruction cache.
Format

cl ear icache

Example
zsin{32} clear icache

8.2.6 clear imem

This command clears the contents of internal or external instruction
memory. User specifies internal or external memory, the starting
address, and the size of the region to clear.

Format

clear imtem{int|ext} addr size

Example

zsi {32} clear imemext 0x7000 0x1000

8-12 ZSIM Simulator



8.2.7 clear stats

This command clears all the run-time statistical information, which
includes the cycle count, the number of executed instructions, and the
number of instructions that are being grouped in the pipe.

Format
clear stats
Example
zsin{32} clear stats

8.2.8 disable break

This command disables a breakpoint from the current list of active
breakpoints. (Use the show br eak command to display current list.)

Format

di sabl e break breakpoi nt _number

Example
zsi {32} disable break 4

8.2.9 disable profile

This command disables specified type of profile information. If no profile
type is specified, the command will disable all types. Profile types are
described in Section 8.2.14, “enable profile,” page 8-15.

Format
disabl e profile [du]|iu|pipe]
Examples
zsin{32} disable profile du
zsin{32} disable profile iu

zsin{32} disable profile pipe
zsin{32} disable profile

ZSIM Commands 8-13



8.2.10 disable trace

This command disables specified type of trace. Trace types are
described in Section 8.2.15, “enable trace,” page 8-16.

Format

di sabl e trace type

Examples

zsi {32} disable trace pipe
zsin{32} disable trace reg

8.2.11 dump dmem

This command generates a text file representing the contents of the
specified address range of the internal or external data memory. The
user specifies internal or external memory, the starting address, and the
size of the region to dump.

Format

dunp dmem{int|ext} fil ename addr size

Example
zsin{32} dunp dnemext data.dat 0x0000 0x100

% cat dat a. dat

0000 /* 0x0000 */
0000 /* 0x0001 */
0000 /* 0x0002 */
0000 /* 0x0003 */
0000 /* 0x0004 */
0000 /* 0Ox0005 */
0000 /* 0x0006 */

28e2  /* 0x00fd */
2f6a /* OxO0fe */
325d /* OxQ0ff */
%

8.2.12 dump imem

This command generates a text file representing the contents of the
specified address range of the internal or external instruction memory.

8-14 ZSIM Simulator



The user specifies internal or external memory, the starting address, and
the size of the region to dump.

Format

dunp imem{int|ext} filenanme addr size

Example
zsin{32} dunp inemint inemdat 0x1000 0x30

%cat i nem dat

0000 /* 0x1000 */
0000 /* 0x1001 */
0000 /* 0x1002 */
0000 /* 0x1003 */

0000 /* 0x102c */
0000 /* Ox102d */
0000 /* Ox102e */
0000 /* Ox102f */
%

8.2.13 enable break

This command enables a breakpoint from the current list of defined
breakpoints. See Section 8.2.28, “set break,” page 8-23, for a description
of how to create a breakpoint.

Format

enabl e break breakpoi nt _nunber

Example

zsi {32} enable break 1
8.2.14 enable profile

This command enables a predefined trace type. Run-time traces
generate text output representing the state of the architecture on a cycle-
by-cycle basis. There are three types of predefined run-time tracing:

e du

Displays information from the data unit of the ZSP400 architecture,
such as data cache hits and the du_i nem r ead signal.

ZSIM Commands 8-15



* ju
Displays information from the instruction unit, such as instruction
cache hits and the i u_i nemread signal.

* pipe

Displays information from the pipeline unit, such as cycle-by-cycle
grouping rule information.

e |su

Displays information from the load/store unit of ZSPG2 architecture..

Format
enabl e profile {du|iu|pipe|lsu}
Examples

zsin{1} enable profile du

***(info) Data Unhit profile information is ON
zsin{2} enable profile iu

***(info) Instruction Uhit profile information is ON
zsi {3} enabl e profile pipe

***(info) Pipeline Lhit profile infornmation is O\

8.2.15 enable trace

8-16

This command enables a predefined trace type. Run-time traces
generate text output representing the state of the architecture on a cycle-
by-cycle basis. There are four types of predefined run-time tracing:

. nmem

Displays address and data for any memory location which is
updated. Information is generated in the cycle in which the write
occurs.

* pipe
Displays the entire pipeline in every cycle.
* reg
Displays all registers and values in every cycle.

e WwWite

ZSIM Simulator



Displays architectural state changes associated with memory or
registers for each cycle.

Format

enabl e trace {nenjpipe|reg|wite}

Example
zsin{32} enable trace wite

8.2.16 exit

This command terminates the current simulation session.
Format
exit
Example
zsin{32} exit
8.2.17 fill dmem

This command fills internal or external data memory range with specified
value.

Format

fill dnem{int|ext} addr size val ue

Example
zsin{32} fill dnemext 0x1000 Oxff 0x0505

8.2.18 fill imem

This command fills internal or external instruction memory range with
specified value.

Format

fill inem{int|ext} addr size val ue
Example

zsin{32} fill inmemext 0x1000 Oxff 0x0505

ZSIM Commands 8-17



8.2.19 help

This command displays help information about commands. Commands
are categorized according to their function. Requesting help without
specifiers displays help on the command categories; requesting help for
a specified category displays the instructions associated with that
category. Specifying a particular command displays the description and
usage for that command.

Format

hel p [ cat egor y| command]
Examples

zsin{32} help

zsin{32} help all

zsi {32} hel p show
zsin{32} hel p show reg

8.2.20 istep

This command steps the program instruction by instruction. By default,
this command is aliased to i s.

For zsimg2, user can specify a number to indicate number of instructions
to be executed.

Format
i step
or
is
Examples

zsin{22}> istep
CYQLE=000012 PC=0x200c

0x2008 nov rpc, rl3
zsin{23}> is

CYCLE=000012 PC=0x200c
0x2009 novl r5, 0x10
zsi n{ 24} >

CYCLE=000013 PC=0x200c
0x200a novh r5, 0x20

8-18 ZSIM Simulator



zsi n{ 25} >
CYCLE=000013 PC=0x200c

0x200b nop

zsi n{ 26} >

CYQLE=000015 PC=0x200d
0x200c call r5

zsi {27} >

CYCLE=000020 PC=0x2014
0x2010 nov ri3, rpc

8.2.21 load dmem

This command loads internal or external data memory from the specified
text file. You must specify internal or external memory, the starting
address, and the size of the region to load. You must ensure that the
format of the text file is the same as the file produced by the dunp
command. The first column contains the data that will be loaded, with
each data on a single line. Data must be in hex format without the 0x
prefix. Comments must be enclosed by /* */ .

Format
load dnem{int|ext} fil enane addr size
Example

zsin{32} load dnemint data.dat 0x1000 20

The output format of the file is:

%tat dat a. dat

2ce5 /* 0x0000 */
3c3f /* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a0of /* 0x0004 */
80cO /* 0x0005 */

8.2.22 load exe

This command loads a valid ZSP executable into instruction memory.
This command performs the same function as specifying the executable
filename when ZSIM is invoked.

Format

ZSIM Commands 8-19



|l oad exe fil enane

Example

zsinf{32} |oad exe test.exe

or

zisin{32} load test.exe

8.2.23 load imem

8.2.24 reset

8-20

This command loads internal or external instruction memory from
specified text file. You must specify internal or external memory, the
starting address, and the size of the region to load. You must ensure that
the format of the text file is the same as the file produced by the dunp
command. The first column contains the data that will be loaded, with
each data on a single line. Data must be in hex format without the Ox
prefix. Comments must be enclosed by /* */ .

Format

load imem{int|ext} fil enane addr size

Example

%cat inst.txt

2ce5 /* 0x0000 */
3c3f [* 0x0001 */
2000 /* 0x0002 */
3006 /* 0x0003 */
a0of /* 0x0004 */
80cO0 /* 0x0005 */
bc4c /* 0x0006 */
6f4c /* 0x0007 */

zsin{32} load inemint inemtxt 0x1000 8

This command resets the state of the simulator. The default is a soft
reset, which initializes all aspects of the simulator except the instruction
memory. A hard reset performs full initialization.

Format

ZSIM Simulator



8.2.25 run

8.2.26 script

reset [soft|hard]

Examples

zsin{32} reset
zsin{32} reset hard

Important:  The reset command does not reload the program into
memory. In order to restart the program, perform one of the
following sequence of commands:

zsin{32} reset
zsin{32} set reg pc <start_address>

or
zsin{32} reset hard; |oad

Note: zsing2 doesn’t support soft reset feature any nore.

This command advances the simulator for the specified number of
cycles. If no cycle count is specified, the default cycle count defined for
the run attribute is used (refer to Section 8.2.27, “set attr,” page 8-22).
Simulation halts if cycle count is reached, the maximum cycle count is
reached, or a system halt occurs.

Format
run [ nunmber _of _cycl es]
Examples

zsin{32} run
zsi {32} run 100

This command loads and processes script file. The script file may contain
any valid ZSIM commands. Comments are allowed in the script file,
preceded by the hash (#) character. ZSIM ignores all commands
between the # character and the end of line. Empty lines are also
ignored.

Format

ZSIM Commands 8-21



script filenane

Example

zsi {32} script standard. scr

Example Script File

# This exanpl e script denonstrates howto turn on
# instruction and pipeline tracing using a comand.
| oad test.exe

enabl e trace wite

enabl e trace pipe

run

exit

8.2.27 set attr

The set attr command allows you to set three internal ZSIM attributes.
These configurable attributes are shown in Table 8.7.

Table 8.7  Configurable ZSIM Attributes

Attribute | Value Description

history any integer Number of commands to maintain in history
buffer.

radix {dec | hex} Radix (decimal or hexadecimal) used to

generate output.

run any integer Default cycle count for the run command (when
issuing the run command with no argument). If
undefined by the set attr command, the
default run value is 100000 cycles.

Format

set attr attribute val ue

Examples

zsin{32} set attr run 1000
zsin{32} set attr radix hex

8-22 ZSIM Simulator



8.2.28 set break

This command creates and enables a new breakpoint at specified
address. Breakpoints can be set for the program counter. Execution halts
at the cycle when the instruction at the specified address is in the set of
instructions which are about to be executed in the pipeline’s E stage.

When a new breakpoint is created, it is tagged with a breakpoint number
which is used by other breakpoint commands. Use the show br eak
command to display a list of current breakpoints.

Format

set break pc addr
set break synbol | abel

Example
zsin{1} set break pc 0x0010
Breakpoint 1 on PC at address 0x0010

zsi{2} set break synbol nain
Breakpoint 2 on PC at address Oxf9b9 of main

8.2.29 set delay

This command sets the delay wait state of external data memory or
instruction memory. The default delay value is 1 for both external data
and instruction memory.

The wait state is the number of cycles between requesting data and
having it returned. For example, wait state equals 1 means that data is
returned 1 cycle after it is requested.

Format

set delay {edata | einst} num

Example
zsin{1} set delay edata 10
zsim{2} set delay einst 20

Note: This command is specific to zsim400

ZSIM Commands 8-23



8.2.30 set latency

8.2.31 set reg

8.2.32 set size

8.2.32.1 zsim400

8-24

This command sets the delay wait state of internal/external data memory
or instruction memory. The default delay value is 2 for both internal data
and instruction memory. The default delay value is 5 for both external
data and instruction memory.

The wait state is the number of cycles between requesting data and
having it returned. For example, wait state equals 2 means that data is
returned 2cycles after it is requested.

Format

set latency {inem| dnen} {int | ext} num

Example
zsin{1} set latency dmemint 10
zsin{2} set latency dnem ext 20

Note: This command is specific to zsimg2

This command assigns a new value to the specified register.
Format

set reg regi ster val ue
Example

zsin{32} set reg r0 0x1234

This command sets the size of internal data memory or instruction
memory. The default size of internal data or instruction memory is 63488
words (62K words), which is also the maximum size that can be set.

ZSIM Simulator



Important:  This command does not apply to external memory. (The
simulator has 1M words for each external instruction and
external data memory.)

Format
set size {dmenjinen} size
Examples

zsin{1} set size dnem 0x4000
zsin{2} set size i nem 0x3000

8.2.32.2 zsimg2

This command sets the size of internal/external instruction or data
memory from a begin value to an end value. The boundary is inclusive.
The default size for each of the 4 memory types is the maximum value
from O to OxOOffffff words (16M words). A word is a 16-bit value for the
ZSPG2 architecture.

Format

set size {dnenjimen} {int|ext} beg val ue end val ue
Examples

zsinm{1l} set size dnemint O Oxffff

zsim{2} set size inemint O Oxffff

zsi {3} set size dnemext O OxQOfffff
zsi{4} set size inemext O OxOQOfffff

8.2.33 show attr

This command displays the value of the specified attribute. See set attr
for a list of defined attributes. Note that the version attribute can only be
used with the showattr command; it cannot be used with the set attr
command.

Format

show attr {history|radi x| run|version}

Example

ZSIM Commands 8-25



zsi {32} show attr run
8.2.34 show bits

This command displays the bit field values for the specified register.
When specifying control registers, do not include the percent (%) sign.

Format

show bits register

Example

zsi {32} show bits hwfl ag
hwf | ag = 0x0000

er:

ex:

ir:

z:

gt:

ge:

c:

gsv:

Sv:

gv:

Vi

[cNoNoloNoNoloNoNoNoNe)

8.2.35 show break
This command displays the list of currently defined breakpoints.
Format

show br eak

Example

zsi {32} show br eak

8.2.36 show dcache

This command displays the current contents of the data cache.
Format
show dcache

Example

8-26 ZSIM Simulator



For zsim400 simulator

zsi n{ 1} > show dcache
R13 - D§[ 0]: ------ [ e T TP T T
R13 - D#[ 1]: ------ I e T TP T

FEEFFFFF
=
B

The first 9 lines are dedicated for linked | oad of r13, 14,
and 15 regi ster respectively. The next 8 |ines are used for

any unlinked load. The first “------ " colum is showing the
address of the line. The next colum indicates the |ine
invalid ‘1" or valid. The next 4 colunmns are show ng the

data contains in that |ine.

For zsing2

> zsi {1} > show dcache

DB[ 0] Ox000001 ------ =----- —-mmmm mmmmim amion oo
------------ I ruf O]

DB[ 1] Ox000001 ------ =----- cmmmmm mmmn aman oo
DE[ 2] Ox000001 ------ =---=n =cmmmm mmmmem ameeen oo
DB[ 3] Ox000001 ------ =----- —-mmmm mmmmen oo oo
DB[ 4] Ox000001 ------ =----- cmmmmm mmmn oo oo
DE[ 5] Ox000001 ------ =----n =cmmmm mmmmes ameeen oo
DB[ 6] Ox000001 ------ =----- —-mmom mmmmen aoon oo
DB[ 7] Ox000001 ------ =----- mmmmmm mmmn oo oo
DE[ 8] Ox000001 ------ =----n =cmmmm mmmmen ameeen oo

ZSIM Commands 8-27



The first col um shows the address and the next 8 col umms
contai n data.

8.2.37 show dmem

This command displays a range of internal or external data memory. The
user specifies internal or external memory, the starting address, and the
size of the region to display. The default settings for the show dnem
command are shown in Table 8.9.

Table 8.8  Default Arguments for show dmem

Argument Value

{int | ext} int

addr 0x0

size 16
Format

show dnem {int| ext} addr size

Example
zsi {32} show dnemint Oxf000 0x10

For zsing2, user can use a synbol instead of an absol ute
addr ess.
zsif{1} show dnemint arrayl 20
8.2.38 show icache

This command displays the current contents of the instruction cache.

Format

show i cache

8-28 ZSIM Simulator



Example

zsin{32} show i cache

8.2.39 show imem

This command displays a range of internal or external instruction
memory. The size and addr fields may be omitted, in which case defaults
are used. The default settings for the showi nremcommand are shown in
Table 8.9.

Table 8.9  Default Arguments for show imem

Argument | Value

{int | ext} int

addr 0x0

size 16
Format

show imem{int|ext} [addr] [size]
Example
zsi{1} show inemint Oxf000 0x10
For zsing2, user can use synbol instead of absol ute address

val ue.
zsin{1} showimemint foo_function 20

8.2.40 show pipe

This command shows the contents of all stages of the pipeline.
Format

show pi pe
Example

zsi {32} show pi pe

ZSIM Commands 8-29



8.2.41 show profile

This command shows the current status (enabled/disabled) for each
profile type.

Format

show profile

Example

zsin{32} show profile

***(info) Supported profile information:
- Instruction Wnit: CFF

- Data Whit: CFF

- Pipeline Whit: aF

8.2.42 show reg

This command displays the values of a category of registers or the value
of the specified register. You can list more than one category and/or
register. The register categories are:
*gpr
All general purpose registers, r0-r15.
e cfg
All control registers (such as %smode and %hwflag). Do not include
the percent (%) sign in the control register name.

e addr

All address and index registers for the ZSPG2 architecture. Thus, it
is specific for zsimg2.

Format
show reg [cat egory|register]

Examples

zsi {32} show reg

zsin{32} showreg ro0

zsi {32} show reg hwfl ag snode (Do not include the percent
(%) sign.)

8-30 ZSIM Simulator



8.2.43 show rule

This command displays the affected grouping rule for the current cycle.

Format

show rul e

Examples

zsi {32} show pi pe
CYQLE 8

(13) 000d: 5448: 0: mac2. a
(12) 000c: 788f : 0: | ddu
(11) 000b: 784e: 1: 1 ddu
(10) 000a: 9a00: 1: xor . e

(9) 0009: 2d18: 0: novl
(8) 0008: 3f 00: 0: novh
(7)0007: 3d01: 1: movh
(6) 0006: 3e00: 1: movh

(4) 0004: d700: 1: novl
zsin{33} show rul e

Active grouping rule in current cycle: 23. Only two
instructions requiring an alu or one instruction that
requires both the alus can be grouped.

8.2.44 show size

Show size of internal data or instruction memory. The output is not

affected by the radix attribute.

Format

r13, 0x18
r15, 0xO0
ri13, Ox1
ri14, 0x0

guard, Ox0

show si ze {dnenjinenj{int|ext}

Examples

zsi {32} show si ze dnemi nt
The size of internal data menory is Oxf800 words.
zsi {32} show si ze inemint
The size of internal instruction menory i s Oxf800 words.

ZSIM Commands

8-31



8.2.45 show stats

Display all the run-time statistics generated by ZSIM. If no argument is
specified, ZISIM displays overall statistical information. If the opcode
argument is specified, ZISIM displays instruction opcode statistics.

Format

show stats
Example

zsin{32} show stats
zsin{32} show stats opcode

8.2.46 show trace

Show currently enabled/disabled trace information. Traces currently set
to ON are enabled during simulation.

Format

show trace
Example

zsi {32} show trace

***(info) Supported trace infornation:
- Instruction trace: CFF

- Pipeline trace: GF

- Register trace: CFF

- Menory trace: CFF

zsi {33} enabl e trace pipe

***(info) Pipeline trace is ON

zsi n{34} show trace

***(info) Supported trace infornation:
- Instruction trace: CFF

- Pipeline trace: N
- Register trace: aF
- Menory trace: CFF

8.2.47 step

Single-step the simulator. Issuing the st ep command is equivalent to
issuing the command run 1.

8-32 ZSIM Simulator



Format

step

Example
zsin{32} step
8.2.48 unalias

Deletes an alias.
Format

unalias [al i as]

Example

zsin{32} unalias adv

8.3 1/0 Port Usage

ZSIM400 models serial 1/0 as a memory-mapped device. Programs
perform terminal I/O by reading from and writing to the appropriate
address locations. The simulator defines two serial ports and one host
processor interface (HPI) port. Each port has a transmit buffer and a
receive buffer. Table 8.10 shows the memory addresses and
corresponding files for the 1/O ports for the LSI402ZX, LSI403Z, and
ZSP400-core based devices.

Table 8.10 1I/O Device Memory Map and Associated Files

Read Write
I/O Port Address File Address File
Serial Port 0 0xF901 spOi n 0xF900 spOout
Serial Port 1 O0xFAO1 splin 0xFAQ0 splout
Eost Interface | OxFBO1 hpiin 0xFBO0O hpi out
ort

I/O Port Usage 8-33



The format of input and output files are the same. Data must be in
decimal digits, with each data on a single line. If the input file is not
present in the current running directory at the time of the request, the
simulator will print an error message to standard output and exit.

ZSIM400 also supports user-specified 1/O ports. You can create a library
containing peripheral devices and then use it in place of the default
library in the directory $SDSP_HCME sdspl / bi n, which is created when
the ZSP SDK tools are installed. The peripheral library is called

I'i bzperiph.dll on Windows and | i bzperi ph. so on Solaris platforms.
For information on writing the peripheral library, refer to the ZSIM
Peripheral API Reference Guide, document DB06-000299-00.

8.4 Example Session Using ZSIM

This section contains an example simulation session using ZSIM in
interactive mode.

zsin{1}> | oad exe test.exe

***(info) Starting address: 0x2000

.text : Loading to INT-1NST nenory ... 0x2000 -> 0x2950 (0x0951)
.data : Loading to | NT-DATA nenory ... 0x0001 -> Ox005f (0x005f)
Loadi ng "test.exe" successfully.

