


## 131-Type Long-Wavelength PIN Photodetector



The 131-Type PIN low-profile photodetector offers excellent coupling stability based on Lucent Technologies Microelectronics Group's patented Advanced Lightwave Platform technology.

#### **Features**

- Wavelength: 1.1 μm—1.6 μm
- Planar structure for high reliability
- Low-profile, 8-lead DIP package
- Wide operating temperature range: -40 °C to +85 °C
- High optical coupling stability
- Wide selection of fiber pigtails and connectors available
- High performance:
  - High responsivity
  - Very low dark current
  - High optical input saturation level
  - High speed for digital applications
  - High linearity and low back reflections for analog applications

## **Applications**

### **Digital**

- Telecommunications:
  - Fiber-in-the-loop (FITL) narrowband application
  - SONET/SDH transmission systems
  - Digital cellular
- Datacom:
  - Local area networks
  - 1 Gbit/s fibre channel
- Military:
  - Microwave systems
  - Remote antennae
  - Tactical communications

### **Analog**

- Analog systems:
  - CATV trunk and loop
  - Micro-/picocellular
  - Microwave
- Telecommunications:
  - Fiber in the loop (FITL)
  - Broadband
- Military:
  - Microwave systems
  - Remote antennae
  - Tactical communications

### **Description**

The 131-Type photodetectors represent a family of low-profile, high-reliability pigtailed devices specially engineered for the rigorous demands of either analog applications or digital fiber-optic applications. These photodetectors are based upon Lucent Technologies' patented Advanced Lightwave Platform technology, permitting high optical coupling stability and unparalleled performance.

The low-profile package is an 8-lead DIP that allows pinout-equivalent replacements for lower-performance coaxial-type packages. The low profile makes it ideal for close board-to-board spacing situations.

The 131-Type PIN Photodetectors contain a rear-illuminated planar diode structure. Lucent Technologies employs unique diode processing steps to achieve a low capacitance and highly linear active area that ensures a wide dynamic operating range. Responsivity is typically >0.85 A/W with rise and fall times of <0.5 ns at the  $1.3~\mu m$  wavelength.

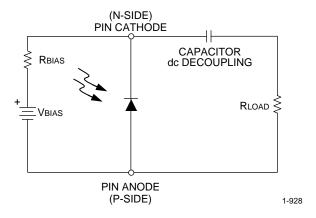
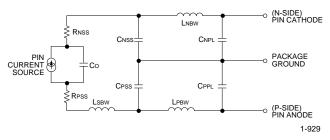




Figure 1. Typical Bias Connection

This PIN's construction involves a patented silicon optical bench that supplies mechanical stability to the fiber and directive channeling of input light. The structure also allows it to handle strong levels of input power. All fiber types are specially terminated inside the package to minimize back reflections.

These PIN photodetectors perform effectively and efficiently over the entire 1.1  $\mu$ m to 1.6  $\mu$ m long wavelength range. They have been employed in a number of diverse applications including digital cellular, remote monitoring, high-speed datacom, fiber-to-the-curb, and CATV signaling.



#### Notes:

This equivalent circuit is intended as an aid for modeling the device/ package parasitics in order for the circuit designer to better match impedance and optimize bandwidth performance.

Minimum parasitic effects can be achieved by connecting the PIN cathode (N-side) to circuit ground, applying a negative voltage to the PIN anode (P-side), and allowing the package voltage to float by **not** connecting the package ground to circuit ground.

Typical values are as follows:

Co = Bulk capacitance of the diode = 0.3 pF to 0.5 pF.

RNSS, RPSS = Bulk resistance of the contacts = 5  $\Omega$ .

Lsbw = Series inductance of P-side bond wire = 0.25 nH.

Cnss, Cpss = Substrate capacitance = 0.975 pF/0.28 pF, respectively. Lnbw, Lpbw = Series inductance of the substrate to package lead bond wire = 2.0 nH.

CNPL, CPPL = Package lead capacitance = 0.40 pF/0.46 pF, respectively.

Figure 2. Equivalent ac Circuit for Analog Applications

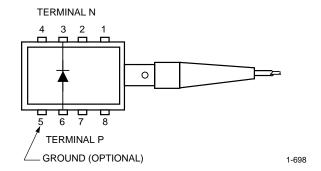



Figure 3. 8-Lead DIP Electrical Connections

## **Absolute Maximum Ratings**

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

| Parameter                   | Symbol | Min | Max  | Unit |  |
|-----------------------------|--------|-----|------|------|--|
| Operating Temperature Range | TA     | -40 | 85   | °C   |  |
| Storage Temperature Range   | Tstg   | -40 | 90   | °C   |  |
| Forward Voltage             | VF     | _   | 0    | V    |  |
| Reverse Voltage*            | VR     | _   | 30   | V    |  |
| Photocurrent                | _      | _   | 4    | mA   |  |
| Humidity                    | _      | _   | 95   | %    |  |
| ESD Threshold               | _      | _   | >250 | V    |  |

<sup>\*</sup> The recommended reverse bias voltage is 5 V to 15 V.

