

Precision, Dual-Channel Difference Amplifier

Preliminary Technical Data

AD8270

FEATURES

With no external resistors:

Difference Amplifier: Gains: 0.5, 1, 2 Inverting Amplifier: Gains: 0.5, 1, 2 Noninverting Amplifier: Gains: 1.5, 2, 3 Set reference voltage at 0, +Vs/2, or +Vs

Excellent AC Specifications

10 MHz bandwidth 30V/us slew rate

Low Distortion

-90 dBc @ 100 kHz, 20Vpp, 600 Ω load

High Accuracy DC Performance

0.05% gain accuracy

10 ppm gain drift

400 uV offset voltage

80 dB CMRR

Two channels in small 4 mm × 4 mm LFCSP Supply current: 2.5 mA per channel

Supply range: ±2.5 V to ±18 V

APPLICATIONS

Instrumentation Amplifier Building Block Level Translator Automatic Test Equipment High Performance Audio Sin/Cos Encoders

FUNCTIONAL BLOCK DIAGRAM

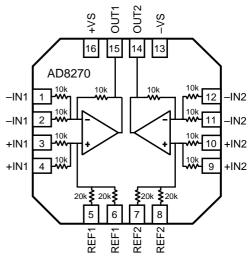


Figure 1. AD8270 Dual Difference Amplifier

Table 1. Difference Amplifiers by Category

Low Distortion	High Voltage	Single Supply Uni-directional	Single Supply Bi-directional			
AD8270	AD628	AD8202	AD8205			
AD8273	AD629	AD8203	AD8206			
AMP03	AD8212		AD8210			

GENERAL DESCRIPTION

The AD8270 is a low distortion, dual-channel amplifier with internal gain setting resistors. With no external components, it can be configured as a high performance difference amplifier (G=0.5, 1, or 2), inverting amplifier (G=0.5, 1, or 2) or non-inverting amplifier (G=1.5, 2, or 3).

The AD8270 is the first dual difference amplifier in the small 4 mm \times 4mm LFCSP. It requires the same board area as a typical single difference amplifier. The smaller package allows a 2X increase in channel density and a lower cost per channel, all with no compromise in performance.

The AD8270 operates on both single and dual supplies and only requires 2.5 mA maximum supply current for both amplifiers. It is specified over the industrial temperature range of -40° C to $+85^{\circ}$ C and is fully RoHS compliant.

AD8270

SPECIFICATIONS

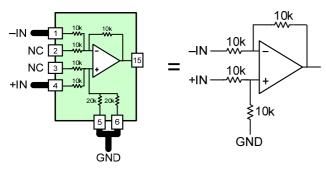
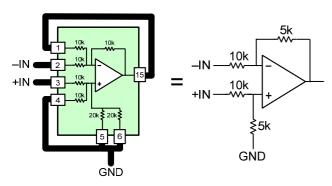
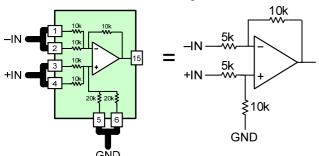
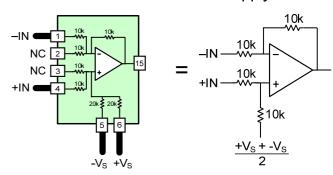

 $V_{\text{S}}=\pm15$ V, $V_{\text{REF}}=0$ V, $T_{\text{A}}=25^{\circ}\text{C},\,G=1,\,R_{\text{L}}=2~\text{k}\Omega,$ unless otherwise noted.

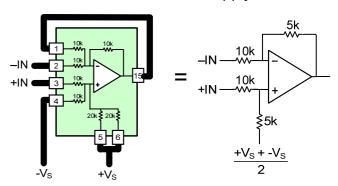
Table 2.

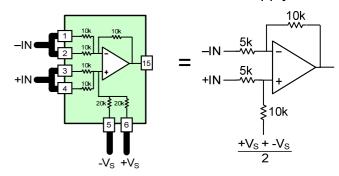

		G = 1/2			G = 1			G = 2			
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE											
Bandwidth			15			10			5		MHz
Slew Rate			30			30			30		V/µs
Settling Time to 0.01%	10V Step on output		700			800			850		ns
Settling Time to 0.001%	10V Step on output		800			900			950		ns
NOISE/DISTORTION											
Harmonic Distortion	f = 1 kHz, V _{OUT} = 20 Vpp		100			100			100		dBc
	$f = 10 \text{ kHz}, V_{OUT} = 20 \text{ Vpp}$		100			100			100		dBc
	$f = 100 \text{ kHz}, V_{OUT} = 20 \text{ Vpp}$		90			90			90		dBc
Output Voltage Noise (referred to input)	f = 0.1 Hz to 10 Hz										μV р-р
(Colored to Input)	f = 1 kHz		45			30			16		nV/√Hz
GAIN											
Gain Error				0.05			0.05			0.05	%
Gain Drift			1	10		1	10		1	10	ppm/°C
Gain Nonlinearity			10	40		10	40		10	40	ppm
INPUT CHARACTERISTICS											
Offset			100	400		100	400		100	400	μV
Overtemperature											μV
Drift			2	8		2	8		2	8	μV/°C
Common Mode Rejection Ratio	DC to 10 kHz	74	94		80	100		86	106		dB
Power Supply Rejection	DC to 10 kHz										dB
Ratio											
Input Voltage Range		-15.4		15.4	-15.4		15.4	-15.4		15.4	V
Impedance											
Differential			20			20			10		kΩ
Common Mode			7.5			10			7.5		kΩ
OUTPUT CHARACTERISTICS											
Output Swing		-13.5			-13.5			-13.5			v
output swing	-40°C <t<sub>A<85°C</t<sub>	-13.5			-13.5			-13.5			V
Short circuit current limit	-40 C<1A<63 C	-13	60		-13	60		-13	60		mA
POWER SUPPLY		1									
Supply Current			2.5	3		2.5	3		2.5	3	mA
(per Amplifier)			2.5	3		۷.۵	3		۷.۵	J	IIIA
(per Ampimer)	-40°C <t<sub>A<85°C</t<sub>		3	4		3	4		3	4	mA

Preliminary Technical Data


GAIN = 1 referenced to ground


GAIN = 1/2 referenced to ground


GAIN = 2 referenced to ground


GAIN = 1 referenced to mid-supply

GAIN = 1/2 referenced to mid-supply

GAIN = 2 referenced to mid-supply

OUTLINE DIMENSIONS

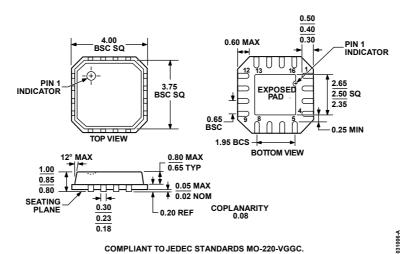


Figure 2. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 4 mm × 4 mm Body, Very Thin Quad (CP-16-13) Dimensions are shown in millimeters