The contents of the instruction memory can be checked to confirm
proper loading of the test:

zsi {2} > show i mremint 0x2000 4

0x2000 0Ox2cfb novl r12, Oxfb
0x2001 Ox3cf7 novh r12, Oxf7
0x2002 Oxa6d0 nov r13, 0xO
0x2003 0x2460 novl r4, 0x60
zsin{3}> _

Before execution cycles begin, you can check to make sure that the
pipeline and caches are empty:

zsi n{ 3} > show pi pe

As shown above, the five stages of the execution pipeline are identified
with a single letter — F (Fetch/decode), G (Group), R (Read), E (Execute),

8-34 ZSIM Simulator



and W (Write Back) — followed by two integers representing the number
of instructions currently in that stage and the number of instructions that
will advance to the next stage in the following cycle.

zsi {4} > show i cache
1$[0]: ------ | meeeee | meeee- | meeee- | --e---
I$[1]: ------ | o-eee-- | -eee-- | ------ [ o-me--

In the above example, the 8 lines of the instruction cache are shown to
be empty . The first column contains the address (4 word boundary) and
the remaining 4 columns contain the corresponding instruction opcodes.
An ‘I’ to the left of a cell indicates an invalid instruction.

zsi {5} > show dcache

RI3 - D§[ O]: ------ | emmeee e i oo
RI3 - D§[ 1]: ------ | e e e e
RI3 - D[ 2]: ------ | oo emieeaieil il
R4 - D§[ 3]: ------ | emmen e i oo
R4 - D8] 4]: ------ e
R4 - D[ 5]: ------ | oo emieeaieil il
RI5 - D§[ 6]: ------ | emmen e i oo
RI5 - D§[ 7]: ------ | e e e e
RI5 - D§[ 8]: ------ | oo emieeaieil il
W - D8 9: ------ | emmen e i oo
W - D§[10]: ------ | e e e e
W - D§[11]: ------ | oo emieeaieil il
Ww - D§[12]: ------ | emmen e i oo
W - D§[13]: ------ | e e e e
W - D8[14]: ------ | oo emieeaieil il
W - D§[15]: ------ | emmen e i oo
W - D8[16]: ------ | e e e e

The 17 lines of the data cache are shown to be empty in the above
example. The first column contains the address (4-word boundary) and
the remaining 4 columns contain data values. An ‘I’ to the left of a data
line indicates that the corresponding data line is invalid.

Continuing with the example, as execution proceeds, the pipeline and
instruction cache reflect changes expected by instruction flow:

zsin{6}> run 4 ; show pi pe

CYQLE=000004 PC=0x2000
CvGE 4

Example Session Using ZSIM 8-35



(7)2007: 6054: 0: st r5, r4, 0

(6) 2006: a051: 0: add r5, Ox1

(5) 2005: bc54: 0: nov r5, r4

(4) 2004: 3400: 1: novh r4, 0xO0
------------------------------------------ q4:1)
(3) 2003: 2460: 0: nov! r4, 0x60

(2) 2002: a6d0: 0: nmov ri3, 0xo0

(1) 2001: 3cf 7: 0: movh r12, oxf7

(0) 2000: 2cf b: 1: novl r12, Ooxfb
------------------------------------------ R(0: 0)
------------------------------------------ E(0: 0)
------------------------------------------ WO0: 0)

zsi {7} > show i cache

1 $[0]: 0x2000 V Ox2cfb V 0x3cf7 V 0xa6d0 V 0x2460
I$[1]: 0x2004 V 0x3400 V 0xbc54 V 0xa051 V 0x6054
1$[2]: ------ [ | =eeees [ [J——
1$[3]: ------ | meeeee [ [ [
1$[4]: ------ | -ee-- | -eee-- | --e--- | --e---

The simulator output below demonstrates use of the PC breakpoint. A
breakpoint is set for address 0x10 and the simulator is advanced.
Execution halts when the instruction associated with the breakpoint
address reaches the Group stage. The state of the pipeline and operand
registers are shown after the breakpoint halt occurs.

zsin{8}> set break symmain

Breakpoint 1 on PC at address 0x2010 of nain
zsin{9}> enabl e trace wite

***(info) Instruction trace is O\

zsi ni{10}> run

<6> (0) 0x2000 2cfb novl ri2, Oxfb ! ri2 = 0x00f b
<7> (1) 0x2001 3cf7 movh r12, oxf7 ! ri2 = Oxf7fb
<7> (2) 0x2002 a6d0 nov ri3, 0xo0 ! r13 = 0x0000
<8> (3) 0x2003 2460 novl r4, 0x60 ! r4 = 0x0060
<9> (4) 0x2004 3400 novh r4, 0x0 ! r4 = 0x0060
<10> (5) 0x2005 bc54 nov r5, r4 ! r5 = 0x0060
<11> (6) 0x2006 a051 add r5, Ox1l ! hwf | ag = 0x0030
<11> (6) 0x2006 a051 add r5, Ox1 ! r5 = 0x0061
<11> (7) 0x2007 6054 st r5 r4, 0 I | NT- DATA 0x0060] = 0x0061
<12> (9) 0x2009 2510 novl r5, 0x10 ! r5 = 0x0010
<13> (8) 0x2008 bbld mov rpc, ri3 ! rpc = 0x0000
<13> (10) 0x200a 3520 novh r5, 0x20 ! r5 = 0x2010
<14> (12) 0x200c a750 call rs ! rpc = 0x200d
(PCBREAKPANT #1). . ..o CYCLE=000020 PC=0x2014

Trace information is displayed in six fields:

8-36 ZSIM Simulator



* The first field is the cycle count number (enclosed by ‘< >').
* The second field is the instruction sequence number (in parenthesis).

* The third field is the program counter (PC) of the executed
instruction.

* The fourth field is the instruction opcode.
* The fifth field is the disassembled instruction, including operands.

¢ The sixth field describes the result of the executed instruction.

zsin{11}> run 7; show pi pe

<20> (13) 0x2010 2501 novl r5 Ox1l ! r5 = 0x2001
<20> (14) 0x2011 b9ld mov ri3, rpc ! r13 = 0x200d
<21> (15) 0x2012 3500 novh rs, 0x0 ! r5 = 0x0001
<21> (16) 0x2013 6fdc stu ri3, r12, -1 I | NT- DATA Oxf 7f b] = 0x200d
<21> (16) 0x2013 6fdc stu ri3, rl12, -1 ! r12 = Oxf7fa
<22> (17) 0x2014 aOcf add ri2, Oxffff ! hwi | ag = 0x0040
<22> (17) 0x2014 aOcf add r12, Oxffff ! ri2 = Oxf7f9
<22> (19) 0x2016 1060 call 0x20d6 ! rpc = 0x2017
<23> (18) 0x2015 615c st r5 ri12, 1 I | NT- DATA Oxf 7fa] = 0x0001
<25> (20) 0x20d6 a641 mov r4, ox1 ! r4 = 0x0001
<26> (21) 0x20d7 b9ld mov ri3, rpc ! r13 = 0x2017
<26> (22) 0x20d8 6fdc stu ri3, r12, -1 I | NT- DATA Oxf 7f 9] = 0x2017
<26> (22) 0x20d8 6fdc stu r13, r12, -1 ! r12 = Oxf7f8
<27> (23) 0x20d9 bc6c mov re, rl2 ! ré = Oxf7f8
CYCLE=000027 PC=0x20dc
CYCLE 27
------------------------------------------ F(4: 3)
(33) 20ea: bc34: 0: nov r3, r4
(32) 20e9: 6f 7c: 1: stu r7, r12, -1
(31) 20e8: b910: 1: nov r0, rpc
(30) 20e7: 6b2c: 1: st du r2.e, ri12, -2
------------------------------------------ q4:3)
(29) 20e6: 3d00: O: movh ri13, 0xo0
(28) 20e5: 6b0c: 1: st du rO.e, ri12, -2
(27) 20e4: 2d68: 1: novl r13, 0x68
(26) 20dc: 1004: 1: cal | 0x20e4
------------------------------------------ R(1:1)
(25) 20db: a063: 1: add re, 0x3
------------------------------------------ E(2: 2)
(24) 20da: 725c: 1: 1 d r5 ri12, 2
(23) 20d9: bcée: 1: nov re, ri2
------------------------------------------ W2:2)
(22)20d8: 6f dc: 1: stu r13, r12, -1
(21) 20d7: b91d: 1: nov r13, rpc
zsi nf{12}> show reg gpr
r0 = 0x0000 ri1 = 0x0000
r2 = 0x0000 r3 = 0x0000
r4 = 0x0001 r5 = 0x0001

Example Session Using ZSIM 8-37



ré6 = oxf7f8 r7 = 0x0000
r8 = 0x0000 r9 = 0x0000
r10 = 0x0000 ri11 = 0x0000
ri2 = Oxf7f8 ri3 = 0x2017
ri4 = 0x0000 ri15 = 0x0000

zsi n{ 14} >

Execution halts when a breakpoint is reached, the maximum cycle count
is reached, or a system halt occurs. A system halt refers to the halt mode
as defined by the power level (Ivl) field in the DSP’s %smode control
register.

A simulation session is terminated with the exit command.
zsi {12} > exit

***(info) Exiting ZSIM
%

8-38 ZSIM Simulator



Chapter 9
Debugger

This chapter describes the SDK source and assembly-level Debugger for
the ZSP400 and ZSPG2 architectures.

The SDK Debugger, SDBUG, is based on the GNU Debugger (GDB)
from the Free Software Foundation. GDB is described in Debugging with
GDB: The GNU Source Level Debugger, by Richard Stallman, et. al.,
Free Software Foundation, January 1994. The description of SDBUG in
this chapter, for the most part, includes only the differences from GDB.

For Windows 95/98/NT platforms, the debugger can be accessed using
the ZSP Integrated Development Environment, as described in
Chapter 10, “ZSP Integrated Development Environment (ZSP IDE).” This
chapter describes the debugger’s standard GNU command-line interface,
available for all platforms.

9.1 Using SDBUG

SDBUG is invoked from the command line as follows:

<debugger nane> [options] [executable file]

ZSP SDK Software Development Kit 9-1



9-2

where debugger name is the name of the desired debugger as listed in Table 9.1.

Table 9.1  Debugger Names

Debugger Name | Use when debugging...

sdbug400 code written for devices based on the ZSP400 architecture.

zdxbug code originally written for devices based on the ZSP400
architecture, but cross-compiled for the ZSPG2
architecture.

zdbug code designed for devices based on the ZSPG2
architecture.

The above command both invokes and initializes the debugger.

SDBUG-only command-line options are listed in Table 9.2. All other
SDBUG options are described in Stallman, et. al.

Table 9.2  SDBUG-Only Options

Option

Description

Availability

- menpcr =ADDR

Sets the address of the mempcr register.

sdbug400

- no_nenpcr

Specifies that the hardware target has no
MEMPCR register

sdbug400

-jtag_type=TYPE

Gives priority to the detection of the JTAG
interface specified. TYPE can be either
pci (Corelis PCI JTAG), pcmcia (Corelis
PCMCIA JTAG), or raven (Macraigor
Raven) By default, SDBUG first attempts
to use the PCMCIA JTAG card, then the
PCI JTAG card, then the Macraigor
Raven interface..

sdbug400

-jtag_napfil e=FI LE

Makes the debugger look for the map file
FILE, rather than the default called
“mapfile” in the current directory and
SDSP_HOME/sdspl/misc.

sdbug400

Use the following command to load the symbol table from the executable

file:

(sdbug) file a.out

Debugger




Next select SDBUG's target execution environment (as described in the
following section). For example, to target the cycle-accurate simulator:

(sdbug) target zsim

Use the following command to load the text and data sections of the
executable file:

(sdbug) | oad a.out

Now you are ready to debug your program using the standard GDB
commands.

9.2 SDBUG Execution Environments

The debugger supports four execution environments:

* Functional-accurate software simulation on the host (using ZISIM)
* Cycle-accurate software simulation on the host (using ZSIM)
* Target hardware, connected through the serial port

* Target hardware, connected through a JTAG controller
(Windows 95/98/NT platforms only)

These environments are described in the following subsections.

9.2.1 Functional-Accurate Simulator Connection

The ZISIM target simulator is invoked by the following command:

(sdbug) target simJ[option...]

where option is any of the simulator options described in Table 7.1 on
page 7-1.

With this connection, program execution is performed by the
functional-accurate simulator, ZISIM, under the control of the debugger.
The debugger examines the simulator state to process queries from the
user.

SDBUG uses the functional-accurate simulator commands to select
information that is requested from the executing program by the ZISIM

SDBUG Execution Environments 9-3



simulator. These commands are listed in Table 9.3 and described in
detail in Section 7.2, “ZISIM Commands,” page 7-4.

The format for simulator commands using ZISIM is:

(sdbug) si m sinul at or - command

Table 9.3 SDBUG Target ZISIM Simulator Commands
Command Description
clear-stats Resets the statistics.

close fil enane

Closes file fi | enanme.l

hel p

Displays the list of simulator commands that can be
invoked.

nmax_nunber _of fil es nunber

Sets the maximum number of files that can be opened
at the same time to number.!

nenory_downl oad fi | enane addr si ze

Writes si ze of items to memory addr from file
fil ename.!

nenory_upl oad fi | enane addr size

Reads si ze of items from memory addr to file
fil ename.!

print-stats Prints statistics such as instruction mix, load, store,
discontinue, and mispredicts to st dout .

reg- of f Sets the simulator register tracing off.

reg-on Sets the simulator register tracing on.

trace- of f Sets the simulator trace off.

trace-on Sets the simulator trace on.

cl ear - opcode

Resets statistics of opcode usage.

pri nt - opcode

Prints statistics of opcode usage.

1. This command may also be invoked without specifying the target name. See Section 9.3.1,
“Generic Target-Specific Commands” on page 9-11 for details.

9.2.2 Cycle-Accurate Simulator Connection

The ZSIM target simulator is invoked by the following command:

(sdbug) target zsim

9-4 Debugger




With this connection, the cycle-accurate simulator (ZSIM) executes your
program under the control of the debugger. The debugger examines the
simulator state to process queries from the user.

The cycle-accurate simulator commands are used to select information
that is requested from the executing program by the ZSIM simulator.
These commands are listed in Table 9.4 and described in detail in
Section 8.2, “ZSIM Commands,” page 8-5.

Table 9.4

The format for ZSIM commands is:

(sdbug) zsi m si mul at or - cormand

SDBUG Target ZSIM Commands

Command

Description

clear-stats

Resets the general statistics.

cl ear - opcode

Resets the opcode usage statistics.

close fil enane

Closes file fi | enane.!

hel p

Displays the list of simulator commands that can be
invoked.

nax_nunber _of files nunber

Sets the maximum number of files that can be opened at
the same time to number.}

nmenory_downl oad fi | ename addr
si ze

Writes size of items to memory addr from file
filenane.!

nenory_upl oad fi | enanme addr si ze

Reads size of items from memory addr to file
filenane.!

pf du- of f Turns off data unit profile information.

pf du- on Turns on data unit profile information.
pfiu-of f Turns off instruction unit profile information.
pfiu-on Turns on instruction unit profile information.
pf pi pe- of f Turns off pipeline unit profile information.
pf pi pe-on Turns on pipeline unit profile information.

pi pe- of f Sets the simulator pipeline off.

(Sheet 1 of 2)

SDBUG Execution Environments 9-5



Table 9.4 SDBUG Target ZSIM Commands (Cont.)
Command Description
pi pe-on Sets the simulator pipeline on.

print-dcache

Prints contents of data cache to st dout .

print-icache

Prints contents of instruction cache to st dout .

pri nt - opcode

Prints instruction opcode history to st dout .

print-pi pe

Prints contents of the pipeline to st dout .

print-profile

Prints collected profile information to st dout .

print-rule [# | all]

Prints grouping rule to st dout 2.

print-stats

When cycle count is on, prints statistics to st dout .

print-stats-inc

Prints incremental statistics information to st dout .

pf functionName start end

Collects profile information for f unct i onName from
start to end addresses. Follow by profil e-on
command to turn on the profile collector.

profil e-func

Collects profile information for all functions in the program.
Follow by the profi | e-on command to turn on the profile
collector.

profil e-of f Turns off profile collector.
profile-on Turns on profile collector

reg- of f Sets the simulator register tracing off.
reg-on Sets the simulator register tracing on.
trace- of f Sets the simulator trace off.
trace-on Sets the simulator trace on.

(Sheet 2 of 2)

1. This command may also be invoked without the target name. See Section 9.3.1, “Generic Target-
Specific Commands” on page 9-11 for details.

2. The optional arguments only work in sdbug400. zdbug and zdxbug only supports the display of the
grouping rules that are currently active.

9.2.2.1 User-Specified Profiling

When used with the cycle-accurate simulator, the debugger supports
profiling of selected areas of your project code. To use this feature, you

9-6 Debugger



must define the regions to be profiled using the following pair of
assembler directives in your source code:

asn{“\n__FUNC START regi on_nane:");
<code to be profiled>
asm{(“\n_FUNC EXIT regi on_nane:");
The profiling can then be enabled using the following commands:
(sdbug) profile-func
(sdbug) profile-on
Execute the program by typing:
(sdbug) run
Display the profiling statistics using:
(sdbug) print_profile

With respect to profiling, the profil e-func command will treat

r egi on_nanme just like a function. Note that for function profiling to
operate correctly, execution that passes through the start label must
also pass through the exi t label.

9.2.3 UART Connection

The UART connection is invoked by the following commands:

(sdbug) set renotebaud [baud_rate]
(sdbug) target sdsp-renote serial port

The required baud rate can be specified when setting r enot ebaud. The
default baud rate setting is 38400.

To use this connection, your target evaluation board must be able to
support UART-based debugging with appropriate hardware and firmware.
In addition, your target must be booted from flash memory that contains
the UART debug code. For instructions on programming the flash
memory, refer to the application note, Programming the Flash. To ensure
that your EB402 Evaluation Board is booted from (external) flash

SDBUG Execution Environments 9-7



memory, set the IBOOT pin LOW. Refer also to the EB402 Evaluation
Board User’'s Guide.

Use the SDBUG commands in Table 9.5 to communicate with the target
board though the serial port connection.

The format for serial port commands is:

(sdbug) sdsp-renote sdsp-renote-comand

Table 9.5  SDBUG UART Connection Commands
Command Description
close file fil enanme Close file fi | enane. !
hel p List UART connection commands.
max_nunber _of files nunber Specify the maximum number of files that can be

opened at the same time.!

nenory_downl oad fil enane addr size | Write si ze of items to memory addr from file

fil enane. addr can be a label.}

nenory_upload fil enane addr size |Read size of items from memor¥ addr to file

fil ename. addr can be a label.

1. This command may also be invoked without the target name. See Section 9.3.1, “Generic Target-
Specific Commands” on page 9-11 for details.

9.2.4 JTAG Controller Connection

9-8

To use the JTAG connection, you must install a Corelis PCI or PCMCIA
Type Il Boundary Scan Controller card on your Windows machine and
install a cable connecting it to your evaluation board.

Note: The JTAG target is available only for Windows 95/98/NT
platforms.

The JTAG target is invoked by the following commands:
(sdbug) jtag set _clk 2 0 0
(sdbug) target jtag

The first command is required to set the parameters for the JTAG clock
(T&X) on the Corelis Boundary Scan Controller card, where the first
parameter (2) specifies the base clock oscillator to be used (50 MHz), the

Debugger




second parameter (0) disables the clock prescaler, and the third
parameter (0) is used as the clock divisor (divide by 2). (These are the
default settings for boards running at 100 MHz and above.) The second
command establishes the connection.

Refer to the Corelis Software Development Kit User's Manual for
information on supported JTAG clock speeds.

The JTAG commands described in Table 9.6 are used to select
information that is requested from the target using the JTAG connection.

The format for JTAG commands is:

(sdbug) jtag jtag-command

Table 9.6 SDBUG JTAG Commands

Command

Description

close filenane

Close file fi | enane.!

hel p

List JTAG commands.

set_clk vall val2 val 3

Sets the JTAG clock according to the JTAG interface in
guestion. With the Corelis JTAG interfaces, the values
are base clock occillator, prescaler enable, and clock
divisor, respectively.

For Macraigor Raven, it would be the speed value
followed by two zeros.

Generally speaking, fthe JTAG clock speed should be
approximately 1/10th to 1/20th of the ZSP clock speed.

raven_| pt port

Tells the debugger to use LPT 1, 2, or 3 as the Raven
LPT port.

nmax_nunber _of files numnber

Specify the maximum number of files that can be
opened at the same time.!

nenory_downl oad fil ename addr size

Write si ze of items to memory addr from file
fil enanme. addr can be a label.!

nenory_upl oad fil enane addr

si ze

Read si ze of items from memor}/ addr to file
fil ename. addr can be a label.

1. This command may also be invoked without the target name. See Section 9.3.1, “Generic Target-
Specific Commands” on page 9-11 for details.

SDBUG Execution Environments 9-9



9.2.4.1 Hardware-Assisted Debugging

The JTAG target environment supports hardware-assisted debugging.
The format for a hardware-assisted debugging command is:

(sdbug) hw hardwar e_assi st ed_debuggi ng_comrand

Important:

Important:

All breakpoints must be disabled before using hard-
ware-assisted debugging. Only one breakpoint may be
set, and when it is set, any previously-set breakpoint is
deactivated. You cannot perform I/O during hardware-
assisted debugging.

Hardware-assisted debugging will function correctly
only with the correct map file for the specific part being
debugged. The SDK comes with the map file for LS1402ZX
rev. 1 (mapfile), LSI402ZX rev. 2 (mapfile_rev2), and
LSI403LP (mapfile_403Ip); if your application uses a differ-
ent processor, please contact the vendor for the correct
map file. The default map file loaded is mapfile. To change
the map file used, either copy the new map file to the direc-
tory the debugger is inovked in as “mapfile,” or copy to the
current directory or $SDSP_HOME/sdspl/misc and use the
--jtag_mapfile command line option to specify the map file
to use.

The commands available for hardware-assisted debugging are shown in

Table 9.7.

Table 9.7  Hardware-Assisted Debugging Commands

Command Description

enabl e_i ce Enable hardware-assisted debugging.
resune Resume execution.

step n Step n cycles.

i nsn_addr_brk addr

Set a breakpoint when executing an instruction at
addr.

st _addr_brk addr

Set a breakpoint when storing to addr.

st _data brk data

Set a breakpoint when storing the value dat a.

9-10 Debugger



Table 9.7  Hardware-Assisted Debugging Commands (Cont.)