## **Handling Precautions**

#### **Electrostatic Discharge**

CAUTION: This device is susceptible to damage as a result of electrostatic discharge. Take proper precautions during both handling and testing. Follow guidelines such as JEDEC Publication No. 108-A (Dec. 1988).

Although protection circuitry is designed into the device, take proper precautions to avoid exposure to ESD.

Lucent Technologies employs a human-body model (HBM) for ESD-susceptibility testing and protection-design evaluation. ESD voltage thresholds are dependent on the critical parameters used to define the model. A standard HBM (resistance = 1.5 k $\Omega$ , capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes. The HBM ESD threshold presented here was obtained by using the following circuit parameters:

| Parameter     | Value | Unit |  |
|---------------|-------|------|--|
| HBM Threshold | 250   | V    |  |

#### **Electrical Characteristics**

Minimum and maximum values are testing requirements. Typical values are for informational purposes only and are not part of the testing requirements. Each device is provided with recommended operating conditions to achieve specified performance. Tc = 25  $^{\circ}$ C, unless noted otherwise. Determinations made using a 50  $\Omega$  load.

| Parameter                  | Symbol | Min | Тур  | Max | Unit |
|----------------------------|--------|-----|------|-----|------|
| Capacitance (f < 900 MHz): |        |     |      |     |      |
| 131 8-Lead DIP*            | _      | _   | 0.7  | _   | pF   |
| Rise/Fall Time             | tR/tF  | _   | <0.5 | _   | ns   |
| Dark Current               | ID     | _   | 1.0  | 5   | nA   |
| Reverse Voltage            | VR     | 2   | 15   | 30  | V    |

<sup>\*</sup> The minimum capacitance configuration occurs when the N-side of the PIN is grounded and a negative voltage is applied to the P-side, with the package floating, not grounded (value reference only; not tested in manufacture).

## **Optical Characteristics**

 $TC = 25 \, ^{\circ}C$ .

| Parameter                 | Symbol | Min      | Тур             | Max        | Unit |
|---------------------------|--------|----------|-----------------|------------|------|
| Responsivity:             |        |          |                 |            |      |
| Type 1                    | R      | 0.75     | 0.85            | _          | A/W  |
| Type 2                    | R      | 0.85     | 0.92            |            | A/W  |
| Type 3                    | R      | 0.90     | 0.95            | _          | A/W  |
| Optical Back Reflection*: |        |          |                 |            |      |
| Type 1                    | _      |          | -35             | -20        | dB   |
| Type 2                    | _      | _        | -60             | -40        | dB   |
| Wavelength Range          | _      | 1.1      | _               | 1.6        | μm   |
| Linearity:                |        |          |                 |            |      |
| Type L1:                  |        |          |                 |            |      |
| Second Order <sup>†</sup> | _      |          | <b>–</b> 52     | -48        | dBc  |
| Third Order <sup>‡</sup>  | _      |          | <del>-</del> 65 | -60        | dBc  |
| Type L2:                  |        |          |                 |            |      |
| Second Order              | _      | _        | -68             | -63        | dBc  |
| Third Order               | _      | _        | <del>-</del> 70 | -65        | dBc  |
| Type L3:                  |        |          |                 |            |      |
| Second Order              | _      | _        | <b>–75</b>      | -70        | dBc  |
| Third Order               | _      | _        | <b>–75</b>      | -70        | dBc  |
| Type L4:                  |        |          |                 |            |      |
| Second Order              | _      | _        | -80             | <b>–75</b> | dBc  |
| Third Order               | _      | _        | _               | -80        | dBc  |
| Type L5:                  |        |          |                 |            |      |
| Second Order              | _      | <u> </u> | -85             | -80        | dBc  |
| Third Order               | _      | _        | -85             | -80        | dBc  |

 $<sup>^{\</sup>star}$  Does not include rotary mechanical splice loss (index matching is recommended).