Command Description

st_addr_and _data brk addr data Set a breakpoint when storing dat a to addr.

st_addr_or_data brk addr data Set a breakpoint when storing to addr or storing the
value dat a.

di sabl e_brk Disable hardware breakpoint.

return_to_sw dbg Returns to software debug mode. Must have

executed in hardware debug mode for at least one
cycle in order for this to work.

9.3 Debugger Commands — Special Cases

Some SDBUG commands have special cases, which are described in
the following subsections. For more information on the usage of any
command, issue the hel p command at the (sdbug) prompt.

9.3.1 Generic Target-Specific Commands

To make test scripts that need to run under multiple targets more generic,
the hardware and software target-specific commands nenory_upl oad,
nmenory_downl oad, ¢l ose, and nax_nunber _of fil es may now be used
without their target prefixes after the t arget has been specified.

For example, the command:

(sdbug) jtag max_nunber _of files 1

may be replaced by
(sdbug) nmax_nunber_of files 1
within a script after you have issued the t arget command.
9.3.2 Backtrace Command

To use the backtrace command, you must adhere to the calling
conventions described in Section 3.2, “Compiler Conventions.” To use
this command to display the call stack, set breakpoints on the function

Debugger Commands — Special Cases 9-11



name. This command may display incorrect results when the debugger
is halted inside a function prologue or epilogue.

9.3.3 Info Registers Command

9.3.3.1 sdbug400, zdxbug

9.3.3.2 zdbug

To use this command, the %rpc register must be stored on the stack,
even for leaf functions. Otherwise, the compiler returns incorrect values
for the %pc and %rpc registers when traversing the stack. Refer to
Section 3.2, “Compiler Conventions.”

The code still needs to following the compiler convention, though the
convention has now been changed. Refer to Section 3.2, “Compiler
Conventions.” for details.

9.3.4 Breakpoint Command

SDBUG reserves the use of pc value zero. If two breakpoints are
inadvertently set at pc value zero, the debugger will loop while trying to
execute the instruction. If a breakpoint has to be set at pc value zero, set
only one breakpoint at that address.

9.3.5 Print Command

The print command is typically used to display the values of variables
and arrays. It may also be used to display the values in any memory
location.

9.3.6 Set Command

9-12

The set command is used to change the state of the processor or the
debugger. It can be used to change any register value, the value of any
word in any memory, or the value of any variable.

Keep in mind that with the cycle-accurate simulator (ZSIM), the set
command may not operate correctly if it is used to change the contents
of a register that will be used by an instruction currently in the pipeline—
if the instruction is in a pipeline stage older than Group (G), the
instruction may read the old value. Also, using the ZSIM set to modify a

Debugger



memory location that has already been loaded into the data cache will
modify both the data cache and the memory. (With the UART and JTAG
targets, modifying memory will not affect the data cache.)

9.3.7 Cycle-Step Command

The cycl e- st ep command is only available for use with the cycle-
accurate simulator (ZSIM). This command causes the simulator to
advance the pipeline cycle-by-cycle.

Format:
cycle-step #
Example:
(sdbug) cycle-step 10

The simulator will be advanced by 10 clock cycles.

9.3.8 Accessing Memory with the Debugger

9.3.8.1 sdbug400, zdxbug

Debugger commands use memory addresses that are seven
hexadecimal digits in length.

The address format is shown in Figure 9.1. The seventh (leftmost and
most-significant) digit is the page number (0x0-0xF) from the mempcr
register, the sixth digit selects between internal (0) or external (1)
memory, the fifth digit selects instruction (0) or data (2) memory, and the
first four (rightmost and least-significant) digits are the normal 16-bit
address. If any of the three most-significant digits are omitted from an
address, they are assumed to be zero.

Debugger Commands — Special Cases 9-13



9.3.8.2 zdbug

9-14

Figure 9.1 Debugger Memory Addressing (sdbug400, zdxbug)
0x0123456

l |

Page Number Address
from mempcr register

Internal (0) or External (1)
Memory

Instruction (0) or Data (2)
Memory

Note:  All other ZSP SDK tools and linker scripts use four-digit
addressing. The debugger is the only tool that uses seven-
digit memory addressing.

Some examples of debugger memory addressing are shown below:

0x0001000 Internal instruction at address 0x1000

0x0022000 Internal data at address 0x2000

0x0103000 Page 0, external instruction memory at address 0x3000
0x2124000 Page 2, external data memory at address 0x4000
0xa105000 Page 10, external instruction memory at address 0x5000

Debugger commands use memory addresses that are eight hexidecimal
digits in length.

The address format is shown in Figure 9.2. The eighth (leftmost and
most-significant) digit’s fourth bit (0x80000000) selects between internal
(0) or external (1) memory, the eighth digit’s third bit (0x40000000)
selects instruction (0) or data (1) memory. The other seven digits are
used to determine the address. If any of the leftmost digits are ommitted
from an address, they are assumed to be zero.

Debugger



Figure 9.2 Debugger Memory Addressing (zdbug)
0x01234567

\_'_1

Address

Internal (0) or External (8)
Memory

Instruction (0) or Data (4)
Memory

Note:  All other ZSP SDK tools and linker scripts use 24-bit
addressing. The debugger is the only tool that uses 30-bit
addressing.

Some examples of debugger memory addressing are shown below:

0x00001000 Internal instruction at address 0x1000
0x40002000 Internal data at address 0x2000

0x80003000 External instruction memory at address 0x3000
0xC0004000 External data memory at address 0x4000
0x30000000 Internal Instruction at address 0x300000000
0xF0000100 External data memory at address 0x30000100

9.4 Dynamic Breakpoints
Command-line debugging supports dynamic breakpoints for all target
execution environments while in software debug mode. Dynamic
breakpoints are set by pressing cntl-C

9.5 Example Debugging Sessions

This section contains two examples demonstrating the use of SDBUG.
The first example uses the functional-accurate simulator, ZISIM. The
second example uses the JTAG controller connection for hardware-
assisted debugging.

Dynamic Breakpoints 9-15



9.5.1 Example 1

In this sample debugging session, the executable is built from the C and
assembly programs shown in Appendix A, "Example Programs" The
name of the executable is deno. exe, and the start address is 0x1000.
The target is set to the functional-accurate simulator (ZISIM) for the
LSI402Z. The complete command name is used the first time the
command is invoked (for example, backt r ace); subsequent invocations
use the abbreviated command name (bt).

(shel 1) sdbug400

G\ gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

@B is free software, covered by the G\U General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copyi ng" to see the conditions.

There is absolutely no warranty for @B Type "show warranty" for details.
This @B was configured as "--host=sparc-sun-sol aris2.6 --target=sdsp-zsp-elf"...
(sdbug) file deno.exe

Readi ng synbol s from deno. exe. . . done.

(sdbug) target sim

Connected to the sinulator.

(sdbug) | oad deno. exe

.text :0x O0.. 0x cd... Loadi ng

.data : Ox cd .. Ox cf ... Loading

Transfer rate: 3312 bits in <1 sec.

(sdbug) breakpoi nt main

Breakpoint 1 at 0x13: file denmo.c, line 9.

(sdbug) b func_1

Breakpoint 2 at 0x56: file funcl.s, line 9.

(sdbug) b func_2

Breakpoint 3 at 0x89: file func2.c, |ine 4.

(sdbug) b func_3

Breakpoint 4 at 0x70: file funcl.s, |ine 50.

(sdbug) run

Starting program /user/Tool s/ M/Proj ect 02/ deno. exe

Breakpoint 1, main () at deno.c:9

9 char ch = "A;
(sdbug) Iist

4

5 int t=500;

6

7 nai n()

8

9 char ch = "A';
10 int i,j = 100,k;
11

12 for (i=0; i<2; i++) {
13 func_2();

9-16 Debugger



(sdbug) step
10 int i,j = 100,Kk;

(sdbug) print j

$1 =0

(sdbug) p i

$2 =0

(sdbug) continue

Gont i nui ng.

Breakpoint 3, func_2 () at func2.c:4
4 int x=0, n=0;
(sdbug) next

5 whil e(n < 20)
(sdbug) n 5

25 tl = x;

(sdbug) backtrace
#0 func_2 () at func2.c:25
#1 0x21 in nain () at deno.c:13

(sdbug) up
#1 O0x21 in nain () at deno.c:13
13 func_2();

(sdbug) down
#0 func_2 () at func2.c:25

25 tl = x;

(sdbug) inforeg r2 r3 rl2 rpc pc

r2 0x0 0

r3 0x0 0

ri2 oxf7f3 -2061

rpc 0x21 33

pc 0xcO 192

(sdbug) c

Gont i nui ng.

Breakpoint 2, func_1 () at funcl.s: 14
14 nov r5 r4
Qurrent |anguage: auto; currently asm
(sdbug) |

9 nov r13, %pc

10 stu ri3, ri1z2, -1
11

12 /** END PROLOGE **/
13

14 nov rs5 r4

15 Id r4, r5

16 nov r6, 500

17 cnp r4, r6 [* *t <= 500; */
18 bgt L2

(sdbug) s 6

20 nmov re, 100

(sdbug) info breakpoints

Num Type D sp Enb Address What

1 breakpoint keep y 0x00000013 in nain at deno.c:9
breakpoint already hit 1 tine

Example Debugging Sessions 9-17



2 breakpoi nt keep y  0x00000056 funcl.s:9
breakpoint already hit 1 tine

3 breakpoi nt keep y  0x00000089 in func_2 at func2.c:4
breakpoint already hit 1 tine
4 breakpoi nt keep y  0x00000070 funcl.s: 50

(sdbug) delete 4

(sdbug) b deno.c: 23

Breakpoint 5 at Ox3b: file deno.c, line 23.
(sdbug) c

Cont i nui ng.

Breakpoint 3, func_2 () at func2.c:4
4 int x=0, n=0;

(sdbug) n 3
9 X +=5;

(sdbug) bt

#0 func_2 () at func2.c:9

#1 0x21 in nain () at deno.c:13
(sdbug) c

Cont i nui ng.

Breakpoint 2, func_1 () at funcl.s: 14
14 nov r5, r4
(sdbug) disable 2 3

(sdbug) c

Cont i nui ng.

Breakpoint 5, main () at denvo.c:23
23 while (i < 20) {
(sdbug) p i

$3 =2

(sdbug) p j

$4 = 100

(sdbug) c

Cont i nui ng.

Breakpoint 5, main () at deno.c:23

23 while (i < 20) {

(sdbug) d 5

(sdbug) c

Cont i nui ng.

(SYSTEM HALT) . oottt
Total Instructions: 1384

Programexited nornal | y.
(sdbug) exit

9-18 Debugger



9.5.2 Example 2

This example illustrates the use of hardware-assisted debugging with the
JTAG connection. The example program hw dbg. s is shown in
Appendix A, "Example Programs"

QU gdb 4.18

Copyright 1998 Free Software Foundation, Inc.

@B is free software, covered by the G\U General Public License, and you are
wel cone to change it and/or distribute copies of it under certain conditions.
Type "show copyi ng" to see the conditions.

There is absolutely no warranty for (B Type "show warranty" for details.
This (B was configured as "--host =i 686- pc-cygw n32 --target=sdsp-zsp-el f".
(sdbug) file a.out

Readi ng synbol s froma. out. .. done.

(sdbug) jtag set_clk 2 00

(sdbug) target jtag

Connected to the target JTAG

(sdbug) | oad

.data: Ox 1 .. Ox 1 ... Loading

.text: Ox 0O .. Ox ce ... Loading

(sdbug) hw enabl e_i ce

(sdbug) hw insn_addr_brk Ox11

(sdbug) run

Starting program hardware_debug. out

Connected to the target JTAG

.data: Ox 1 .. Ox 1 ... Loading
.text: Ox O .. Ox ce ... Loading
Bef or e:
r 0: 0000 r4: 0000 r 8: 0000 r 12: 0000
r1: 0000 r5: 0000 r 9: 0000 r 13: 0000
r2: 0000 r 6: 0000 r 10: 0000 r 14: 0000
r 3: 0000 r 7: 0000 r11: 0000 r 15: 0000
% node: 0000 %W | ag: 0004 %c: 0000 % i ner 1: 0000
% c: 0000 %req: 0060 % pc: 0000 % oop2: 0000
% mask: 0000 c10: 0000 %pc: ffff % oop3: 0000
% p0: 0000 c11: 0000 %b0_beg: 0000 c27: 0000
% p1: 0000 %itr: 0000 %bl1_beg: 0000 ¢28: 0000
% oop0: 0000 ¢13: 0000 %b0_end: 0000 €29: 0000
% oopl: 0000 anode: 0000 %bl_end: 0000 %lei : 0000
%guar d: 0000 % node: 0200 % i mer 0: 0000 %led: 0000

Host: WAiting to scan out of target 6024 bits
Host: Witing scan conmand

Host: Scanned out of target 6024 bits ffff
Successful |y entered HWDebug node ...

(sdbug) i r 14

ria 0x00
(sdbug) i r 15

Example Debugging Sessions 9-19



ris 0x00

(sdbug) i r pc

pc 0x1319

(sdbug) hw st _data brk Oxab02

(sdbug) hw resune

Host: Scanning into target 6024 bits

Host: Finished scanning into target 6024 bits
Host: WAiting to scan out of target 6024 bits
Host: Witing scan comrand

Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14

ri4 0x44
(sdbug) i r 15

ri5 0x00
(sdbug) i r pc

pc 0x3048

(sdbug) hw resune

Host: Scanning into target 6024 bits

Host: Finished scanning into target 6024 bits
Host: WAiting to scan out of target 6024 bits
Host: Witing scan command

Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14

ri4 ox77
(sdbug) i r 15

ri5 0x00
(sdbug) i r pc

pc 0x4569

(sdbug) hw st_addr_brk 0x2000

(sdbug) hw resume

Host: Scanning into target 6024 hits

Host: Finished scanning into target 6024 bits
Host: WAiting to scan out of target 6024 bits
Host: Witing scan command

Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14

ri4 0x88
(sdbug) i r 15

ris 0x00
(sdbug) i r pc

pc 0x4c76

(sdbug) hw st_addr_and_data_brk 0x2001 Oxab01
(sdbug) hw resune

Host: Scanning into target 6024 bits

Host: Finished scanning into target 6024 bits
Host: Witing to scan out of target 6024 bits
Host: Witing scan command

Host: Scanned out of target 6024 bits ffff
(sdbug) i r 14

ri4 0xd13
(sdbug) i r 15
ris 0x22

(sdbug) i r pc

9-20 Debugger



pc 0x82130
(sdbug) quit

Example Debugging Sessions 9-21



9-22 Debugger



Chapter 10

ZSP Integrated Devel-
opment Environment
(ZSP IDE)

Version 4.0 of SDK Tools features a new Graphical Interface Integrated
Development Environment for ZSP software project management,
referred to as ZSP IDE. ZSP IDE is a productivity-enhancing tool for
users of ZSP Processors, allowing easy setup, build, and debug of ZSP
software projects. This chapter will focus on managing project structure
and building executable ZSP programs. The ZSP IDE Debugger chapter
describes the graphical user interface for the debugger.

Features of ZSP IDE —

e Workspaces to organize projects and default settings

e ZSP Project Build Support - G2, G1/G2, ZSP400

e Compatibility - Backward-compatible with Version 3.2 Projects.
¢ Windows and UNIX (planned) platforms

e Multiple Projects in same directory

e Build Output linked to Source File View

e Parallel Debug Manager

System Requirements — ZSP IDE requires PC/Windows 95/98/2000.

Although unsupported at this time, the IDE will be available on Solaris
platforms as well in the future.

This section is organized as follows: ZSP IDE Overview, Workspace
Overview, Project Overview, and detailed functional information.

ZSP SDK Software Development Kit 10-1



10.1 ZSP IDE Overview
ZSP IDE provides an integrated tool suite for ZSP software developers
by managing projects, building code, and debuging for all ZSP
processors and supported targets. The graphical user interface allows
easy project setup for users with minimal familiarity with ZSP tools and
hardware.

Figure 10.1 ZSP IDE Tools Suite Implementation

------

T

S—— 1 b
cmd B i

10.1.1 Introduction to Workspaces and Projects

Figure 10.2 ZSP IDE Workspace

10.1.1.1 Project

The basic element of each ZSP software project is an executable file.
Each executable file is managed by ZSP IDE based on settings that are

10-2 ZSP Integrated Development Environment (ZSP IDE)



created within ZSP IDE and stored in a project file. Project settings
include all information needed to build and debug an executable:

e Target ZSP Architecture

e Compiler Settings

* Include and Archive File directories
e Assembler Settings

e Debugger Settings

* IDE Debugger Window Settings

10.1.1.2 Workspace

A workspace may contains any grouping of projects with any combination
of processor settings and debug targets. The workspace component of
ZSP IDE allows maintenance of default settings for its component
projects.

10.1.1.3 IDE

Figure 10.3 ZSP IDE Main Window

e i

e afakNe &K A

T —————

W e TR R

i e it | P | s B

The main window layout of ZSP IDE contains the main menu, toolbar,
project tree, source file editing area and output/utility windows.

ZSP IDE Overview 10-3



All of the main functions of ZSP IDE are available through the main
menu. The most commonly used functions from the main menu are also
accessible throught the toolbar. The project tree displays the workspace
and project structure, allows opening of source files for editing, and
provides quick access to pertinent menu functions through popup menus.

At the bottom of the ZSP IDE main screen is the output window which
displays the output of build and compile commands. Additional tabs
grouped with the output window in the lower section provide a basic
operating system shell interface and an output window for post-
processing functions (such as object dump utility) or for custom
commands. The shell tab allows operating system command line
capability from within the IDE. The Utility Output tab displays output of
utility commands available from within the IDE.

The bottom part of the IDE shows status information. The current cursor
location in the editor window is also reflected in this status area.

10.2 Working With Workspaces and Projects

10.2.1 Working With Workspaces

10-4

The purpose of a workspace is to organize and to provide default
settings for a Project or group of Projects. New and existing Projects may
be added to a workspace. A Project may belong to multiple workspaces.

A set of default properties can be set for a workspace. Any new project
added to the workspace will inherit the default settings of the workspace.
These settings may later be altered by the user. When an existing project
is added to a workspace, the user is given the option to either keep

existing project settings or inherit the default settings of the workspace.

The Workspace menu has sub-menus to open, close and save
workspace files. It also has sub-menus to add new or existing projects
to a workspace. You can also delete projects from a workspace. A history
of the previous workspaces visited is also available to quickly switch
between workspaces. Only one workspace may be active at any time.
Switching to a different workspace will close the existing workspace and
the component projects. If a source file was altered and not yet saved, a

ZSP Integrated Development Environment (ZSP IDE)



warning is issued and the user is provided with an option to save
changes before switching to a different workspace.

Figure 10.4 Recent Workspaces List

'
[ Er =
ar
P
R willl g
2t -
FRTLS [ :
B i Rkl - Enamals fowi +1
+ Y ez )i iw
- O i asdptien o gl mta
= B A | o Lt
- =iy Bl L U il il T
. ' s = W i HC e i eebrind P i
. e

10.2.1.1 Creating a new workspace

A new workspace can be created by selecting Workspace>New from the

IDE Main Menu. A dialog box is displayed to specify the filename for the
new workspace.

Figure 10.5 File Selection Dialog

| i sy |
| CLYE DRCL AR G 1 recEoay =
T e T
D . | v | {HEF . 1

i | iy

Baal i
s - 1 {1 i e Ll o
e ) | Carrms Dty
|||. ot

B R
EifB Dbl Aapann grin

Crass im= (L2

—

The workspace filename will be taken from the Selection Entry in the
Dialog Box. You may type or cut and paste the selected pathname
directly into the Selection entry box and select the Create command
button to create the new workspace, or you may navigate to a new
directory from the currently selected one. The Files area shows the
filtered contents of the selected directory when the Filter command
button is selected. To limit file extensions shown in the file selection box,

Working With Workspaces and Projects 10-5



type the filter specification into the Filter Entry area and select the Filter
button at the bottom of the Dialog Box. To change the directory, select
from the directory selection box or type the directory into the Filter Entry
area. To create a new directory, enter the desired path into the Selection
entry area. The new directory will be created when the Create command
button is selected. Workspace file names will always be specified by the
filename extension “.ws”. This is not modifiable. If another extension or
no extension is specified, then the .ws extension will be created for the
base filename entered.

Note: Filenames may not contain space characters.

10.2.1.2 Open a Workspace

An existing workspace can be opened using the same procedure as
described in the previous section.

10.2.1.3 Save a Workspace

Select Save from Workspace menu to save the current workspace.

Select Save As from the Workspace menu to display the file selection
dialog box to save a workspace with a different name or in a different
directory. The new workspace becomes the current session after
executing “Workspace -> Save As”.

10.2.1.4 Add Projects to a Workspace

10-6

To add new or existing projects to a workspace, select “Add Project” from
the Workspace menu. The file selection dialog for projects is similar to
that used for creating workspaces. The default flename extension for
project files is “.pjt".

ZSP Integrated Development Environment (ZSP IDE)



i
Ef 0 TAAE 23 kil g7 TACSRAT *
(e Ty
[T B = ted Pewf ddden.ojt
wy T L] sbjesls. |l
Lasii L i
a el de_Enju. gk
imehpis optister . BT
1k g eul @
SETTRe T#E il
=ERL 158 _ AN Ean Ll
H e - -
i - Bz po B T
r — a B
e
E .'l‘r-\.l.l.--\.#.l.l FELL -
L] F
[T e —E Barm LI Bl

It is also possible to add multiple projects to a workspace without closing
the dialog box by selecting the Create command button for each project
to be added. When all projects have been added, select Done to close
the dialog box.

10.2.1.5 Delete a Project from a Workspace

Select the project to be deleted from the workspace in the project
explorer window then select Workspace->Remove Project.

10.2.1.6 Close a Workspace

To close a workspace select Workspace->Close from the Workspace
menu. Before closing a workspace, the user is prompted to save any
unsaved files.

10.2.2 Working With Projects

A project is a container for source files, object files, executable files, build
settings and debugger settings.

Each project’s settings are stored in a file with a .pjt extension. It is not
necessary for the constituent files to be resident in the same directory as
the project. The project can be moved as long as the paths to the source
files are correct. Source files, header files, libraries and object modules
can be shared across multiple projects. Multiple project files may exist in
the same directory.

The Project menu has sub-menus to open, close and save project files,
and a sub-menu to add new or existing files to a project. You can also

Working With Workspaces and Projects 10-7



delete files from a project. A history of projects recently visited is
available to quickly move between projects. Only one project can be
active at any time. Switching to a different project will close the existing
project. If a source file was altered, a warning is issued and the user is

provided with an option to save changes before switching to a different
project.

Figure 10.6 Project Menu

10.2.2.1 Creating a New Project

10.2.2.2 Opening

10-8

To create a new project within a workspace, you may select either from
the main menu Workspace>Add Project>New Project or from the Project

Tree popup menu over the active workspace node Add Project> New
Project.

A dialog box similar to that described for workspaces will be displayed
and you may create the new project using the same methods.

an Existing Project
A Project can be opened by the following options

Step 1. Project -> Open. The file selection dialog is displayed.

Step 2. One can browse to the appropriate directory and specify the
project file (.pjt file) to be opened.

Step 3. Click OK

This will open the selected project. All associated component source,
header, and object files will be shown in the project explorer pane.

ZSP Integrated Development Environment (ZSP IDE)



10.2.2.3 Saving a Project
To save a project, select Save from the Project menu.

To save a project to a new project file name, select Save As from the
Project Menu. A dialog box is displayed to save the project with a
different name or in a different directory. The new name is immediately
reflected in the project explorer window and the new project becomes
active.

10.2.2.4 Add Files to a Project

To add new or existing files to a workspace, select “Add File” from the
Project menu. The file selection dialog for files is similar to that used for
creating projects. There is no default flename extension for files. The
initial filter in the file selection dialog suggests source files. Edit the filter
specification in the filter entry to display listings of files with alternate
extensions.

It is also possible to add multiple files to a project without closing the
dialog box by selecting the Create command button for each file to be
added. When all files have been added, select Done to close the dialog
box.

10.2.2.5 Delete Files from project

To delete a file from a project, use the popup menu over the file you
would like to remove to select “Remove From Project”. You may also
select the file to be deleted from the project explorer window then select
Project->Remove Files from the main menu.

10.2.2.6 Close a project

To close a project select Project->Close from the Project menu. Before
closing project the user is prompted to save any unsaved files.

10.3 Project Settings

Selecting Build->Settings or Debug->Settings from the main menu
invokes the display of the Settings Dialog. If a workspace node is

Project Settings 10-9



selected in the project tree then the Settings Dialog will reflect the default
settings for the workspace.

The Settings Dialog contains a tabbed notebook view that contains all of
the settings for a project, including settings for the ZSP compiler,
assembler, linker, debugger, and GUI debugger preferences. These tabs
are described below. You may page between the various tabs on the
Settings Dialog and make changes. When the changes are complete for
all of the tabs, select “Save and Exit” to save the settings to the project
file and close the Dialog Box. Select “Exit without Saving” to discard the
changes.

10.3.1 Build methodology and Project Tree Structure

The ZSP IDE project tree partitions project files into “folders” based on
filename extensions. Source files which have extension of “.c” for C
sources are added to the “C Source Files” folder. Source files which have
a “.S” extension are assembly sources that require C preprocessing
while a “.s” extension indicates an assembly source file which does not
require preprocessing. Both “.S” and “.s” are inserted into the IDE Project
Tree in “Assembly Source Files” folder. Include files which have
extensions of “.h” or “.inc” will be added to the project tree “Include Files”
folder. Additionally, when a file with a “.h” or “.inc” extension is added to
the project, ZSP IDE will provide a prompt allowing the directory
containing the files to the Include Directories list. Files with any other
extension than those described here are inserted into the project in the
“Other Files” folder and will not be part of the build process.

The ZSP IDE invokes the appropriate ZSP compiler (SDCC zZDCC
ZDXCC) based on the processor type selected in the Settings dialog.
The ZSP compiler invokes each of the component processes that
complete the build process. Options may be specified to direct the
behavior or the compiler, assembler, and linker. These are specified in
the Settings panel.

10.3.2 Compiler/Assembler Settings

10-10

The Compiler Settings tab is the primary control for each project. The
processor architecture selected in the Compiler Settings tab controls the
entire set of underlying command line tools and utilities. The three
available architecture choices are

ZSP Integrated Development Environment (ZSP IDE)



e G2 - This option selects the ZSP G2 architecture.
e ZSP400 - This option selects the ZSP400 architecture.

* G1G2 - This option is provided to enable building ZSP400 code for
processors based on ZSP G2 architecture.

ZSP400 is the first generation ZSP architecture. This setting will work for
all ASSPs based on this core (example LSI1402ZX, LSI1403Z, LSI403LP).

ZSPG2 is the next generation architecture in the ZSP roadmap. It has
many new instructions, new resources and a bigger address range. It is
assembly compatible with the ZSP400.

At this time there is a dual mac core called ZSP500 that is being

designed based on the ZSPG2 architecture. It supports a 24-bit address
range and is a 4 issue machine. The simulators in the toolchain support
the ZSP500 in a cycle accurate and instruction accurate modes. Refer
to the ZSP400 and ZSPG2 manuals for more information. Select G2 to
compile for ZSP500 or G1/G2 to compile ZSP400 source code for G2.

Project Settings 10-11



Figure 10.7 Compiler Settings

m S ——
< I m w am - '-h
4f—, e kb
Uik P Pty W wlial | [ e S Y )
achids Donetarsd | kg mcinds Banis e
Py Eplor
[l | i
e el |l Bl e iy

Figure 10.8 Assembler Settings

1iniing.i== s

[T [repep—

The following table describes the other options that control the Compiler
and Assembler.

10-12 ZSP Integrated Development Environment (ZSP IDE)



Table 10.1 Compiler/Assembler Options

Option (Command Line Equivalent)

Description

Produce debugging information (-g)

This option instructs the compiler to produces debug-
ging information for source-level debugging.

Print stages of compilation (-v)

This option instructs the compiler to print the com-
mands executed in stages of compilation, and to print
the version number of the tools before compilation.

Optimization (-O number)

This option instructs the compiler to produce opti-
mized code. Select optimization level 0-3. See the
compiler section of this document for more details
regarding optimization levels and the impact of optimi-
zaton on debugging capabilities.

No assembly optimization (-mno_sdopt)

This option supresses back-end optimization that is
otherwise automatically performed on compiler-gener-
ated assembly code.

Use Long calls (-mlong_call)

This option will tell the compiler to use register-based
calls (long calls). These calls can be optimized where
possible if back-end optimization is enabled.

Use Large Data Model (-mlarge_data)

The large data model has no requirements on the size
or placement of the data and bss sections.

Additional compiler options Text Box (option)

This option specifies any compiler options that do not
have a check box in the Compiler/Assembler options
tab. Separate multiple options with spaces.

Output
Options

Create object files (-c)

This option instructs the compiler to compile and
assemble the source files and produces object file(s)
only (no linking is performed).

Create assembly files (-s)

This option instructs the compiler to stop after compi-
lation and produces assembly code files for each C
source file specified.

Preprocess files (-E)

This option stops compilation after the preprocessing
stage and redirects the preprocessed output to stan-
dard output.

Create executable (-0)

This option instructs the compiler to compile all
sources and link objects into the executable file spec-
ified in the Executable File Name entry.

Executable File Name

Specify the name of the executable file you want here.

Project Settings

10-13



Table 10.1 Compiler/Assembler Options

Option (Command Line Equivalent)

Description

No standard includes (-nostdinc)

This option directs the compiler not to search the
standard system directories for header and include
files.

Include Directories (-1)

Include Directories is a list of directories that the com-
piler will search for header and include files.

No Standard Libraries (-nostdlib)

This option forces the compiler to not use the stan-
dard system startup files or libraries during linking.

Suppress warnings (-W)

This option suppresses warning messages.

Listing option (-a)

This option produces a listing file. The listing file
includes high-level source information, assembly
instruction information, and symbol information. Type
a filename in the text box to save the listing to a file.
The listing is sent to standard output if no filename is
specified.

Additional compiler options Text Box (option)

This option specifies any compiler options that do not
have a check box in the Compiler/Assembler options
tab. Separate multiple options with spaces.

Produce debugging information (-dbg)

This option includes debugging symbols in the object
file to allow source-level debugging of assembly files.

Additional assembler options Text Box (
option)

This option specifies any assembler options that do
not have a check box in the Compiler/Assembler
options tab. Separate multiple options with spaces.

The following table describes the options that control the linker.

10.3.3 Linker Settings

The Linker Settings window provides detailed control over link behavior.
See the Linker section of this manual for more detail.

a. Entry Point - The Entry Point directive to the linker specifies the
starting address or label of the executable. The default is the
label “__start” (provided in crt0.obj for C programs). For
assembly programs you may specify the entry point to be any
valid label or address, or you may accept the default which is the
start of the “.text” section.

10-14 ZSP Integrated Development Environment (ZSP IDE)




b. Locate Stack - The Locate Stack defines the __ stack start
symbol that determines the starting address of the program
stack pointer.

c. Define Symbols - You may define other symbols with this option.

d. Code Section (-Ttext) - You may specify the starting address for
the “.text” section by entering a valid address in this entry box.

e. Data Section (-Tdata) - You may specify the starting address for
the initialized data section by entering a valid address in this
entry box.

f.  BSS Section (-Tbss) - You may specify the starting address for
the uninitialized data section by entering a valid address in this
entry box.

g. Link Script - If you need more control over the locations of
sections in you executable, you may specify a link script file in
this entry. If you specify a relative pathname, it should be relative
to your project directory.

h. Additional Options - Specify any additional options for linking.

i. Archive Files - Archive Files is a list of archive files to be linked
with your project’s object files to produce the executable.

j- Object Files - Object Files is a list of object files to be linked with
your project’s object files to product the execuatable.

E v o i
[ el o il | | j_l!
Comgiley | Biesie | LSS sy §ongel | By Sl =
s Srilrgs
ool By P [Tt § Vi s -
o ik il i § 1o} Pk e e
e | Do i i | 1 L B2
o
ot
B
damy
[
] il
Said
] |
i L
B mm 0ol e S

Project Settings 10-15



For archive and object files, you may invoke a file browser to select the
files by selecting the appropriate “Add” command button. Likewise,
remove a file from the list by selecting it with the mouse and then
selecting the “Remove” command button.

Table 10.2 Linker options

Option (Command Line Equivalent)

Description

Entry Point (-e)

This option specifies a symbol for beginning execu-
tion of the program. The default entry pointis __start.
Enter the symbol in the text box.

Locate Stack (__stack_start)

This entry defines the symbol __stack_start for the
Linker to explicitly locate the program stack.

Define symbols (-defsym)

Creates a symbol in the output file containing the
absolute address specified by the expression. Enter
the symbol and the expression in the text box, using
the following syntax: symbol=expression. Note that
spaces are not allowed next to the ‘=’ sign.

Code Section(-Ttext)

This entry specifies the starting address for the text
segment of the output file. Default value is 0x0

Data Section (-Tdata)

This entry specifies the starting address of the data
segment of the output file. Default value is 0x0.

Data Section (-Tbss)

This entry specifies the starting address of the unini-
tialized data segment of the output file. Default value
is 0x0.

Link Script This entry specifies a filename to be used as a Linker
Command File. Filename extension must not conflict
with source / object file name extensions.

Object Files Specifies external object files to be linked with the

project’s object files. Select Add button to select new
object files from a File Selection Dialog box. To
remove an object file from the list, select the entry
with the mouse and then select Remove.

Archive files List Box (-L)

Specifies external archive files to be linked with the
project’s object files. Select Add button to select new
archive files from a File Selection Dialog box. To
remove an archive file from the list, select the entry
with the mouse and then select Remove.

Additional options

This entry specifies any linker options that do not
have a check box in the Linker options tab. Separate
multiple options with spaces.

10-16 ZSP Integrated Development Environment (ZSP IDE)




10.4 ZSP IDE Detailed Description

104.1

10.4.2

Paned Window Controls

The IDE Main Window is divided into resizable sections by Paned
Window Controls. IDE screen area displayed in the Paned Window may
may be resized by dragging the handles of the paned window controls
that separate the screen areas.

Figure 10.9 Paned Window Handles

ol s

Jil
x|

Project Tree

The Project Tree component of the ZSP IDE shows a hierarchical view
of the files included in your projects and workspace. The Project Tree
also provides the primary means of selecting the active project or
workspace component.

Figure 10.10 ZSP IDE Project Tree

ZSP IDE Detailed Description 10-17



10-18

Select the workspace node of the tree to customize default settings for
your workspace. Default settings are applied to new projects when they
are created within your workspace. Default settings may also be applied
to existing projects when they are added to your workspace. To apply
default settings to existing projects, select the checkbutton labeled “Use
Workspace Settings” in the Preferences Window. To invoke the
Preferences Window select Preferences from the View Menu. See
Section 10.4.3.5, “View Menu,” page 10-21 for details on the preferences
window.

Select a project or file from the tree to activate the project file as the
Current Project. The Current Project is the project affected by Build and
Debug operations.

Select a file from the Project Tree to edit the file in the Edit Window.

A popup menu is available for the workspace node of the project tree. To
invoke the Workspace Popup Menu, click the right mouse button over the
workspace node of the tree.

5 -
i
-

The Workspace Popup Menu shows the name of the workspace followed
by shortcuts to workspace menu items from the main menu.

A popup menu is available for a project node of the project tree in the
same fashion as above.

ZSP Integrated Development Environment (ZSP IDE)



A popup menu is available for the filenode of the project tree in the same
fashion as above.

10.4.3 Main Menu

The Main Menu provides access to major functions of ZSP IDE such as
opening, closing, and maintaining workspaces, projects and files, as well

as building and debugging projects

10.4.3.1 Operating the Main Menu

Main menu items may be selected either by left-clicking with the mouse
or by typing on the keyboard using menu accelerator keys (Underlined
character in the menu name). To invoke the menus from the keyboard,
depress the ALT key and the accelerator key for the Main Menu item
concurrently. This will display the pull down subitem menu from which
you can make further selections without using the ALT key. You may also
use the Up, Down, Left, and Right arrow keys to navigate through the
menus, terminating your choice with either the Enter key to confirm or

the Escape key to cancel your selection.

10.4.3.2 Main Menu Functions

The ZSP IDE Main Menu provides the following submenus:

File Menu

Edit Menu

View Menu
Project Menu
Workspace Menu
Build Menu
Debug Menu
Help Menu

ZSP IDE Detailed Description

10-19



10.4.3.3 File Menu

The File Menu is used for operations on text files such as source files,
include files, batch files, or any other text file. This menu is provided to
open new or existing files and save and close active files.

Figure 10.11 ZSP IDE File Menu

| P i

A file opened using the file menu does not automatically belong to the
active project. A file needs to be explicitly added to a project as
described in the section on Projects.

A file may be opened and edited even if no workspace or project is
active.

10.4.3.4 Edit Menu

A simple editor is included in the IDE. The Edit Menu provides options
that may be useful during editing. It is fairly intuitive to use and provides
standard edit functionality like cut, copy, paste, indent, outdent, find,
replace, select all, undo and redo.

The Edit functions are applicable to a file that is being edited in the Edit
Window. They are not applicable for projects, workspaces and directories
and will result in errors if used for anything but File editing.

Short cut keys are also available for common edit functions.

10-20 ZSP Integrated Development Environment (ZSP IDE)



Figure 10.12 ZSP IDE Edit Menu

10.4.3.5 View Menu

The view menu is available to selectively display and customize ZSP IDE
Screen components.

Figure 10.13 ZSP IDE View Menu

View Preferences

A user may set IDE enviromnent preferences by selecting View-
>Preferences. The preferences window offers options to alter editor
settings in a tab labeled “Editor”. Colors, Text style, line number and
other preferences can be set in this window.

The checkbutton labeled “Use workspace settings” controls the default
project settings when a new project is created. If it is checked, then the
project will be created with the default workspace settings, otherwise the
project will be created with generic defaults.

The checkbutton labeled “Use Relative Path” controls the type of path
that is created within the workspace and projects. If it is not checked then
absolute paths will be used for workspace components (projects and
files, include directories, etc.) Otherwise relative paths are used. Relative
path heirarchy begins with the workspace, (which is always an absolute

ZSP IDE Detailed Description 10-21



10-22

path). Projects are relative to the workspace. Files and other project
component paths are relative to the project directory.

F
e v ]
| Sl g =
4 mrw s - e
v _' T T APPSR A R
= MaiRal Ieal * W tweym T Gl
intrp
wilk Ly [E - DR
Turresi Lisw
E&L L ®
P famd g L ] - ™
i i
dokFy et
8 h LAlL I

After finishing setting the preferences, click OK to save these settings.
View Window

View->Window provides the option to display or hide the Project Explorer
set of tabs and the Output set of tabs. A check mark to the left of the
item denotes if the window is active. The setting is toggled each time an
item is selected.

View Toolbar

The Toolbar Buttons icons displayed in the toolbar at the top of the IDE
window can be customized to a user’s liking.

There is a default that comes up as the standard toolbar. A user may
select View->Toolbar->customize to customize the toolbar. When
customize is selected a window titled “Customize Toolbar” pops up that
shows the various options available for customizing. On clicking OK, the
toolbar will be altered to display the customized settings.

Select View->Toolbar->Customize to display the Customize Toolbar
Window which allows selection of toolbar buttons to be displayed.

ZSP Integrated Development Environment (ZSP IDE)



Figure 10.14 Customize Toolbar

; o

| = el

|.E -

||.ﬁ < Chsmim

.' e i Dpem iy
ﬁ'ﬂ- o G T

.m' e
m L
i - Uiy i i

EJ = P By mew Tligehagd

B -
@ = -
i!lLFl-u—l-n--H---u--
ﬂ' = Pl [ g

;ﬁ‘_ B L]
Uy

L] eew]

Switch back to the standard settings by selecting View->Toolbar-
>Standard.

A check mark to the left of the item denotes if the selection is active. The

setting is toggled each time an item is selected.

10.4.3.6 Project Menu

The Project Menu allows projects to be created and maintained.

Figure 10.15 ZSP IDE Project Menu

1 1 e
5
g =
e
-
. 9
in s
e |
- faarn Pl

1 -

ZSP IDE Detailed Description

10-23



10.4.3.7 Workspace Menu

The Workspace Menu allows Workspaces to be created and maintained

Figure 10.16 ZSP IDE Workspace Menu

10.4.3.8 Build Menu

10-24

The Build Menu invokes the ZSP IDE Build process and allows
customization of Project Build Parameters.

Figure 10.17 ZSP IDE Build Menu

Build Project

Once a project is created and the constituent files added to it, the build
settings which control the options with which the underlying tools
(compiler, assembler, linker) are invoked can be set and the executable
can be built.

Build project will build the executable, using the options specified in the
Project Settings window. This functionality is also available from the
popup menu on the project tree when a project file is the selected node.

When building the executable, build messages will be displayed on the
output window in the Build / Compile Output tab if enabled.

ZSP Integrated Development Environment (ZSP IDE)



Figure 10.18 Build / Compile Output Window

Build / Compile | shell | Disassembly

Femnilabon meecacstil Line: 1 Fok 18

The Build Output Window displays all the standard error or output of the
process of building or compiling a project. The output can be saved by
right clicking on the window. If errors in building are shown in the Build
Output Window, you may easily display the source file and line containing
the error in the Edit Window by double-clicking with the left mouse button
on the line in the Build Output Window.

A popup menu is available within the Build Output Window to save or
clear the window contents.

Figure 10.19 Build Output Window Popup Menu

Gewwsapd i lrwry "Ee TP, s pRie s e o™~y cmleeg vall slemgr dsl cm gl owee Mg iy U, Seale e

SIS | silan =rtni
- 2E: prs

falr
-

Cleyr Thamm| Filbrlrerfall Dreed | oW 18 presec saliDel Sebeia ] ]

oy i1 4l L Benarrrafal

Settings

Select Settings to customize the parameters to be used for building your
project. This functionality is also available from the popup menu on the
project tree when the project file is the selected node.

Compile Current

Select “Compile Current” to compile the currently selected source file.
The ZSP compiler is invoked with the -c option and an object file will be
produced with the same base name as the input file and an extension of
“.obj”. This functionality is also available from the popup menu on the
project tree when the source file is the selected node.

ZSP IDE Detailed Description 10-25



10.4.3.9 Debug Menu

The Debug Menu provides configuration and control of Project
Debugging.

Figure 10.20 ZSP IDE Debug Menu

a L

ko

Use Default Target

Select Use Default Target from the Debug Menu to ignore the Target
Settings in the project file and use instead the default settings you have
saved for your computer. Use Default Target is a system setting and is
not a component of the project. The default target setting is stored in the
ZSP Tools Program directory in a file named zspide.ini.

Target Settings

Select Target Settings from the Debug Menu to display the Debug Target
Settings Panel

Debug Settings displays the valid target types for the processor type that
is specified in your project’'s Build Options. For ZSP400, valid Debug
Targets are ZSIM, ZISIM, and Hardware Targets. For G2, valid Debug
targets are software simulators ZSIM and ZISIM.