<sup>†</sup> Second-order linearity measured at 15 V bias. The two tones are chosen to lie in the interval  $f_1 > 50$  MHz,  $f_2 < 200$  MHz; or such that  $f_1 + f_2 = 860$  MHz and  $f_1 - f_2 = 50$  MHz. See Figure 7 for typical bias response.

<sup>‡</sup>Third-order linearity measured at 8 V bias. The two tones chosen are f1 = 135.0 MHz and f2 = 189.25 MHz. See Figure 8 for typical bias response.

## **Characteristic Curves**

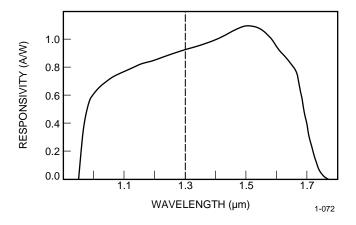



Figure 4. Responsivity as a Function of Wavelength

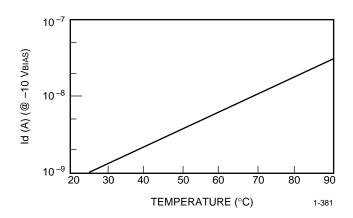



Figure 5. Typical Temperature Dependence of Dark Current

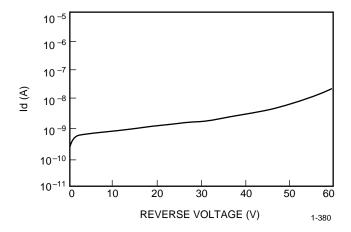



Figure 6. Reverse I-V at 23 °C

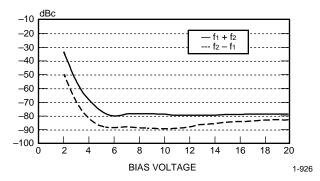



Figure 7. Second-Order Linearity, 1310 nm
Wavelength; 0 dBm Optical Received
Power; Two Tones @ 35% OMD per Tone

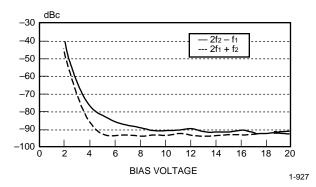
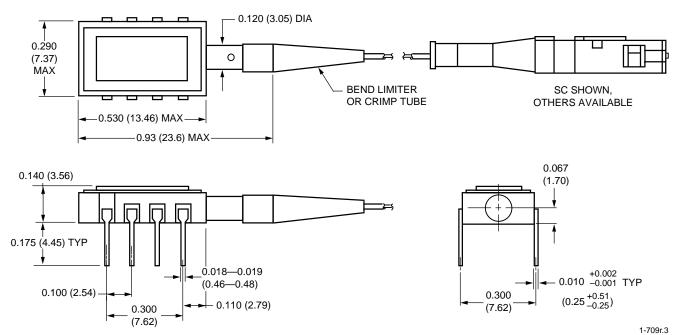



Figure 8. Third-Order Linearity, 1310 nm
Wavelength; 0 dBm Optical Received
Power; Two Tones @ 35% OMD per Tone

# Reliability

#### **Table 1. Test Qualifications**

The 131-type PIN photodetectors have successfully passed the following qualifications and meet current *Telcordia Technologies\** requirement TA-TSY-000468.


| Test                                   | Conditions                                             | Sample Size    | Failure Criteria              |  |
|----------------------------------------|--------------------------------------------------------|----------------|-------------------------------|--|
| Physical Dimensions                    | MIL-STD-883C-2016                                      | 100            | Visual                        |  |
| External Visual                        | MIL-STD-883C-2009.8                                    | 100            | Visual                        |  |
| Mechanical Shock                       | MIL-STD-883C-2002.3<br>Condition B                     | 11             | Electrical/Optical            |  |
| Variable Frequency Vibration           | MIL-STD-883C-2007.2<br>Condition A                     | 11             | Electrical/Optical            |  |
| Solderability                          | MIL-STD-883C-2003.6                                    | 11 (188 leads) | Visual                        |  |
| Solvent Resistance                     | MIL-STD-883C-2015.8                                    | 11             | Visual                        |  |
| Temperature Cycling                    | MIL-STD-883C-1010.7<br>-40 °C to +85 °C                | 11             | Electrical/Optical            |  |
| High-temperature Operating Bias (HTOB) | MIL-STD-883C-1005.7<br>85 °C, 2,000 hrs., –5 Vdc       | 25             | Electrical/Optical            |  |
| Temperature Humidity Bias              | MIL-STD-883C<br>85 °C, 85% RH, –5 Vdc, 500 cycles      | 11             | Electrical/Optical            |  |
| Thermal Shock                          | MIL-STD-883C-1011.9<br>-15 °C to +85 °C, 15 cycles     | 11             | Electrical/Visual/<br>Optical |  |
| Moisture Resistance                    | MIL-STD-883C-1004.7<br>RT, 90% RH at 65 °C, 3 hrs., RT | 11             | Electrical/Visual/<br>Optical |  |
| Low-temperature Storage                | −70 °C for 2,000 hrs.                                  | 11             | Electrical/Optical            |  |
| Fiber Pull                             | ≥1 kg, 3 times                                         | 11             | Electrical/Optical            |  |
| Electrostatic Discharge                | Human-body Model Class 1,<br>250 V max                 | _              | _                             |  |