10-26 ZSP Integrated Development Environment (ZSP IDE)



Figure 10.21 Debug Settings

.' 1__II re=g -

|I RS R
e

o wesegpme—
ol e fu i e feweic Ten a1 sl e

g AR ek
e EAN D P R RS i - =Y

MR Nk s e e G e ey

= TR ke b e T ]

I T s N e

| : |
M i -
| R B "o ok 7S el h

Vil | T Dol
It b Pty

S By
| T 0 errh: o T
B0 m ki in dea o

i | g

e ] o v, [N

i Frow trpeie
Cer P Felnp —l
frpdre

Figure 10.22 Debug Window Settings

A Tl P

ZSP IDE Detailed Description

10-27



Run

Select Run to launch the ZSP IDE Debugger using the selected
processor and debug target settings.

Invoke PDM

Select Invoke PDM from the Debug Menu to run the Parallel Debug
Manager component of ZSP IDE. PDM allows concurrent debugging of
projects. PDM is valid when a workspace is active and operates on all
projects selected from within the current workspace. See Section 10.7,
“Parallel Debug Manager,” page 10-33 for more information on this
feature.

10.4.3.10 Utilities Menu

10-28

objdump

Select “objdump” from the Utilities Menu to invoke the objdump dialog
box.

The Object File Utility dialog box shows information about object files.
The default object file is the compiler output file from the currently
selected project. You may select another object file from a file selection
dialog for processing by selecting the “Choose File” command button.

ZSP Integrated Development Environment (ZSP IDE)



Figure 10.23 Object File Utility

ol
e
Ty

S L
¥ Vi i
T2 o b ey
£ il | il
| .

L hrowriis 4§ i

[T
i LT B

Figure 10.24  Utility Output Window Showing Disassembled Code

TR R N, R p R e il iy~ T e

E=EEEE EEiPD BEFE ELET|
muuln i, i

EREERT  EREPET T mEhE 4l Eid
BnBEEs  Bmackd rmu ISE P |

LUl TR R e re,  Exid
EaEERY EslAF RN - ¥y, Eml
BnEEE  EmiAE = i, Ewid
L ERPELl T Fi, =i

T LI P dsad i, -1
BaBEIT  EmETTe [T = <.

i e |l ) s Plaipa

User Command

Select User Command from the Utilities menu to display a dialog box that
allows execution of a custom command to be executed.

o g ® T |l
! _—

10.4.4 Toolbar

The Toolbar provides easy access to commonly used functions of ZSP
IDE.

ZSP IDE Detailed Description 10-29



10-30

Table 10.3 ZSP IDE Toolbar
ShaIS IR SO 1 SR

The following functions are available through the toolbar.

New File

=
Select the “New File” toolbar button to create a new text file in the IDE
editor window. The new file is not automatically included in the current
working project. If you wish the new file to be a project component, use

the “Add File” option either from the main menu Project Menu or from
the project tree popup menu over the selected project.

Open File

N

Select the “Open File” toolbar button to open an existing text file in the
IDE editor window. The opened file is not automatically included in the
current working project. If you wish the opened file to be a project
component, use the “Add File” option either from the main menu Project
Menu or from the project tree popup menu over the selected project.

Close

0

Select the “Close File” toolbar button to close the text file that is the being
edited in the IDE edit window.

Close All
i

Select the “Close All” toolbar button to close all of the text files that are
the being edited in the IDE edit window.

Save

ZSP Integrated Development Environment (ZSP IDE)



Select the “Save” toolbar button to save the file that is currently being
edited in the editor window.

Save All
&b

Select the “Save All” toolbar button to save all of the files that are present
in the editor window and that have been modified.

Cut

Ee

Select the “Cut” toolbar button to cut selected text from the editor
window.

Copy

Select the “Copy” toolbar button to copy the selected text from the editor
window into the clipboard buffer.
Paste
Select the “Paste” toolbar button to paste the contents of the clipboard
at the insertion point in the text file in the edit window.
Find

[

Select the “Find” toolbar button to invoke the Find Dialog, which allows
searching the current source file for the desired text.

Settings

Select the “Settings” toolbar button to display the Settings window for the
currently selected project or workspace.

ZSP IDE Detailed Description 10-31



Build
X

Select the “Build” toolbar button to invoke the build tools using the
settings from the currently selected project

Compile
£
Select the “Compile” toolbar button to compile the currently selected

source file.

Debug
@

Select the “Debug” toolbar button to invoke the GUI debugger for the
currently selected project.

10.5 Shell Window

Figure 10.25 Shell Window

E|

[ Buid/Compile  shell | Disassembly |
02/21/01 1l:34a 0 EB402 UART DEBUG.txt 2]
11/09/00 01:40p 16,421 hpi bost.txt
06/22/01 12:21p £,798 main.c.$4¢
03/06/01 12:07p 94,486 bootloader.dis
03/12/01 02:28p 338 bootloader.lef.$3¢
10/18/01 10:48a 3,112 test.pit.save
03/12/01 02:38p 10,958 main.s
11/08/01 0l:40p 4,237 test.pit.$3¢
03/12/01 03:18p 14,736 test.syms
06/15/01 D1:53p 264,109 dbg dis.dat
06/15/01 01:52p 2,694 Project.ini.old
11/21/01 10:0la 198,101 Sdbuglogfile.html
10/30/01 03:36p 41,286 new bootloader.exe
12/21/01 12:16p 63,151 bootloader.zip
01/17/02  04:07p <DIRs Flash
01/17/02 04:07p <DIRr test
01/25/02  01:35p 4,477 testi.pit
01/25/02 11:37a 615 default.ws
01/25/02 11:20a 409 Shortcut to Copy of test.pit.lnk
01/25/02 1l:48a 4,479 testZ.pit

39 Tilels) 1,435,291 bytes

26,435,283,968 bytes free

W: /0_test/BostLoader 3

This is a window, where you can type dos commands

10-32 ZSP Integrated Development Environment (ZSP IDE)



10.6 Disassembly Window

Figure 10.26 Disassembly Window

E|
Buld / Compile | shell  Disassembly 1
0x145e  Oxbb3s __zsim_furite:  mov #ch0_bey, r8 =
Ox145f  0xb3ls P ¥8, irpe
0x1460  OxhaS7 mow 3laop0, 7
0x1461  Oxbesd v re, r4
0x1462  Oxhe?s mow ¥7, ¥E
0x1463  0x725c 14 ¥s, rlz, 2
0x1464  0x7lde 14 ¥4, rlz, 1
0x1465  0xacds v rl3, §
0x1466  Oxlfda call ___mk_io_remuest
0x1467  0x705c 14 rs, rlz, 0
0x1468  0x77dc 14 ¥4, riz, -1
0x1463  0xb85T v ¥7, %lecpld
Ox1l46a  Oxbbls mow srpo, 8
Oxl4ck  0xb33s nov ¥8, $cbl_beg
Oxl46c  OxbfOl mow ipe, srpe

The disassembly window shows disassembled code sections and is
generated from the executable file. To populate the Disassembly Window,
select Disassembly from the View Menu.

10.7 Parallel

Debug Manager

When PDM starts, a configuration window is displayed from which you
may select the projects from within your workspace that you would like
to debug. Selected projects display a checkmark in the selection box.

Figure 10.27 Parallel Debug Manager Setup Window

Debug Manager for W:/0_test/NewProject/t... [Hi[=] B

File Debug

[T w/:/0_test/MewProject/, /400sim.pit [400sve)

02.exe

[T wi/0_test/MewProject/ /gl a2 pit  [alaZers

[T w/0_test/NewProject/. /a2 pit

[T wWo/O_test/NewProject/g2simpit  [a2.exe
[T wi0_test/NewProject/gl g2simpit [g102.5ve
[ wh./0_test/MewProject/400.pit 400, exe

Select Run from the Debug menu choice to start debugging. The PDM
window changes to debugging mode and ZSP IDE Debuggers are
launched for each of the projects selected. Each debugger may be

Disassembly Window 10-33



controlled independently using its own controls, or all debuggers may
execute the same commands as directed by the PDM Control Window.

PDM Controls include command buttons from the Debug Execute menus
and a command prompt and output window. Commands that are typed
into the command prompt will have output displayed in the PDM output
window for each of the projects being debugged.

Figure 10.28 Parallel Debug Manager Control Window

Debug Manager for W:/0_test/NewProject/test_400_g2_glg2.ws [_ 1o x]
File Debug
W _testMewProieet . /400sim.pit [1050 ms|
WA test/MewProject/ /a2 bt 2360 ma)
W A_test/MewProjeet/g2sim pit 110 ms|

v i | sep | nen | i | i [ ] | svcene|

SDBUG Command

#/eygdrd L
Breakpoint & st OxlE: file /cygdrive/W/0_test/NevProject/main.c, line 23,

#main.c:28: - HCH
Breakpoint 3 at 0x28: file main.c, line 23,

Clear

10.8 Help Menu

10.9 Editor

The ZSP IDE Editor is a window where you can write your code. It allows
basic editing functionality

10-34 ZSP Integrated Development Environment (ZSP IDE)



10.10 ZSP IDE File Formats

ZSP IDE produces a number of files when you create and compile a
project or Workspace. These can be categorized as follows

Table 10.4

Extension Description

.C C Source file

Sor.s Assembly source File
.h Header File

pijt Project File

ws Workspace File

.exe Executable file

ZSP IDE File Formats

10-35




10-36 ZSP Integrated Development Environment (ZSP IDE)



Chapter 11
ZSP IDE Debugger

This chapter describes how to use the ZSP IDE Debugger, a graphical
debugging environment for developers using the ZSP family of Digital
Signal Processor Cores.

Version 4.0 of SDK Tools features a new Graphical Interface Integrated
Development Environment for ZSP software project management,

referred to in this document as ZSP IDE. The debug component of ZSP
IDE is the focus of this chapter and is referred to as ZSP IDE Debugger.

ZSP IDE Debugger is a menu-driven user interface to the ZSP Debugger.
It provides a user-friendly graphical interface that allows navigation
through your code while showing program and processor information for
debugging purposes. The ZSP IDE Debugger allows setting breakpoints,
examining registers and variables, watching source level variables,
examining memory. Commands may be entered to be executed by the
Command Line Debugger. The capability to automatically save your
current debug settings and restore them at startup allows quick setup for
each debugging session.

The ZSP IDE Debugger is an integral component of the ZSP IDE
executable (ZSPide.exe). The Debugger is configured and invoked from
the IDE Debug Menu to operate on the IDE Current Project. The
Debugger component of the IDE may be run independently from the IDE
by using a separate executable (guidebug.exe). When running the
Debugger in this way, a Project File may be loaded through the Debugger
File Menu.

Features of ZSP IDE Debugger —

* Processor Support - ZSP G2 Architecture, ZSP400 Architecture, and
G1/G2 (to use ZSP400 source code for processors based on ZSP
G2 architecture.)

e Compatibility - Backwards-compatible with Version 3.2 Projects.

ZSP SDK Software Development Kit 11-1



* Windows and UNIX (planned) Debugger platforms
e Support for multiple targets
* Processor Register Windows - Operand, Control, Address Registers

* Displays cycle-accurate simulator information, code statistics, code
profile, instruction grouping rules

e Concurrent Source and Disassembly level debugging

e 40-Bit Register display

e Multiple sessions may run concurrently

e Command-Line Debugger interface

Underlying Command Line Tools — Behind the ZSP IDE Debugger is
a command line interface to a GNU Debugger (sdbug, zdbug, zdxbug)

for the ZSP processor. Each currently supported debug target (ZSP
Core) uses a separate configuration of the Command Line Debugger.

Table 11.1 Command Line Debugger Executables

Target | Command Line Debugger

ZSP400 | sdbug400.exe

G2 zdbug.exe

G1G2 zdxbug.exe

Target Interfaces

Table 11.2 Debugger Targets

Simulator targets

Cycle accurate simulator (zsim)

Instruction level simulator (zisim)

Hardware Targets

Corelis PCMCIA based JTAG connector

Corelis PCI based JTAG connector

UART (Serial Port)

11-2 ZSP IDE Debugger



ZSP IDE Debugger supports the JTAG hardware target for ZSP400,
UART (Serial Port) hardware target for ZSP400, ZISIM instruction-
accurate simulator for ZSP400, G2, and G1G2, and ZSIM cycle-accurate
simulator for ZSP400, G2, and G1G2.

11.1 GUI Debugger Overview

11.1.1 Main Window

The Main Window comprises a Title Bar, Menu Bar, Tool Bar(s), Status
Area, and Debugging Window area in which Debugging Windows may
be displayed.

11.1.2 Title Bar - Project File Name Display

When a project is loaded, the name of the project file is displayed in the
Main Window Title Bar.

11.1.3 Window Area

Debugging Windows are displayed in the window area in the center of
the Main Window. The Main Window configuration adds new Debugging
Windows by splitting the available window size into panes that are
resized by adjusting the handle on the separator between the windows.
Alternatively, Debugging Windows may each be separated from the Main
Window (see Section 11.1.7.3, “Top Level Window Presentation,”

page 11-8).

11.1.4 Status Area

The Status Area at the bottom of the Main Window shows general
information throughout the debugging session, such as the target
processor, debug target, executable file name, and debugging status.

11.1.5 Main Menu

The Main Menu provides access to major functions of the debugger such
as controlling breakpoints, executing navigation commands, displaying
Debugging Windows.

GUI Debugger Overview 11-3



11.1.5.1 Operating the Main Menu

Main menu items may be selected either by left-clicking with the mouse
or by typing on the keyboard using menu accelerator keys (Underlined
character in the menu name). To invoke the menus from the keyboard,
depress the ALT key and the accelerator key for the Main Menu item
concurrently. This will display the pull down subitem menu from which
you can make further selections without using the ALT key. You may also
use the Up, Down, Left, and Right arrow keys to navigate through the
menus, terminating your choice with either the Enter key to confirm or
the Escape key to cancel your selection.

11.1.5.2 Controlling Debugging Windows Through the Main Menu

Debugging Windows display program and/or debugging target
information. Debugging Windows may be selected for viewing through
the Main Menu checkbutton menu items.

Debugging Window Menu Checkmarks — When a Debugging Window
is displayed, the corresponding Main Menu item displays a checkmark in
front of the menu text field

Figure 11.1 Menu Checkmarks For Debugging Windows

ecute Program View | Target View | Tools

» I ¥ Dig bly

D B Control Registers
& | .M00sim v Operand Registers
>

Long WOFI

ain(void

Memory
WORD3Z a —

11.1.6 Main Toolbars

Toolbars are available as menu shortcuts to provide access to commonly
used debugging features.

11.1.6.1 Available toolbars

Toolbars exist for the following areas:

* Program navigation (Execute Menu shortcuts)

ZSP IDE Debugger



* Breakpoints (Breakpoint Menu shortcuts)

*  Windows (Debugging Window menu shortcuts)

11.1.6.2 Invoking Toolbars

Select Toolbars from the Tools Menu and select the desired toolbar by
name to toggle the display of the toolbar below the menu in the Main
Window.

Figure 11.2 Tools Menu - Invoke Toolbars
|
¢ | Todls

Preferences
Sdbug Prompt
Sdbug Settings 4

e Program Navigation

Breakpoint Management
Data Windows

£A00_jtag_ 1013523614 og

11.1.6.3 Modifying Toolbar Appearance

Toolbar Buttons may be viewed with text or icon annotation. To view the
button annotation as text, select Preferences from the Tools Menu to
display the Preferences Window then unselect the “use images”
checkbutton. Figure 11.4 and Figure 11.5 illustrate the appearance of the
toolbar for each of these annotation modes.

Figure 11.3 Preferences - Use Images For Toolbar Buttons

Session | Display \

[T separate New Vindows

Set Main Window Columns

[T Highlight Symtax

Each Toolbar Button has a text description that is displayed when the
mouse cursor is present on the button providing additional information
regarding that button’s functionality.

GUI Debugger Overview 11-5



Figure 11.4 Toolbar Buttons With Text Annotation

_/400_jtag.pit [- o] x]
Eile Breakpoint Execute Program View TargetView Tools
Fun | Continue | Step | Next | Finish | Until | Assy Step | Assy Next | Cycle Step
Set Enable Delete- Disable- Delete ALl Enable all Disable all

Breakpoint| Symbols | Stack |Sources|Locals | Globals |Expression| Uatch |Profile
$tatistics |Disassembly|Control |Operand Pipeline| FRule |Menory|Command
Z5P Addiess Registers

Figure 11.5 Toolbar Buttons With Image Annotation

File Breakpoint Execute Program View Taiget View Tools

E I O I = - - S

B |4 | B]@ |6 [m]|Ww,

Bld % e e | d|®

W | B[ | 8 R % | m | O
Z5P Address Registers

11.1.7 Debugging Windows (General)

Debugging Windows comprise the following types (described in detail in
later sections):

e C/Assembly Program Windows
— Source Code
— Breakpoint List
— Debugging Symbols
— Call Stack
— Local Variables
— Global Variables
— Expression
— Watch
— ZSIM Statistics
— ZSIM Profile
* Target system windows
— Disassembly Code

— Control Registers

11-6 ZSP IDE Debugger



— Operand Registers
— Address Registers (G2)
—  Memory
— ZSIM Grouping Rule
— ZSIM Pipeline
* Tools Preferences

e Command Line Interface

11.1.7.1 Debugging Window Operation

Debugging Windows are displayed by selecting the appropriate menu
item from the Main Menu or by selecting the appropriate button from the
Window Toolbar. To remove the window from the display, invoke the menu
item again to remove the checkmark, close the window by clicking on the
“X" icon, or deselect the associated Toolbar Button.

11.1.7.2 Debugging Windows Paned Window Presentation

Debugging Windows are presented by default in a Paned Window view
as child windows within the Main Window. In this configuration, all
windows appear at the same level, ie. no separate Debugging Windows.
Each Debugging Window may be separated from the Paned Window (
see Section Debugging Window Top Level Preference - Page 9 and
Section Changing Debugging Window View Mode - Page 9)

Figure 11.6 Debugger Paned Window

/400_jtag pit [_[o]x]
File Breakpoint Emecute ProgramView TargetView Toals
Jaiay ¢ w| souReE conE BxX TARGET DISASSEMBLED CODE X
—[s int 1; 5| ox001a[usini: mov 13, %rd
El WORDLE result: iy 0x001b : stu
> | 10 acoum - 0x12345678; /% acow —|v  [oxo01c : add
1 3=3: e [oxoo1e : nov
12 | [oxo01e : add
1= mvinet 10Tnio mare it io roor [¥] | |_fo awnnie . iy =l
= L=
LOCAL VARIABLES 0Ox ZSIN GROUPING RULE Ox
&1 acowm = [type = long int ] lctive grouping rule in current cycle:
@] 8 o 0 [ o 6 § 26. Wo loads after stores.
@1 result = 0 [type = int ]
’T‘ I‘ﬂUU.exe Processor zsp400: 1|ZSP IDE Debugger v4.0
zaim beta

Paned Window Operation — Windows displayed in the Paned Window
may may be resized by dragging the handles of the paned window

GUI Debugger Overview 11-7



controls that separate the rows and columns of the Debugging Window
area.

Figure 11.7 Paned Window Handles

=l
=

¢ AR

.l.I

Resizing columns affects all windows in that column while resizing rows
only modifies one window plus its vertical neighbor.

Paned Window Configuration — The presentation of windows in the
Paned Window may be configured in 1-4 columns by selecting
Preferences from the Tools Menu and “Main Window Columns” from the
Preferences Window Display Tab. To change the number of columns
displayed during a session,

Step 1. Set the desired number of columns in the preferences panel

Step 2. Save the debugging session (File > Save > Session)

Step 3. Reload the debugging session (File > Load > Session)

Figure 11.8 Preferences - Set Main Window Columns

Preferences [=]

Session | Display \

7 separate New Windows

Set Main Window Columns

1 |llight Syntax

v 2
3 |images
4

11.1.7.3 Top Level Window Presentation

Top Level presentation of a Debugging Window displays that window as
a separate Top Level window.

11-8 ZSP IDE Debugger



Figure 11.9 Top Level Debugging Window

tvRulel =]
ZSIN GROUPING RULE AR

Active grouping rule in current cycle:
26. No loads after stores.

Top Level focus control — Top Level Debugging Windows that are
obscured by other graphics on the screen may be brought into focus for
viewing by selecting the corresponding Window Button on the toolbar at
the bottom of the Paned Window.

Figure 11.10 Top Level Window Focus Control

touts On . /400, exe
tvRule

Debugging Window Top Level Preference — New Debugging
Windows may be automatically configured for Top Level presentation by
selecting Preferences from the Tools Menu and then selecting the
checkbox labeled "Separate New Windows" in the Display Tab of the
Preferences Window.

Figure 11.11 Preferences - Separate New Window

Preferences [=]

Session | Display \

W Separate New Windows

Ser. Main Window Columns

M Highlight Syntax

[T Use images

11.1.7.4 Changing Debugging Window View Mode

Each of the Debugging Windows may be changed to and from Top Level
or Paned Windows or may be closed by selecting the appropriate window
icon at the upper right corner of that Debugging Window’s submenu
area.

GUI Debugger Overview 11-9



Click the left mouse button on the Window icon to separate the window
into a Top Level Window. Click the left mouse button on the “X” icon to
close the window.

Figure 11.12 Display Controls for Paned Window
_O®

Click the left mouse button on the window icon to join the Top Level
Window into the Paned Window. Click the left mouse button on the “X”
icon to close the window.

Figure 11.13 Display Controls for Top Level Window

—
5]

11.1.7.5 Autoload Debugging Windows Preference

When restarting a debugging session, the windows displayed in the
previous session may be automatically displayed by selecting
Preferences from the Tools Menu then selecting the "Autoload/save
windows at entry/exit" checkbox from the Session Tab of the Preferences
Window.

Figure 11.14 Preferences - Autoload Windows

Preferences [=]

Session \ Display \
session Logging
€ Disable logging
Loy to window
& Log to File
W iuto load/save windows at entry/exir

[T Keep log files

Display settings are saved as part of the project data when Autoload is
selected. This includes all of the window preferences selections and all
of the debugging windows that are open when the debugger is closed.

11-10 ZSP IDE Debugger



11.2 Detailed Descriptions
11.2.1 Main Menu

11.2.1.1 File Menu
File operations available through the File Menu include:

¢ loading and saving debugging sessions
* Jloading an executable for debugging
¢ loading and saving memory images

e script recording and playback

11.2.1.2 Breakpoint Menu

Breakpoints allow program execution to stop at specified code locations
so that processor and program information may be examined during
debugging. Each line of source or disassembly code may be specified as
a Breakpoint. When a Breakpoint is enabled, program execution will be
stopped when the line of code is scheduled as the next instruction. When
a Breakpoint is disabled, program execution is not stopped at the line but
continues past the breakpoint. Breakpoint Operations available through
the Breakpoint Menu include:

e toggling breakpoints at the currently selected source line

* enabling and disabling a breakpoint at the currently selected source
line.

e disabling or deleting breakpoints at all except the currently selected
line

* deleting, enabling, or disabling all breakpoints

e toggling display of the breakpoint listing window

Breakpoints are indicated in the Source and Disassembly Windows in the

left-most column of the window. An Enabled Breakpoint is indicated by a

red highlight in this area of the line. A Disabled Breakpoint is indicated
by a gray highlight.

Detailed Descriptions 11-11



11-12

Figure 11.15 Breakpoint Menu

File | Breakpoint | Execute Progriam %
Toggle Set T
Topgle Enable  E  [3
Delete Except

j Disable Except Tu
= | Delete Al D |
| Enable Al =
Disable All |
i
= List
-T2z

Current Selection Line — When setting a breakpoint from the
breakpoint menu, the breakpoint will be set at the Current Selection Line.

At the completion of each program navigation step (eg breakpoint
reached, single step executed, etc) the Current Selection Line is the
highlighted program line.

The Current Selection Line for Breakpoint Operations may be set in
either the Source Window or Disassembly Window. Left-click the mouse
with the mouse pointer over the desired line and that line will become the
Current Selection Line. Alternatively, you may use the up and down arrow
keys to select the previous or next line of code as the Current Selection
Line.

When the Current Selection Line is selected with the mouse or keyboard,
the address of the Current Selection Line is displayed in the status bar
at the bottom of the Paned Window, the appropriate line/lines is/are
highlighted in both the Source Code and Disassembly Windows, and
subsequent Breakpoint Operations will be applied to that line.

Figure 11.16 Source Code Window Current Selection Line

> |13 printf (“This new GUI is COOL!Vn'
- | 14 // result = (VORD1E) (accum >> L
|15 result = accum:

- (8 printf{"result is %08% \n", resu
- 17 accum = -0x12345678: /% accum

. /ajay. ci 00035

Breakpoint Toolbar (Menu alternative) — Each of the breakpoint
functions except the listing is available from a toolbar that is displayed in
the Main Window. To display the Breakpoint Toolbar select Toolbars from
the Tools Menu and then select Breakpoint Management from the
Toolbars cascade menu.

ZSP IDE Debugger



Toolbar settings are saved and restored for each debugging session
when “auto load/save windows at entry/exit” is selected in Debugging
Preferences.

Breakpoint Menu —

Toggle Set

When a breakpoint is "Toggle Set' by the "Toggle Set" menu choice, the
debugger checks for the existence of a breakpoint at the current line. If
a breakpoint exists, it is deleted. If a breakpoint does not exist, then one
is created at the current line.

Alternatives to Breakpoint Menu 'Toggle Set'"

e Source and Disassembly Window Popup Menus "Toggle Breakpoint"

* Source and Disassembly Window Breakpoint Area (left-most column
of the window) left-click

e Keyboard Shortcut "T or t"

Example of Source Code Window breakpoint controls and displays

Figure 11.17 Source Code Window Breakpoints

-- 1z
> | 13 printf {"This new GUIL is
- | 14 /7 result = [WORDIS) (acc
B result = accum;

- | 16 printf("result is %08x \r
= . e
T
|1 Toggle Breakpoint Enable |-

- | 20 Run to this line

- el Continue to this line

Toggle Enable

When a breakpoint is "Toggle Enabled' by the "Toggle Enable" menu
choice, the debugger checks for the existence of a breakpoint at the
current line. If a breakpoint does not exist, then one is created at the
current line and enabled. If a breakpoint exists, the debugger checks for
the enabled state of the breakpoint. If it is enabled then the breakpoint
is set to disabled and vice-versa.

Alternatives to Breakpoint Menu 'Toggle Enable'

* Source and Disassembly Window Popup menus "Toggle Breakpoint"

e Keyboard Shortcut "E or e"

Detailed Descriptions 11-13



Delete Except

Selecting "Delete Except" from the Breakpoint Menu causes all
breakpoints to be deleted except at the current line. If no breakpoint
exists at the current line, then a breakpoint at the current line is created.

Disable Except

Selecting "Disable Except" from the Breakpoint Menu causes all
breakpoints to be disabled except at the current line. If no breakpoint
exists at the current line, then a breakpoint at the current line is created.

Delete All
Selecting "Delete All" from the Breakpoint Menu causes all breakpoints
to be deleted.

Enable All
Selecting "Enable All" from the Breakpoint Menu causes all existing
breakpoints to be enabled.

Disable All
Selecting "Disable All" from the Breakpoint Menu causes all existing
breakpoints to be disabled.

List
Selecting "List" from the Breakpoint Menu displays a Debugging Window
showing details of breakpoints currently set.

Note: For details about the Breakpoint List Window, see Section ,
“Breakpoint List,” page 11-22

11.2.1.3 Execute Menu

11-14

The Execute Menu provides access to commonly used navigation
features for debugging.

* Run

* Continue

e Stop

* Source Step
* Source Next

e Source Until

ZSP IDE Debugger



* Source Finish

e Assembly Step

e Assembly Next

* Cycle Step

e Multiple Cycle Step

Figure 11.18 Execute Menu

oint | Execute = Program View Target View

we Eun R

#inc|  Continue C

TYpe

type

WorD Source Step S

! Source MNext M
Source Until U
Source Finish Foo
Assembly Step A L
Assermbly MNext X
Cycle Step A ;
Multiple Cycle Step M

Alternative to execute menu for execute functions — Additional
means of navigation are:

*  Program Navigation Toolbar

* Keyboard shortcut keys

e Popup menu on source and disassembly Debugging Windows
Program Navigation Toolbar

Each of the execute functions is available from a toolbar that is invoked
from the Tools Menu. To turn on the Program Navigation Toolbar, select:

Tools Ivletm

Toolbar Program Mawigation

Detailed Descriptions 11-15



11-16

Keyboard Shortcut Keys
Keyboard shortcut keys allow single-keystroke navigation through
program execution.

Table 11.3 Keyboard Shortcuts

Key Action

F2Rr Run

F3Cc Continue
F4Ss Step

F5Nn Next

F6 A a Assembly Step
F7 X x Assembly Next
li finish

Uu Until

Oo stop

Yy Cycle-Step

M m Multiple Cycle-Step

Popup Execution Functions
Selecting a source or disassembly line and using the right-click popup
menu allows run or continue to that line.

Execute Menu Functions —

Run
Run causes the program to be run from the start.

Continue
Continue causes the program to be run from the current position.

Step

Step causes the program to advance from the current source position to
the next source line for which debugging information exists. If the source
file does not exist, the Disassembly Window will be invoked for navigation
through the debug execution steps. If the current source is assembly

ZSP IDE Debugger



code then Step advances by one assembly instruction, stepping info
function calls.

Next

Next causes the program to advance from the current source position to
the next source line. If the current source position is a function call then
the function is stepped over. Otherwise the behavior is the same as Step.
If the current source is assembly code then Next advances by one
assembly instruction, stepping over function calls.

Assembly Step
Assembly step advances program execution by an assembly-level
instruction. Assembly step will follow calls to step into functions.

Assembly Next

Assembly next advances program execution by an assembly-level
instruction. Assembly next will step over calls and will not step into
functions.

Finish
Finish completes execution of a function and returns to the line following
the function call.

Until
Until continues running until a source line past the current line in the
current stack frame is reached.

Stop

Stop causes a dynamic breakpoint to be executed in a running program.
Program execution is halted and current state of the program and
processor is reflected in the Debugging Windows.

Cycle-Step

Cycle-step advances program execution by one processor clock cycle.
Cycle-step is available for the ZSIM simulator target only. Depending on
instruction grouping, more than one assembly instruction may be
executed in a Cycle-Step.

Multiple Cycle-Step

Multiple Cycle-step advances program execution by a user defined
number of processor clock cycles. Multiple Cycle-step is available for the
ZSIM simulator target only.

Detailed Descriptions 11-17



11.2.1.4 Program View Menu

The Program View Menu controls program-related windows. To display a
window, select it from the menu. When the window is displayed, a
checkmark is placed next to the window description. See

Section 11.2.2.1, “C/Assembly Program Windows,” page 11-19 for
detailed window information.

Figure 11.19 Program View Menu

|
!‘.i.’m Target View Tools
B Debugging Symbols L
Call_Stack
v Local variables
Global Variables
Evaluate Expression
©2  Watch Expressions
i ZSIM Statistics
ZSIM Profile

Al (I

ETE FTIF

int
£ 1 ¥ Source Code

11.2.1.5 Target View Menu

The Target View Menu controls target hardware-related windows. To
display a window, select it from the menu. When the window is displayed,
a checkmark is placed next to the window description. See

Section 11.2.2.2, “Target Windows,” page 11-27 for detailed window
information.

Figure 11.20 Target View Menu

Target View Tools

Disassembly
Control Registers
Operand Registers

ZSIM Pipeline

ZSIM Grouping Rule
Memory

11.2.1.6 Tools Menu

The Tools Menu provides customization of views for each project, access
to a Command Line Debugger Interface, display of target settings,
selection of toolbars to be displayed in the Main Window, and log file

11-18 ZSP IDE Debugger



display. See Section 11.2.2.3, “Tools Windows and Functions,”
page 11-33 for more information on the Tools Menu items.

Figure 11.21 Tools Menu

|

v [ Taols |

¢ Preferences

~ Sdbug Prompt
Sdbug Settings 4
Toolbars L4

£A00_jtag_ 1013528527 log

11.2.1.7 Help Menu

The Help Menu provides help.

11.2.2 Debugging Window Detailed Descriptions

11.2.2.1 C/Assembly Program Windows

Available from the Program View menu or from the Window Toolbar, the
Program Windows display data pertinent to execution of a program.
Available Program Windows include:

e Source Code Window

e Breakpoint List Window

e Debugging Symbols Window

e Call Stack Window

* Local Variables Window

* Global Variables Window

e Expression Window

e Watch Window

e ZSIM Profile Window

e ZSIM Statistics Window

Source Code Window — The Source Code window displays the
program source files for debugging. The location of the program source

files are obtained from the debugging information in the loaded
executable. Additional directories may be searched for source files by

Detailed Descriptions 11-19



11-20

using the Working Directories specification in the Project Settings dialog
of the IDE.

Accessing Source Code Window
The Source Code Window is accessible through the Program View Menu
by selecting “Source Code”.

Program execution tracking

Tracking of program execution is visible through the Source and
Disassembly Windows. The Current Line is highlighed as the next
instruction to be executed.

Source Code Window Display

The Source Code Window is populated based on information reported
from the Command Line Debugger. When the Source Code Window is
created, all source files known to the Command Line Debugger are
inserted into the file selection pulldown box when the Source Code
Window is created. The content of the source files are read from their
files and displayed in the Source Code Window either when you select
the file for viewing from the file selection pulldown box or when program
execution enters that source code file.

Figure 11.22 Source Code Window

pvsic0 ]
/-l test/NewProject/maine_ w|  SOURCE CODE BEX

20 |unsiqned mydara[4] - {Ox5152,0x5354, 0x5556,0x5758) ~ |
- 21 COMPLEX STRUCT mystruct;

- | 22 |void myfuncrioncall (void);

— | 23 [void novars(void):

-- 24

- 25

—- | 26 |int maing)

- lzr |t

> | 28 int CARS = -1;
- 29 int i;

- | 30 char #charptr;
— | =1 int intarray[5]:

-- 3z i=0;

- | 33 while { i < 500 ) -

Source Code Window Syntax Highlighting
If the project preferences indicate that syntax highlighting is desired,
each file will be highlighted at creation.

Source Code Window progress bar

While source file loading or highlighting is in progress, a progress bar is
displayed to inform the user of the status of the operation. If the source
file is a Top Level window then the progress bar is also displayed as a
Top Level window, otherwise the progress bar is displayed in the Main
Window status area.

ZSP IDE Debugger



Figure 11.23 Progress Bar Window
=Iox|

reading source/:

Source Code Window Components

The Source Code Window contains columns for breakpoint information,
pipeline stage (ZSIM target only) line number, and source code text. The
window submenu contains a source file listing drop-down box in the
Source Code Window Menu. The source file drop-down box lists all of
the source files known to the Command Line Debugger.

Figure 11.24 Source Code Window (shown with Disassembly

Window)

tsstirapg723ves w| souReE coE B TARGET DISASSEMELED CODE B
- [ 215 /% Setup Uselp Flag +/ Al | [ [oweenzs : 1d v, 2|
- | 218 G723U1. GT23ULSTAT UseHp = G723 —-[e  [oxzoze : st 6,

- | 217 [ |oxz02a : novl 5, 1
—- | 218 —-|p  [oxz0zp : wovh 5, |
B | 219 Coditart.Uistat- (unsigmed o | [--|r  |oxz02¢ : nowl ra, 1)

2zo DecStat.lli%tar= (imaimed Oxz02d H movh 4, |

- | 221 Toggle Breakpoint 0x20ze : novl r13,
- | 222 Toggle Breakpoint Enable Oxz0zf : novh 13,
- lazs | Run to this line 0x2030 : add r13,
0x2031 : st 4,
%2032 : novl 5 .|

Continue to this line

e Source Code Window Breakpoint Area
The breakpoint area shows enabled breakpoints in red, disabled
breakpoints in gray and the current line is indicated by an ascii arrow.

e Source Code Window Line Highlighting
The Source Code Window has two important items highlighted for
user information, one being the Current Program Execution Line and
the other being the User-Selected Line.

— Source Code Window Current Execution Line
Current Program Execution Line - indicated by a highlighted
background on the code and line number areas.

— Source Code Window User-Selection Line
User-Selection Line - indicated by a blue band over the line
selected. The line may be selected by clicking the left mouse
button on the desired line. The line may also be selected by
using the keyboard up and down arrow keys. The source code
filename and instruction address are displayed in the Main
Window status bar when the user selects a line. If the "Target
View > Disassembly' Window is displayed when the user selects

Detailed Descriptions 11-21



11-22

a source code line, then the associated disassembly lines are
also marked with the same color blue band and brought into
view.

e Source Code Window Popup Menu

The popup menu for the source code or Disassembly Window is
invoked by right-clicking the mouse over the code area. The popup
menu allows you to toggle a breakpoint or breakpoint enable at the
selected line, run from start to the selected line, or continue from the
current execution point to the selected line. Run and continue to the
selected line is implemented by saving the breakpoints, setting a
break at the selected line and then executing run or continue as
specified.

ENTE N

localstpuect oeeanlal — -
Toagle Breakpoink

Toggle Breakpoint Enable
Fun ko this line

Zontinue ko this line
Query localstruct

ING RULE

The source code window popup menu also allows a command-line
debugger query to be performed using the word beneath the mouse
pointer as the query expression.

Figure 11.25 Example Source Code Popup Query Result

| Oy b SbRTLCL
;'Ih-l.l'rlu. Lty = [ 0, @, O verli = ll iyl = (iingnl = 0. syeil =

B,
! rinmt? = B, rrgemi 3 = 0, wmpirnld = 0L rwgend® = 0, ioedeng = [T7)

Breakpoint List — Selecting "Breakpoint -> List" from the Main Window
causes a Debugging Window window to be displayed showing details of
breakpoints currently set.

ZSP IDE Debugger



Figure 11.26 Breakpoint List Window

EBREAKPOINTS BX
source line addr  id ensble
114 nxzzzs‘ 6 1 -

testwrap/timer_util.§
testwrap/timer_util.$
testwrap/timer_util.§
testwrap'gTeivec.c
testurap'g72ivec. c
testwrap\g7asee- -
testurap’ q723 Toggle Breakpoint
testwraphgled Toggle Breakpoint Enable
testwrapig7?23  Delete Except
teStwIaphg723  pisable Except

Delete All ‘

Enable All

Disable All

.

For each existing breakpoint, the breakpoint list shows:

119 0xzZzzZa| 17

117
227
228
=210

x2228| 18
0x203b| 19
xz04z2| 20

2 lwan

Ao,

R ]

e source code file name

e source code file line number

e instruction address

¢ command line debugger's breakpoint identification number

* breakpoint enable state

Selecting a Breakpoint Line
Left-click on a line in the breakpoint list to select that breakpoint as the
current line for Breakpoint Operations.

Actions on Selecting a Breakpoint Line

When a breakpoint line is selected from the list, if the Source Code
and/or Disassembly Windows are shown, the breakpoint line is
highlighted and brought into focus in these windows.

Operations Available for a Selected Breakpoint Line
Right-click on a line in the breakpoint list to display a popup menu of
breakpoint operations that may be applied to the selected Breakpoint.

Saving of Breakpoints
Breakpoints are saved and restored with the project session when
Autoload is selcted from the Preferences Window.

Debugging Symbols Window — Debugging Symbols are available for
browsing using the Debugging Symbols Window. Two types of
information are presented, program data symbols and program
instruction symbols.

Detailed Descriptions 11-23



11-24

Figure 11.27 Debugging Symbols Window

pvsymo =

SYMBOLS AR
file type name

source/tab_lbc.5:  |int AchkGainTable0ss; d

source/tab_lbc.S:  [int AcbkGainTablel70;

source/tab_lbc.5:  [int Band0Tbs;

source/tab_lbc.S:  [int EandlTbs:

source/tab_lbc.5:  [int Band2Ths;

source/tab_lbc.S:  [int BandExpTable: =]

address label

00002000 |_start. d

00002004| _Einished

00002010 |_FUNC_START main

00002010|__gnu_rowpiled c

on0zose kit

00002065 |_FUNC_EXIT uwain =

* Program Data Symbols
The Symbols Window lists variables that are global, indicates the
source file in which they are defined and the data type associated
with the variable.

¢  Program Instruction Symbols
The Symbols Window lists instruction labels for the program being
debugged and the associated addresses.

The Debugging Symbols Window is only populated when it is invoked,
since it will not change within the debugging session.

Call Stack — To display a program’s Call Stack, select Call Stack from
the Program View Menu.

Figure 11.28 Call Stack Window

- 234
- 235
- 236
= a7

G723InitThlPointersi):

=

I}

Show Code Show Detail | CALL STACK B

id  addr proc source line

B conas e 01 eesmecagzives l”éiil
Call Stack Code Viewing
To view the code associated with one of the stack levels displayed, select
that line in the Stack Window and select the Show Code button. The
Source and Disassembly Windows will display the associated code.

Call Stack Details Popup

The Show Detail on the Stack Window menu shows details in a popup
window so that information exceeding the display area may be easily
examined. The detailed information includes the Stack Level, Address,

ZSP IDE Debugger



Procedure (name and arguments), Source File name, Source File line
number.

Local Variables — To display local variables, select Local Variables from
the Program View Menu. The Local Variables Window shows all
variables that are in the local scope.

Figure 11.29 Local Variables Window

LOCAL VARTABLES )
£ CAPS = [type = int ] -
£ i=0 [type = int ]
£ charptr = Ox0 [type = char * ]

FZ intarray = {0, 0, 0, 0, 0} [type = int [5] ]
£ intarray [0] = 0 [int]
£ intarray [1] = 0 [int]
£ intarray [2] = 0 [int]
£ intarray [3] = 0 [int]
: £ intarray [4] = 0 [int] l

Global Variables — A view of global variables is available from the Main
Menu by selecting 'Program View > Globals'. The Global Variables
Window shows all variables that are global in scope.

Figure 11.30 Global Variables Window

x|
GLOEAL VARIAELES AR
£ fileHandles [static leng int] = = {-589030611, 1, 2, 3, -2675: %]
£ wydata [unsigned int] = = (20816, 21332, 21846, 22360}
F7 wgstruct [COMPLEX_STRUCT] = = {arzay = {0, 0, 0, 0}, vptz = O

wyintZ = 0, nyint3 = 0, nyintd = 0, nyints = 0, nylong =

= array = {0, 0, 0, 0}, [unsigned int]
&1 array[0] = 0 [unsigned int]
&1 array[l] = 0 [unsigned int]
&1 array[2] = 0 [unsigned int]
&1 array[3] = 0 [unsigned int]
&1 wptr = Ox0, [int ¥] =
= simple = {myint = 0, myintl = O,
myintz = 0, nyint3 = 0, nyintd = 0, nyints = 0, myler
fa] wyint = 0, [int]
[an] nyintl = @, d
[l | |

Expression — To have the debugger evaluate and display a single
expression at each display refresh, use the Evaluate Expression Window.
To invoke the Evaluate Expression Window, select Evaluate Expression
from the Program View Menu. Type the expression you would like
evaluated into the entry area and expression will be evaluated and
displayed after each execution step

Detailed Descriptions 11-25



11-26

Figure 11.31 .Expression Window

EVALUATE EXPRESSION BX
Expression

intarray[3] + intarray[4]
512 = 4560

Watch — To have the debugger evaluate and display multiple expressions
at each display refresh, use the Watch Expression Window. To invoke the
Watch Expression Window, select Watch Expression from the Program
View Menu. Add expressions to watch using the Add Watch button in the
Watch Expression Window. Remove expressions from the Watch
Expression Window by selecting the existing expression and selecting
the Remove Watch button.