<sup>\*</sup> Telcordia Technologies is a registered trademark of Bell Communications Research, Inc.

## **Outline Diagram**

Dimensions are in inches and (millimeters).

## **8-Lead DIP PIN Photodetector**



Note: For mechanical holding, an optional restraining clip (not shown) is supplied with all 131-lead photodetectors at no additional charge.

## **Ordering Information**

| Price<br>Type | Code  | Comcode   | Package | Analog/<br>Digital | Responsivity<br>Type | Linearity | Back<br>Reflection<br>Type | Fiber* | Connector |
|---------------|-------|-----------|---------|--------------------|----------------------|-----------|----------------------------|--------|-----------|
| D             | 131D  | 106277502 | 8-lead  | Analog             | Type 2               | L4        | Type 2                     | SM     | None      |
| D             | 131E  | 106557473 | 8-lead  | Analog             | Type 2               | L3        | Type 2                     | SM     | None      |
| G             | 131G  | 106434277 | 8-lead  | Analog             | Type 1               | L2        | Type 2                     | SM     | None      |
| L             | 131L  | 106864127 | 8-lead  | Analog             | Type 3               | L5        | Type 2                     | SM     | None      |
| G             | 131P  | 106912082 | 8-lead  | Analog             | Type 1               | L2        | Type 2                     | SM     | FC-APC    |
| D             | 131R  | 106953847 | 8-lead  | Analog             | Type 2               | L4        | Type 2                     | SM     | FC-PC     |
| D             | 131S  | 106953854 | 8-lead  | Analog             | Type 2               | L4        | Type 2                     | SM     | FC-APC    |
| G             | 131T  | 106953862 | 8-lead  | Analog             | Type 1               | L2        | Type 2                     | SM     | FC-PC     |
| AA            | 131AA | 107230047 | 8-lead  | Analog             | Type 2               | L4        | Type 2                     | SM     | FC-SPC    |
| AA            | 131AD | 107232845 | 8-lead  | Analog             | Type 2               | L4        | Type 2                     | SM     | SC-SPC    |
| AA            | 131AH | 107689689 | 8-lead  | Analog             | Type 2               | L3        | Type 2                     | SM     | FC-APC    |
| D             | 131AJ | 107751695 | 8-lead  | Analog             | Type 2               | L3        | Type 2                     | SM     | SC-APC    |
| AA            | 131AM | 107874943 | 8-lead  | Analog             | Type 2               | L3        | Type 2                     | SM     | SC-APC    |
| AA            | 131AU | 108108465 | 8-lead  | Analog             | Type 2               | L3        | Type 2                     | SM     | E-2000    |
| N             | 131N  | 106864135 | 8-lead  | Digital            | Type 1               | NA        | Type 2                     | SM     | None      |
| N             | 131AE | 107232852 | 8-lead  | Digital            | Type 1               | NA        | Type 2                     | SM     | SC-SPC    |
| N             | 131AF | 107232860 | 8-lead  | Digital            | Type 1               | NA        | Type 2                     | SM     | FC-SPC    |
| N             | 131AW | 108108473 | 8-lead  | Digital            | Type 1               | NA        | Type 2                     | SM     | E-2000    |

<sup>\*</sup> SM = single mode (~9 μm core).

For additional information, contact your Microelectronics Group Account Manager or the following:

INTERNET: http://www.lucent.com/micro, or for Optoelectronics information, http://www.lucent.com/micro/opto

E-MAIL docmaster@micro.lucent.com

N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103-3286

1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)

ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256 Tel. (65) 778 8833, FAX (65) 777 7495

Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 325, FAX (86) 21 6440 0652 CHINA:

Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan JAPAN: Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700

Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148 EUROPE:

Technical Inquiries: OPTOELECTRONICS MARKETING: (44) 1344 865 900 (Ascot UK)

Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.



microelectronics group