Figure 11.32 Watch Expressions Window

| WATCH EXPRESSIONS  Add Watch [ Remove Tatch l HX
CAPS §16 = -1 J
intarray §17 = {0, 0, 0, 4608, 52}
1 ] |

ZSIM Target Windows — ZSIM Debugging windows are available when
ZSIM is selected as the target in the IDE Debug>Setup window.

e ZSIM Profile

A view of the code execution profile is available for the ZSIM target
by selecting Profile from the Program View Menu. The menubar of
the Profile Window includes a checkbutton to turn function profiling
off and on and a checkbutton to select incremental mode, which

shows only the functions executed since the last navigational step.

The Profile Window shows each function name that is available for
profiling, the histogram, cumulative and calls information reported by
ZSIM. A bargraph chart is displayed with data type selectable from
a drop-down selection box.

ZSP IDE Debugger



Figure 11.33 ZSIM Profile Window

Y b S

H im nisksgram

e

=

Vet Limieen 1N

e ZSIM Statistics

A view of code execution statistics is available for the ZSIM target by
selecting Statistics from the Program View Menu.

Figure 11.34 ZSIM Statistics Window

px 1w —
e e = - - - - e
I . B e T ETATSE IS
WNETY el §pUbeE
FENIT W iphlet .
e ‘ﬁ:—'uﬂu 15, E
T - = T Afima TR,
s 1 ::I-n- ﬂﬂ-m
iy 3 vpr e 13,00
BT 0 oo rpiles LRl
=N T L]
@ Fall-3hall epelinn W,
# wali-nisll meles LN T
L Irae l._t
L wery LR
i Bawbmactiews swcs
Prari  bmsd Ienbrectices fE N
i mirgis AR ]
il ¥ F.¥FR
L] iy 11.6f L]
o - T. 00k
Ebid  wbaw dssbnetiees 1.1t
Ermm - mingie K
e - acalae [}
- ATy d.a
a - LT
e ﬂﬂ._"lﬂl.ﬂ.li. 131
WY - el . ;
b T g T [ ] [
Tkl - KTy ]
Y alipredlats [} l!.::.--- brann
B fadlramdjmni por ppile
RN PR e et I 15,07 i
@ T wl N !-lunh.l| 1 ﬂj:: kg ! r=l=
PEIEE resE s .
@ foowrresees o Il.imliqrrllltlllllll-—'ullll l.-t

11.2.2.2 Target Windows

Available from the Target View Menu or from the Window Toolbar, the
Target Windows display data pertinent to the state of the processor after

Detailed Descriptions

11-27



11-28

each navigational step in the debug session. Available Target Windows
include

e Disassembly Code Window

e Control Registers Window

e Operand Registers Window

* Address Registers Window (G2 only)

*  Memory Window

e ZSIM Pipeline Window

e ZSIM Grouping Rule Window

Disassembly Window — The Disassembly Window shows
disassembled instructions from the target's program memory. The
address range of the Disassembly Window includes all instructions in the
current scope. As execution proceeds, the Disassembly Window is
repopulated as necessary.

The Disassembly Window comprises left to right, a Breakpoint column,
pipeline stage column (for ZSIM target only), address column, and
disassembled code. The next line to execute is indicated by an ASCII-
styled arrow in the breakpoint column.

Figure 11.35 Disassembly Window
I =

TARGET DISASSENELED CODE BX

0x0031 B nov rl3, 4 8|
0x0032 : L 5, rl2

0x0033 : cup s, 2

0x0034 B Ble 0x3b

0x0035 B novl s, Oxd

0x0036 : novh 5, Ox0

0x0037 : st s, rlz, 1

0x0038 : nowl rl3, 0z

0x0039 : novh rl3, oxz

0x003a : call rl3

0x003b : novl rd, 0xls

0x003¢c : novh rd, Ox0

0x003d : st 4, rlz, 1 =
0x003e : now rl3, 4

0x003£ : lax s, rlz

0x0040 : st 5, rl2, z

0x0041 : novl rl3, oz

0x0042 : novh rl3, oxz 5|

[ R R N N
EEEEEEEEEEEEE]

Reqister Window General Description

Three types of register windows, Control Register Window, Operand
Register Window, and Address Register Window (G2 Only) are available
to display and modify the processor registers. These windows have
similar functionality. Each item in a Register Window may be edited by

ZSP IDE Debugger



left-clicking in the item to set the input focus, typing in the desired value
followed by depressing the enter key. The new value is sent to the
Debugger when the enter key is pressed. The Register Window is then
refreshed to validate the entry. Each item in the Register Window may
be formatted independently of the other items by right-clicking on the
item to invoke the popup format menu.

Figure 11.36 Register Element Popup Format Menu

—_ e e —— e e e Qe o

rd| 0x0000 r7| O0x0000
r5 DKDDlE‘ Al M EEEFE

ra| 0x00000  Fred Point

| v Hexadecimal |
Integer
Unszigned Integer
Character

Lo e S e A |

Register Windows each contain a subwindow menu that includes the
following functions.

Format
The Format Menu in a Register Window allows reformatting of data
for all of the visible registers to one of the following formats:

— Fixed Point (for 16, 32, or 40-bit numbers)
— Hexadecimal

— Integer

— Unsigned Integer

— ASCII Character

Figure 11.37 Register Window Format Menu

Columns | M Bi

Fixed Point
Henadecimal
Integer

Unsigned Integer
Character

hwElag-gv| 0x0 [te

Columns
The Columns Menu in the Register Window allows arrangement of
the individual registers in the Window into 1-8 columns.

Detailed Descriptions 11-29



11-30

Figure 11.38 Register Window Columns Menu

e Configure

Fornmat |

hwElag
hwElac

B Nm A a W N =

hvElag-gFv] Ux

The Configure Menu item in the Register Window allows selection of

individual registers to be di
from a list.

splayed in the window by selecting them

Figure 11.39 Register Window Configure Menu

Joofq
[
0x1

Select Al
Select None
. pc
1pc
. tpc
vitr
laopD
cb0_beg
ch_end

Control Registers —

The Control Registers Window provides access to the target processor's
control registers.

Figure 11.40 Control Register Window - Standard Mode

=

Format | Coluuns | [T Bit Fields Configure |CONTROL RESISTERS EHX]

1
pe| 0x0038 rpe| 0x0031 tpe| 0x0000  witr| Ox000D
loopd| OxEEEE cbi_beg| 0x0000 cb0_end| 0x0000 loopl| 0x0000
cbl beg| 0x0000 cbl_end| 0x0000 loop2| 0x0000 loop3| Ox00OD
dei| 0x0000 ded| 0x0000 timerd| 0x0000 timerl| Dx0000
te| 0x0000  guard| 0x0000 hwElag| 0x0070 amode| 0x0000
fmode| 0x0000  smode| 0xD000  imask| 0x0000  ireq| 0x0000
ipo| 0x0000 ipl| ox0000

In addition to the common Register View submenu items, the Control
Register Window also provides examination and modification capabilities
for individual bit fields within each of the Control Registers. The individual
bit fields may be edited in the same manner as described in the general
Register Window description above.

* Bit Fields
The Bit Fields checkbox menu item in the Control Register Submenu

ZSP IDE Debugger



Window turns on the display of individual bitfields for the visible

control registers.

Each of the Control Register and Bit Field entries displayed in the Control
Register Window is labeled with a mnemonic abbreviations of the register
name. The full name and bit position(s) if appropriate are displayed in a
popup text box when you move the mouse pointer over the entry or label.

Figure 11.41 Control Register Bitfield Entry Annotation

hwilag-gsw| 0x0
hwilag-c| Ox1
hwfl

hnrf 1 Af=r1T.

El| [5] ge - Greater Than or Equal To |

T TT

Figure 11.42 Control Register Window - Bitfield Mode

¥ Bit Fields Configure ‘ CONTROL REGTSTERS [HX]

Format ‘ Columns

hwflag-res
hwElag-v
hwflag-gv
hvflag-sv
hwElag-gsy
hwElag-c
hwflag-ge
hvflag-gt
hwElag-z
hvflag-ir
hwflag-ex
huflag-exr

huflag O0x 0070

o0
0x0
o0
0x0
o0
0xl
1
0xl
o0
0x0
o0
0xo

o 0000

to-etl
to-cml
to-tonrdivl
to-etl
to-cml
to-tmrdiw

Ox0
Ox0
Ox0
Ox0
Ox0
Ox0

imask 0x0000

imask-gie
inask-pgie
imask-nhr
imask-mht|
imask-nlr
imask-nlt,
imask-nor
imask-not,
imask-ud]
imask-ntl
imask-ntd
imask-ned
imask-ne3
imask-ne?
imask-nel
imask-ned

Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0
Ox0

smade | Ox0000

smode- 1wl
zmade-shd
smode-dct
smode-fie
smode-ict
zmade-dsh
smode-uvt

smode-us
smode-liz
smode-siz
smode-cbl
zmade-chil
smode-dir
zmade-ddr

0x0
o0
0x0
o0
0x0
o0
0x0
o0
0x0
o0
0x0
o0
0x0
o0

JE3)

Operand Registers — Operand Registers Window provides access to
the target processor's operand registers. Menu items in the operand
register Window include Format, Columns, and Configure functionality
described above in the general Register Window description.

Detailed Descriptions

11-31



11-32

Figure 11.43 Operand Register Window

|
} OPERAND REGISTERS BX
15| 0x0000 r14] 0x0000 ¥13] 0x003b r12| Mxf7ea quardlr3r2) 0.000000000
11| 0x0000 z10| 0x0000 3| 0x0000 ©8| 0x0000 guardozlzo| 0.000000000
7| 0x0000 ré| oxf7ee rS| x0004 ra oxoo0o

z3| 0x0000 rz| 0x0000 c1f ox0000 rof oxoooo

Format | Colunns l Configure

Address Registers (G2) — Address Registers Window provides access
to the target processor's address and index registers. Menu items in the
operand register Window include Format, Columns, and Configure

functionality described above in the general Register Window description.

Figure 11.44 Address Register Window

Fnrmac[ Enlumnsl mnfigurehDDREss REGISTERS [H(X]
7] 0x00ffefec n7| 0x0000 a6 OX000DOON0 16| Dx0N00
a5| 0x00000000 n5| 0x0000 4| 0x00000000 nd| 0x0000
3] 0x00000000 13| 0x0000 a2 Ox000DO0N0 12| 0x0000
0x00000060 nl| 0x0000 a0| 0x00000024 na| 0x0000

]

2

a.

Memory — The Memory Window provides access to the target
processor's memory. Menu items in the memory Window include Format
and Columns functionality described above in the general Register
Window description. except that memory may displayed in up to 16
columns.

Figure 11.45 Memory Window

Format Colunns I Process I TARGET MEMORY BX

Start [awgdata a0 Length
oxa0000000 0x5157 | 0x5354 | 0x5556 | 0x5758 | oxo0es | oxoozo | oxooes | oxoo7s
0x40000008| 0x0020 | 0x0062 | 0xD08S | 0x0D67 | 0x0067 | 0x0065 | 0x0072 | 0x0020
040000010 0x0074 | 0x0065 | 0xD0EL | 0x0D6= | 0x0020 | 0x0032 | 0x00Da | 0x0000
0x40000015| 0x0043 | 0x006f | 0xDO75 | 0x0DGe | 0x0074 | 0x0063 | Ox00Ge | 0x0067
040000020 0x0020 | 0x0025 | 0x00E4 | 0x0020 | 0x00Da | 0x000D | 0x0043 | 0x006S

Start address for the memory Window may be an address or debugging
symbol.

ZSIM Target Windows - ZSIM Debugging Windows are available when
ZSIM is the current debugging target.

e Grouping Rule Window

ZSP IDE Debugger



The Grouping Rule Window displays ZSIM instruction grouping
information. The rule displayed applies to instructions currently in the
grouping stage at the pipeline.

Figure 11.46  ZSIM Grouping Rule Window

Z3TH GROUPING RULE BX
Active grouping rule in current cycle:
30. Do not group an instruction that depends on the result of
an older instruction in the same group excepting for the
£ollowing:

1. The younger depends on the result of a linked load.

z. The younger instruction iz a store andthe older
instruction 1s not & mac unit instructlion nor an
unlinked load instruction.

e ZSIM Pipeline Window
The ZSIM Pipeline Window displays ZSIM pipeline information.

Figure 11.47 ZSIM Pipeline Window

ORI xl
| ZSIH PIPELINE HXE
CYCLE: 51
Fid:1)
(62)0023: 4502: 0: ble 0x002b
{61)0028: 8154: 0: cup 5, x4
(60)0027: 3401: 0: movh 4, oxl
(59]0026: 24£3: Limovl x4, Ox£3
Bi4:1)
(58] 0025: Te5e: 0: Lax 5, zlz.e
(57)0024: a6d4: 0: mov 13, Oxd
(56)0023: 0istx 5, iz.e
(55]0022: a6d4: L: mov 13, Oxd
Riz:2)
(54]0021: a650: 1: mov 5, ox0
(53]0020; 634c: Li st x4, xlz, 3
E(2:2)
| 52)00LE: a64E: Limov x4, OxfEfE
{51)001e: 860d: 1 sub iz, rl3
Wil:l)
{50)001d: 3d00: L: movh 13, 0x0

11.2.2.3 Tools Windows and Functions

Preferences Window — The Preferences Window provides
customization of your project session preferences

Command Line Debugger Window — The Command Line Debugger
Window provides direct access to the Command Line Debugger.
Commands entered in the command entry box are passed to the
Command Line Debugger and the response from each command is
presented in the output window.

Detailed Descriptions 11-33



Figure 11.48 Command Line Window

=l
COMITAND EE
1508UGD |

[15:45:01] Starting program: /cygdrive/u/0_test/NewProject/./400.exe ||
Connected to the simulator.
.eext @ Ox O .. 0x147b ... Loading

.data  : Ox O .. Ox 8b ... Loading
Transfer rate: 85112 bits in <1 sec.

Hello from novars

[15:45:01] Counting 0

Hello from novars

Counting 1

Hello from novars

Counting 2

Hello from novars

#/cyudrive H/0_test/NewProject/main, o: 39:0038;

Breakpoint z, Ox38:main {):/cygdrive/U/0_rest/MewProject/main.c:39;
39 printf("i is bigger than 2\n"):
{=dbug)

11.2.2.4 Using Session Logging

11-34

The Session Logging functionality of the ZSP IDE debugger captures
communications with the underlying Command Line Debugger for
informational purposes. To configure Session Logging, open the
Preferences Window by Selecting “Preferences” from the Tools Menu.

Figure 11.49 Preferences Window - Logging

Preferences [<]

Session \ Display \
session Logging

€ Disable logging

Loy to window

& Loy to File

W iuto load/save windows at entry/e

[T Keep log files

Session Log Types — The Session Log may be disabled by selecting
the radiobutton labeled “Disable logging” in the Preferences Window.
This setting is recommended for the best speed performance of the
debugging environment.

The Session Log may be directed to a window by selecting the

radiobutton labeled “Log to Window” in the Preferences Window. Logging
to a window provides continuous non-interactive update throughout the
debugging session. Logging to a window is faster than logging to a file.
There is no permanant Session Log record when logging to a window.

The Session Log may be directed to a file for a permanent Session Log
record by selecting the radiobutton labeled “Log to file” in the

ZSP IDE Debugger



Preferences Window. When Session Logging is recording to a file, the
Log File Name is appended to the Tools Menu (see Figure 11.50). To
view the Log File, select the Log File from the Tools Menu. If you want
to retain log files after your debugging session exits, select the
checkbutton labeled “Keep Log Files” in the Preferences Window.
Otherwise the logfile will be automatically deleted.

Figure 11.50 Tools Menu - Session Log File

Preferences

Sdbug Prompt

omer Sdbug Settings
Toolbars

I

Wo/0_test/MewProject/g2sim_1013615717 log

The name of the log file is generated automatically and contains the
project file name and a number related to the logging start time.
Selecting the Log File name from the Tools Menu invokes the Session
Log Window.

Figure 11.51 Session Log Window

Z§P GUI DEBUGGER LOG FILE =
LOGGING STARTED: 16:41:50 12/02/0%
ARCEITECTURE: zsp400
VERSION: 4.(0beta,
RELEASE: 1.133
TARGET: zsim
PROJECT FILE: W:/0_test/vocoder_script/Workspace/default.pit
EXECUTABLE FILE: W:/0_rest/vocoder_script/Uorkspace/G726. exe

GUI: memory_dowmload ..\testdathiG726opt.bin &G726_chno 1
i sdbug)

GUI: i b
Hun Type Disp Enb Address  What
28 breakpoint keep ¥ 0x000000la in main at ./G726main.c:87

breakpoint already hit 1 time
{sdbug)

4] Lo

Refresh | Clear | € Disable logging ¢ Log to window ¢ Log o File Purge Log

Log Window Controls

* Refresh - When logging to a file, the refresh button reads the log file
into the Log Window text area

e Clear - Clears the Log Window text area

Detailed Descriptions 11-35



* Log Type Radiobuttons - Radiobuttons labeled “Disable Logging”,
“Log To Window”, and “Log To File” have the same functionality as
their counterparts in the Preferences Window. The presence of these
radiobuttons allows logging to be easily reconfigured when in use.

e Purge Log File - Each time the logging mode changes to “Log to File”
a new log file is created and the log file name is updated on the Tools
Menu. The “Purge Log Files” button deletes all log files in your
project directory (ie those with a .log extension).

11-36 ZSP IDE Debugger



Appendix A
Example Programs

This appendix contains two example programs, deno. ¢ and hw dbg. s,
that are referred to in previous chapters of this document. The first
example is a program project that combines C and assembly-language
modules. The second example is a program used in hardware-assisted
debugging.

A.1 Example Program: deno. c

This example is a C program in the file deno. c. It calls another C
function, func2, in the file f unc2. c. It also calls two assembly functions,
funcl and func3, in the assembly file f uncl. s.

int func_1 (int *t);
void func_2 ();

int func_3 ();

int t=500;

mai n()

char ch
int i,j

. AY ;
100, k;

for (i=0; i<2; i+ {
func_2();
k =func_1 (&);
if (k) {
j = func_3() + 100;

el se {
j = 100;
}

ZSP SDK Software Development Kit A-1
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



A-2

}

while (i < 20) {
k++;
i ++;

}

Example Program: func2.c

int ti1;
void func_2 ()

i nt x=0, n=0;
whi I e(n < 20)
{

switch(n) {
case O:

X += 5;

n =1,

br eak;
case 1:

X = X <<4;

n =4,

br eak;
case 17:

X =x N 13;

n = 20;

br eak;
defaul t:

X++;

n++;

br eak;

}
tl = x;

Example Programs
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



Example Program: funcl . s

.segment “text”

.globl func_ 1
.walign 2
_func_1:

/** PROLOGUE **/

nov r13, %jpc
stu ri3, r12, -1

/** END PROLOGE **/

nmov r5 r4

Id r4, r5
nmov r6, 500
cnp r4, r6 [* *t <=500; */
bgt L2
I d r4, r5
nmov r6, 100
add r4, r6 /* *t += 100; */
st r4, r5
nov r4, 1
br L1
L2:
nmov r4, 0O
br L1
L1:

/** EPI LOQE **/

bitc %nmask, 15
nop

add riz, 1

| du ri3, ri12, 1
nov %pc, rl3
add riz, -1
bits %mask, 15
ret

/** END EPI LOQE **/

Example Program: deno. ¢
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



.extern_t

.globl _func_3
.walign 2
_func_3:

/** PROLQGLE **/

nov r13, %pc
stu ri3, rl12, -1

/** END PROLOALE **/

nmov r5, 300

| da r4, _t

Id rd, r4

shl | r4, 1

add r4, r5 [** K =i +2*t **
add r4, r5

| da re, _t

Id ré, r6

add r4, r6

br L3

L3:
[** EPl LOQE **/

bitc %nmask, 15
nop

add riz, 1

| du ri3, ri12, 1
nov %pc, rl3
add riz2, -1
bits %nmask, 15
ret

/** END EPlI LOGQE **/

Example Programs
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



A.2 Example Program hw dbg. s

This example illustrates hardware-assisted debugging. It consists of one
assembly file, hw_dbg. s.

.section ".text"
.global _ start
__start:

bits 9%node, 6
nmov r0, Oxab00
nmov rl, OxabOl
nmov r2, Oxab02
nov r3, Oxab03
nov r4, Oxab04
nmov r5, Oxab05
nov ri4, 0O
nmov rl5, O

add ri4, 1
nov r13, 0x2000
nov r12, 0x2001

add ri4, 1
st ro, ri3

add ri4, 1
st rl, ri13
nop

nop

nop

nop

nop

add ri4, 1

Example Program hw dbg. s A-5
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



A-6

st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop

r2, ril3

ri4, 1
ro, ri13

ri4, 1
rl, ri13

ri4, 1
r2, ri13

ri4, 1
ro, r13

ri4, 1
rl, ri3

ri4, 1
r2, ril3

Example Programs

Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



add ri4, 1
st ro, ri13
nop

nop

nop

nop

nop

add ri4, 1
st rl, ri3
nop

nop

nop

nop

nop

add ri4, 1
st r2, ri13
nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

add ris, 1
st ro, ri12
nop

nop

nop

nop

nop

add ris, 1
st rl, ri2
nop

nop

nop

nop

nop

add ris, 1
st r2, rl2
nop

nop

nop

nop

nop

add ris, 1

Example Program hw dbg. s
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

A-7



A-8

st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop
add
st

nop
nop
nop
nop
nop

ro, ri2

ri5, 1
rl, ri2

ris5, 1
r2, ri2

ri5, 1
ro, ri12

ri1s, 1
rl, ri2

ris, 1
r2, rl2

ris, 1
ro, ri2

Example Programs

Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



add ris, 1
st rl, ri12
nop

nop

nop

nop

nop

add ris, 1
st r2, ri2
nop

nop

nop

nop

nop

bitc 9%node, 6
hal t

Example Program hw dbg. s
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

A-9



A-10 Example Programs
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



Appendix B

ZSP400 Control

Registers

The ZSP400 control registers are listed in Table B.1.

Table B.1  ZSP400 Control Registers
Register
Reference
Number Control Register Register Description
0 % node Functional Mode Register
1 %c Timer Control Register
2 % mask Interrupt Mask Register
3 % p0 Interrupt Priority Register O
4 % pl Interrupt Priority Register 1
5 % oop0 Loop O Register
6 % oopl Loop 1 Register
7 %uar d Guard Bits for {rl1 r0} and {r3 r2}
8 9w | ag Condition Codes
9 %req Interrupt Request Register
10 reser ved -
11 reser ved -
12 Witr Viterbi Traceback Register
13 reser ved -
14 %anode Addressing Mode Register
15 % node System Mode Register
(Sheet 1 of 2)

ZSP SDK Software Development Kit

Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

B-1



B-2

Table B.1

ZSP400 Control Registers (Cont.)

Register

Reference

Number Control Register Register Description

16 %c Program Counter

17 % pc Return Program Counter

18 % pc Trap Return Program Counter
19 %b0_beg Circular Buffer 0 Begin Address
20 %bl_beg Circular Buffer 1 Begin Address
21 %b0_end Circular Buffer 0 End Address
22 %bl end Circular Buffer 1 End Address
23 % i ner0 Timer0

24 %inerl Timerl

25 % oop2 Loop 2 Register

26 % oop3 Loop 3 Register

27 reserved -

28 reserved -

29 reserved -

30 %lei Device Emulation Instruction Register
31 %led Device Emulation Data Register

(Sheet 2 of 2)

ZSP400 Control Registers
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.




Appendix C
ZSPG2 Control
Registers

The G2 control registers are listed in Table C.1.

Table C.1 G2 Control Registers

Register

Reference

Number Control Register Register Description

0 % node Functional Mode Register

1 %c Timer Control Register

2 % mask Interrupt Mask Register

3 % p0 Interrupt Priority Register O

4 % pl Interrupt Priority Register 1

5 % oop0 Loop O Register

6 % oopl Loop 1 Register

7 %uar d Guard Bits for {rl1 r0} and {r3 r2}
8 9w | ag Condition Codes

9 %req Interrupt Request Register

10 %b2_beg Circular buffer 2 Begin Address
11 %b2_end Circular buffer 2 Begin Address
12 Witr Viterbi Traceback Register

13 9%hw | ag Sticky Condition Codes

14 %anode Address Mode Register

15 % node System Mode Register

(Sheet 1 of 2)

ZSP SDK Software Development Kit
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.

C-1



C-2

Table C.1 G2 Control Registers (Cont.)
Register
Reference
Number Control Register Register Description
16 %c Program Counter
17 % pc Return Program Counter
18 % pc Trap Return Program Counter
19 %b0_beg Circular Buffer 0 Begin Address
20 %bl_beg Circular Buffer 1 Begin Address
21 %b0_end Circular Buffer 0 End Address
22 %bl end Circular Buffer 1 End Address
23 % i ner0 Timer0
24 %inerl Timerl
25 % oop2 Loop 2Register
26 % oop3 Loop 3 Register
27 %b3_beg Circular Buffer 3 Begin Address
28 %b3 _end Circular Buffer 3 End Address
29 reserved -
30 %lei Device Emulation Instruction Register
31 %led Device Emulation Data Register

(Sheet 2 of 2)

ZSPG2 Control Registers
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.




Appendix D
L-Intrinsic Functions

This appendix describes the Long Intrinsic functions (L-Intrinsics) that
were included in Version 1.0 of the SDK compiler and that are currently
supported for backward compatibility. The L-Intrinsics are no longer
implemented within the compiler itself, but rather with a header file,
dsp. h. Note that although the L-Intrinsics are supported, you should
develop new code using the N-Intrinsics, described in Chapter 3,

“C Cross Compiler,” Section 3.5, “N-Intrinsics,” page 3-16.

To use the L-Intrinsic functions, add the following line to all your C files:
#i ncl ude <dsp. h>

The compiler implements the L-Intrinsic functions using the assembly
instructions shown in Table D.1.

Table D.1  Long Intrinsic Functions
Intrinsic Function Underlying Instruction
L mula mul . a
L_naca nac. a
L_macna nacn. a
L _nmac2a nac2. a
L milb mul . b
L_nmacbh nac. b
L_macnb nmacn. b
L_nac2b nac2. b

The long argument for the L_nmaca, L_nach, L_nacna, L_nacnb, L_nac2a,
and L_nac2b intrinsic functions is copied to the appropriate accumulator
register, which is {r 0, r 1} for the . a versions and {r 2, r 3} for the

. b versions.

ZSP SDK Software Development Kit D-1
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



D-2

The compiler generates code to copy the arguments to the proper
accumulator registers, if required. Eliminating the steps required in
copying the arguments minimizes execution time. Copying the
arguments is not required if:

* The long argument already exists in the appropriate accumulator (for
example, if you call L_nmaca with a variable declared as type
accum a).

Execution time can also be minimized by not requiring the result to be
copied to its destination. Copying the result is not required if:

* The destination for the intrinsic function’s result is already the target
for the instruction used to implement the intrinsic function (for
example, if L_maca returns a value to a variable declared as type
accum a)

For example, the following code is legal:

accumb b;
int Xx,y;

b = L maca(b, x,¥y);
However, it is more efficient to use:
b = L nmach(b, x,Yy);

In the first case (b = L_maca(b, x, y) ), two copies are required—one to
move {r3 r2} to {r1l r0Q} for the argument, and another to move

{r3 r2} to {r1 r0} to the destination. The second case (b =
L_macb(b, x, y)) requires no extra copies.

Note that a call to an L_*a function clobbers any variable declared with
an accum a, and a call to an L_*b function clobbers any variable
declared with an accum b. In the following example, the value of variable
a is equivalent to b after the L_naca function call:

accuma a;
accumb b;
int Xx,y;
a=0;

b = L maca(b, x,Vy);

L-Intrinsic Functions
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



Note: It is not guaranteed that a will have the same value as b in
future versions of the SDK compiler.

Long L_mula (int varl, int var2)

Long L_mulb (int varl, int var2)

Long L_maca (long var3, int
varl, int var2)

Long L_macb (long var3, int
varl, int var2)

Long L_macna (long var3, int
varl, int var2

Long L_macnb (long var3, int
varl, int var2)

Long L_mac?2a (long var3, long
varl, long var2)

This function returns a 32-bit result of
the multiplication of a 16-bit variable
var 1 with a 16-bit variable var 2, with
one shift left.

This function returns a 32-bit result of
the multiplication of a 16-bit variable
var 1 with a 16-bit variable var 2, with
one shift left.

This function multiplies the 16-bit
variable var 1 by the 16-bit variable var 2
and shifts the result left by 1. This 32-bit
result is added to the 32-bit variable
var 3 with saturation and returns the
32-bit result.

This function multiplies the 16-bit
variable var 1 by the 16-bit variable var 2
and shifts the result left by 1. This 32-bit
result is added to the 32 bit variable
var 3 with saturation and returns the
32-bit result.

This function multiplies the 16-bit
variable var 1 by the 16-bit variable var 2
and shifts the result left by 1. This 32-bit
result is subtracted by the 32-bit variable
var 3 with saturation and returns the
32-bit result.

This function multiplies the 16-bit
variable var 1 by the 16-bit variable var 2
and shifts the result left by 1. This 32-bit
result is subtracted by the 32-bit variable
var 3 with saturation and returns the
32-bit result.

The lower 16 bits of the variable var 1 is
multiplied with the lower 16 bits of the
variable var 2. The higher 16 bits of the
variable var 1 is multiplied with the
higher 16 bits of variable var 2, and the
two 32-bit results are added to the
variable var 3, which is the return value.

D-3

Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



Long L_mac2b (long var3,
long varl, long var2)

Long norm_| (long varl)

int norm_s (int varl)

Long L_deposit_h (int varl)

int extract_h (long)

Long L_abs (long varl)

int abs_s (int varl)

int round (long)

D-4 L-Intrinsic Functions

The lower 16 bits of the variable var 1 is
multiplied with the lower 16 bits of the
variable var 2. The higher 16 bits of the
variable var 1 is multiplied with the
higher 16 bits of variable var 2, and the
two 32-bit results are added to the
variable var 3, which is the return value.

This function produces the number of
left shifts required to normalize a 32-bit
variable var 1. The number is a 32-bit
result.

This function produces the number of
left shifts required to normalize a 16-bit
variable var 1. The number is a 16-bit
result.

This function returns a 32-bit result,
where the high-order 16 bits is the input
16-bit variable var 1, and the low-order
16 bits are zeroed.

This function returns a 16-bit result
which is the high-order 16 bits of the
32-bit input.

This function returns a 32-bit result
which is the absolute value of the 32-bit
variable var 1. Note that abs (0x8000)
returns Ox7FFF.

This function returns a 16-bit result
which is the absolute value of the 16-bit
variable var 1. Note that abs. s (0x8000)
returns OX7FFF.

This function returns a 16-bit result. The
result is obtained by rounding the lower
16 bits of the 32-bit input number and
storing it in the higher 16 bits with
saturation. This value is then shifted
right by 16 bits to obtain the result.

Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



Appendix E
Signal Processing
Library

The library, | i bal g. a, contains some basic functionality commonly
used in signal processing. The interface to | i bal g. a is contained in
al g. h, which can be accessed with:

#i ncl ude <al g. h>

To use this library, it must be linked in with a -lalg switch on the link line.

ZSP SDK Software Development Kit E-1
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.1 API Specification Auto-correlation Library Function on
G2

E.1.1 Auto-correlation
Synopsis

void lib autocorr(*Struct AUTOOR

*Struct_AUTOCOR Pointer to the Auto-correlation Structure

Input

The input variables that are to be passed through the AUTOCOR
structure:

short DataSize Length of the input data

short InputData Input data array of size Datasize*2

short NumberOfLags Number of auto-correlation lags needed

short Scale Factor to use in scaling the partial products

Return Value
None
Output

The output is returned as a field in the AUTOCOR structure
short AutoCorrData  Array to hold the Auto-correlation values

Description

This function implements the auto-correlation of the input data
(InputData) and stores the computed correlation lags in an array
(AutoCorrData). The number of correlation lags are specified by
NumberOfLags. As the number of lags are small, a direct sum-of-product
algorithm is used for computing the correlation values.

E-2 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.2 API Specification for Convolutional Encoder Library
Function on G2

E.2.1 Convolutional Encoder
Synopsis

void lib_convEnc_k9r2(short *inpw short *outpw, short
Nwnor ds)

Input

Short *inpw Pointer to input data (packed, 16-bit array)
Short Nwords Size of input array

Return

None

Output
Short *outpw  Pointer to output data (packed, 16-bit array)

Description

This function implements a Convolutional encoder with generating
polynomial,

G0O=1+D2+D3+D4+D8 (octal 561)
Gl1=1+D1+D2+D3+D5+D7+ D8 (octal 753)

and with a constraint length of K=9 and rate of R=1/2.

It employs Block-XOR technique, along with LUT-based sorting and
operates on packed words containing input data bits.

Dependencies/Assumptions
This encoder always starts from the zero state.

Assumes that the input data bits are packed into an array of 16-bit words,
in a "right-MSB" format, that is, in each word, the LSB has the oldest

API Specification for Convolutional Encoder Library Function on G2 E-3
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E-4

data. In the final word, if there are fewer than 16 data bits, the MSB part
may be filled with zero bits but not essential.

The output encoded bits are available packed into 16-bit words in the
same "right-MSB" format. The output array size is twice that of the input
array, and any extra bits in the final output word may be ignored.

Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.3 API Specification for 16bit CRC Library Function on G2

E.3.1 CRC 16bit
Synopsis
short lib _crcl6(short *inpw, short Nnords)

Input

Short *inpw Pointer to input data (packed, 16-bit array)

Short Nwords Size of input for which CRC is needed
Output
Short crcl6 Computed checksum (16-bit scalar)

Description

This function implements CRC-16 bit checksum calculation, based on the
Generating Polynomial

P(D) = D(16) + D(12) + D(5) + 1 (decimal 69,665).
Dependencies/Assumptions

Assumes that the input bits are packed into an array of 16-bit words, in
a "right-MSB" format, that is, in each word, the LSB has the oldest data.
In the final input word, if there are fewer than 16 data bits, the MSB part
may be filled with zero bits but not essential.

The output encoded bits are available packed into one 16-bit word in the
same "right-MSB" format.

API Specification for 16bit CRC Library Function on G2 E-5
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.4 API Specification for 8bit CRC Library Function on G2

E.4.1 CRC 8bit
Synopsis
short lib crc8(short *inpw, short Nnords)

Input

Short *inpw Pointer to input data (packed, 16-bit array)

Short Nwords Size of input for which CRC is needed
Output
Short crc8 Computed checksum (16-bit scalar)

Description

This function implements CRC-8 bit checksum calculation, based on the
Generating Polynomial

D(8) + D(7) +D(4) + D(3) + D + 1 (decimal 411).
Dependencies/Assumptions

Assumes that the input data bits are packed into an array of 16-bit words,
in a "right-MSB" format, that is, in each word, the LSB has the oldest
data. In the final input word, if there are fewer than 16 data bits, the MSB
part may be filled with zero bits but not essential.

The output encoded bits are available packed into one 16-bit word in the
same "right-MSB" format.

E-6 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.5 API Specification for 32 bit Division Library Function on
G2

E.5.1 32 bit Division
Synopsis
Resul t32 lib div32( NunB2, Den32 )

Input

Int Num32 32 bit positive integer

Int Den32 32 bit positive integer
Return
Int Result32 Q31 Fractional number

Description
Performs a 32 bit fractional division between two 32 bit positive integers
Result32 = Num32/Den32

The technique is a 32 bit implementation of the 16 bit divide step
instruction "diva"

API Specification for 32 bit Division Library Function on G2 E-7
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.6 API Specification for IIR Library Function on G2

E.6.1 IR
Synopsis
void lib_IIR(short *indata, short *coef, short *state, short N

Input

Short *indata  Pointer to input data.

Short *coef Coefficient vector.

Short *state Intermediate state of the filter.

Short N Length of the input data vector.
Return

None

Output

Output is returned in the “indata” input data vector.
Description

This function implements an in-place Infinite Impulse Response (IIR)
filter.

Dependencies/Assumptions

The input data is assumed to be in Q1.15 format.

The number of taps in the filter “T” must be a multiple of 2.
Coefficients are stored as -al/2, -a2/2, b1/2, b2/2, ..., b0/2.

Input data is stored 0, In(0), In(1), ..., In(N).

E-8 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.7 API Specification for IIR Biquad Library Function on G2

E.7.1 IR Biquad
Synopsis
void lib_IIRBIQshort *indata, short *coef, short *state, short N 1)

Input

Short *indata Pointer to input data.
Short *coef Coefficient vector.
Short *state Intermediate state of the filter.

Short N-1 Length of the input data vector.

Return

None

Output

Output is returned in the “indata” input data vector.
Description

This function implements an in-place Biquad Infinite Impulse Response
(IIR) filter.

Dependencies/Assumptions
The input data is assumed to be in Q1.15 format.
The number of taps in the filter “T” must be a multiple of 2.

Coefficients are stored as -all/2, a21/2, b11/2, b21/2 -a21/2, a22/2,
b21/2, b22/2.

Input data is stored O, In(0), In(1), ..., In(N).

API Specification for IR Biquad Library Function on G2 E-9
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.8 API Specification for Inverse Square Root Library

E.8.1

E-10

Function on G2

Inverse Square Root

Synopsis
Xout lib_invsgrt( Xi )
Input

Short Xi Q14 number in the range 0x1000 (0.25) < Xi < Ox7fff
(1.99999)

Return

short Xout Q14 number in the range 0x1000 (0.25) < Xi
< Ox7fff (1.99999)

Description

Calculate the inverse square root of an input Xi.

Xout = 1/sqgrt( Xi )

Technigue employs a look up table to obtain a first approximation to Xout.

The approximation Xout is then used by following recursive algorithm to
calculate a more precise value for Xout.

Xout = (3/2)*Xout - (Xi * Xout"3)/2

Three iterations of the above algorithm are performed

Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.9 API Specification for Synthesis Lattice Filter Library
Function on G2

E.9.1 Synthesis Lattice Filter
Synopsis
short lib lattice(short *b, short n, short *Kk)

Input

Short *b  Array of filter coefficients
Short n Number of data samples

Short *k  Array of filter coefficients

Output
Short f Result of forward synthesis
Description

This function implements a Lattice filter. The lattice is a synthesis filter
which calculates the following loop:

-=b[n- 1] * k[n - 1];
for (i =n- 2,10 >=0; i--) {
f -=Db[i] * Kk[i];
b[i + 1] =b[i] + (k[i] * f);
{

where “n” is the order for the filter, “k” and “b” are coefficients and “f” is
the “forward result”

The variables f, b[i],k[i] and k are in q15 format.

API Specification for Synthesis Lattice Filter Library Function on G2 E-11
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.10 API Specification for Real Block FIR Library Function on
G2

E.10.1 Real Block FIR
Synopsis

void lib real blockfir(*FIR
*RBF_CFG_Type Pointer to a configuration type structure

Input

int *x Address of input array, length>=N.

int *h Address of coefficients, length>=T.
Coefficients stored in reverse order h(T-1) ... h(0).

int N Number input samples in x to filter.
N must be multiple of 4.

int T Number of filter taps (length of h).
T must be multiple of 4 and T>=8.

Output
int *y Address of output array, length>=N
int *delay_line Base address of delay line

int *delay_current Ptr to current addr in delay line (oldest sample)

Description

This function implements a real valued block FIR filter. The N samples
of input array (“x”) are filtered with T filter coefficients in array (“h”), and
the result is stored in array (“y").

The input, output, and filter coefficients are 16-bits. The filter coefficients
must be stored in reverse order h(T-1) ... h(0).

A delay line is used to hold the history of input data and it is updated
each time to contain the latest T samples and point to the oldest of them.

E-12 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



Accumulations are 40 bits with bits 31-16 being the stored result, which
will be saturated if SAT is enabled.

Two taps for each of 4 output samples are computed every iteration of
the inner loop.

API Specification for Real Block FIR Library Function on G2 E-13
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



E.11 API Specification for 256 point FFT Library Function on
G2

E.11.1 256 point FFT
Synopsis

void |ib FFT256(short *in_data, short *out data, *tw ddl es)
void lib i FFT256(short *in data, short *out data, *tw ddl es)

Input

Short *in_data  Pointer to input data
Short *twiddles Array of Twiddle factors
Return

None

Output
Short *out_data Computed FFT or iFFT values

Description

This function implements a 256 point complex, Radix-2, decimation-in-
time Fast Fourier Transform (FFT) algorithm.

Dependencies/Assumptions

The input and output data are to be stored as Im,Re,Im,Re... and are in
natural order.

The input and output data is in Q.15 format.

Twiddle factors have to be recalculated and stored in memory.

E-14 Signal Processing Library
Copyright © 1999-2002 by LSI Logic Corporation. All rights reserved.



Index

Symbols

_ FUNC_EXIT_region_name 9-7
_ FUNC_START_region_name 9-7

A

Accessing Memory 9-13
accum_a 3-5
accum_b 3-5

B

baud rate 9-7

C

C run time stack 3-10

Callee preserved registers 3-6, 3-7
caller saved registers 3-6
Cycle-step 9-13

D

Data Type 3-5

E

ELF 1-5

G

GNU documentation 1-2
H

header files 2-5, 2-8, 2-12
I

include 2-12

install 2-2
Installation_Directory 2-3, 2-5, 2-6, 2-7, 2-8
J

JTAG 9-8
JTAG clock 9-8

L

LD_LIBRARY_PATH 2-11
lib 2-12
libraries 2-12

M

mapfile 2-13
memory_download 9-4
memory_upload 9-4
-mempcr 9-2
mlong_call 3-2
mno_sdopt 3-2

mode registers 3-7

N
-no_mempcr 9-2
]

Parameter registers 3-6, 3-7

Q

q15 3-5
R

Register Usage 3-6
Return registers 3-7

S

save-temps 3-4
SDBUG 9-1

sdcc 3-1, 3-28

sdopt 1-4, 3-3
SDSP_HOME 2-11
sdsp_install 2-10
serial Number 2-2
Stack Frame 3-11
Stack pointer 3-6, 3-7
structure passing 3-9

U

UART Connection 9-7
User-specified Profiling 9-6

ZSP SDK Software Development Kit

IX-1



\Y

vold 2-10

W
www.gnu.org 1-2
Z

ZISIM target 9-3

IX-2

Index



Customer Feedback

We would appreciate your feedback on this document. Please copy the
following page, add your comments, and fax it to us at the number
shown.

If appropriate, please also fax copies of any marked-up pages from this
document.

Important:  Please include your name, phone number, fax number, and
company address so that we may contact you directly for
clarification or additional information.

Thank you for your help in improving the quality of our documents.

ZSP SDK Software Development Kit



Reader’'s Comments

Fax your comments to: LSI Logic Corporation
Technical Publications
M/S E-198
Fax: 408.433.4333

Please tell us how you rate this document: ZSP SDK Software Develop-
ment Kit. Place a check mark in the appropriate blank for each category.

Excellent Good Average Fair Poor
Completeness of information
Clarity of information
Ease of finding information
Technical content

Usefulness of examples and
illustrations

Overall manual

What could we do to improve this document?

If you found errors in this document, please specify the error and page
number. If appropriate, please fax a marked-up copy of the page(s).

Please complete the information below so that we may contact you
directly for clarification or additional information.
Name Date
Telephone Fax
Title
Department Mail Stop
Company Name
Street

City, State, Zip

Customer Feedback



You can find a current list of our U.S. distributors, international distributors, and sales
offices and design resource centers on our web site at

http://www.lIsilogic.com/contacts/na_salesoffices.html






