

LXT386

QUAD T1/E1/J1 Transceiver

Datasheet

The LXT386 is a quad short haul Pulse Code Modulation (PCM) transceiver for use in both 1.544 Mbps (T1) and 2.048 Mbps (E1) applications. It incorporates four independent receivers and four independent transmitters in a single PBGA-160 or LQFP-100 package.

The transmit drivers provide low impedance independent of the transmit pattern and supply voltage variations. The LXT386 transmits shaped waveforms meeting G.703 and T1.102 specifications. The LXT386 exceeds the latest transmit return loss specifications, such as ETSI ETS-300166.

The LXT386's differential receiver architecture provides high noise interference margin and is able to work with up to 12 dB of cable attenuation. The digital clock recovery PLL and jitter attenuator are referenced to a low frequency 1.544 MHz or 2.048 MHz clock.

The LXT386 incorporates an advanced crystal-less jitter attenuator switchable between the receive and transmit path. The jitter attenuation performance meets the latest international specifications such as CTR12/13. The jitter attenuation performance was optimized for Synchronous Optical NETwork/Synchronous Digital Hierarchy (SONET/SDH) applications.

The LXT386 can be configured as a 3 channel transceiver with G.772 compliant non intrusive protected monitoring points. It uses a single 3.3V supply for low power consumption.

The constant delay characteristic of the LXT386 JA as well as a power down mode of all transmitters allows the implementation of Hitless Protection Switching (HPS) applications without the use of relays.

Applications

- SONET/SDH tributary interfaces
- Digital cross connects
- Public/private switching trunk line interfaces
- Microwave transmission systems

Order Number: 249253-001

January 2001

■ M13, E1-E3 MUX

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The LXT386 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

*Third-party brands and names are the property of their respective owners.

1.0	Feat	tures	7				
2.0	Pin A	Assignments and Signal Description	9				
3.0	Fund	ctional Description	22				
	3.1	Initialization					
	0.1	3.1.1 Reset Operation					
	3.2	Receiver					
	0.2	3.2.1 Loss of Signal Detector					
		3.2.1.1 E1 Mode					
		3.2.1.2 T1 Mode					
		3.2.1.3 Data Recovery Mode					
		3.2.2 Alarm Indication Signal (AIS) Detection					
		3.2.2.1 E1 Mode					
		3.2.2.2 T1 Mode	25				
		3.2.3 In Service Code Violation Monitoring					
	3.3	Transmitter	25				
		3.3.1 Transmit Pulse Shaping	26				
		3.3.1.1 Hardware Mode					
		3.3.1.2 Host Mode					
		3.3.2 Transmit Pulse Shaping					
		3.3.2.1 Output Driver Power Supply					
		3.3.2.2 Power Sequencing					
	3.4	Driver Failure Monitor					
	3.5	Line Protection					
	3.6	Jitter Attenuation					
	3.7	Loopbacks					
		3.7.1 Analog Loopback					
		3.7.2 Digital Loopback					
		3.7.3 Remote Loopback					
		3.7.4 Transmit All Ones (TAOS)					
	3.8	G.772 Performance Monitoring					
	3.9	Hitless Protection Switching (HPS)					
	3.10	Operation Mode Summary					
	3.11	Interfacing with 5V logic					
	3.12	Parallel Host Interface					
		3.12.1 Motorola Interface					
		3.12.2 Intel Interface					
	3.13	'					
		3.13.1 Interrupt Enable					
		3.13.2 Interrupt Clear					
	3.14	Serial Host Mode					
4.0	Regi	jister Descriptions	38				
5.0	JTA	G Boundary Scan	45				
	5.1	Overview	45				
	5.2	Architecture					

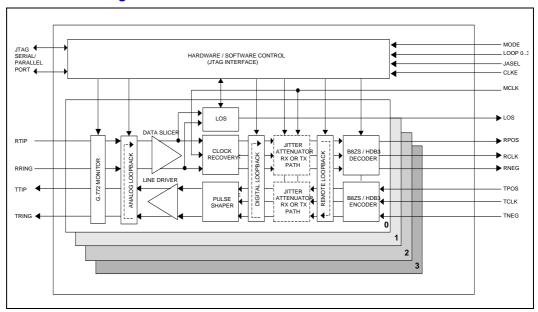
LXT386 — QUAD T1/E1/J1 Transceiver

	5.3	TAP Controller	45
	5.4	JTAG Register Description	
		5.4.1 Boundary Scan Register (BSR)	48
	5.5	Device Identification Register (IDR)	
		5.5.1 Bypass Register (BYR)	
		5.5.2 Analog Port Scan Register (ASR)	
		5.5.3 Instruction Register (IR)	51
6.0	Test	t Specifications	53
	6.1	Recommendations and Specifications	75
7.0	Mec	hanical Specifications	76
Figures	i		
	1	LXT386 Block Diagram	7
	2	LXT386 Detailed Block Diagram	
	3	LXT386 Low-Profile Quad Flate Package (LQFP) 100 Pin Assignments	and Pack-
	4	age MarkingsLXT386 Plastic Ball Grid Array (PBGA) 160 Ball Assignments	
	4 5		
	5 6	Pullup Resistor to RESET50% AMI Encoding	
	7	External Transmit/Receive Line Circuitry	
	8	Jitter Attenuator Loop	
	9	Analog Loopback	
	10	Digital Loopback	
	11	Remote Loopback	
	12	TAOS Data Path	
	13	TAOS bata Fath	
	14	Serial Host Mode Timing	
	15	LXT386 JTAG Architecture	
	16	JTAG State Diagram	
	17	•	
	18	Analog Test Port Application	
	19	Transmit Clock Timing DiagramReceive Clock Timing Diagram	
	20	JTAG Timing	
	21	Non-Multiplexed Intel Mode Read Timing	
	22 23	Multiplexed Intel Read Timing	
	23 24	Non-Multiplexed Intel Mode Write Timing	
	2 4 25	Non-Multiplexed Motorola Mode Read Timing	
	26 26	· · · · · · · · · · · · · · · · · · ·	
	20 27	Multiplexed Motorola Mode Read Timing	
		Non-Multiplexed Motorola Mode Write Timing	
	28 29	Multiplexed Motorola Mode Write TiminSerial Input Timing	
	29 30	Serial Output Timing	
	30 31	E1, G.703 Mask Templates	
	32	·	
		T1, T1.102 Mask TemplatesLXT386 Jitter Tolerance Performance	
	33	LX 1386 Jitter Tolerance Performance	73

QUAD T1/E1/J1 Transceiver — LXT386

	33	Output sitter for CTR12/13 applications	
	36	60 Plastic Ball Grid Array (PBGA) Package Dimensions	
	37	100 Pin Low Quad Flat Packages (LQFP) Dimensions	77
Tables			
	1	Pin Assignments and Signal Descriptions	11
	2	Line Length Equalizer Inputs	27
	3	Jitter Attenuation Specifications	
	4	Operation Mode Summary	34
	5	Microprocessor Parallel Interface Selection	35
	6	Serial and Parallel Port Register Addresses	38
	7	Register Bit Names	38
	8	ID Register, ID (00H)	
	9	Analog Loopback Register, ALOOP (01H)	
	10	Remote Loopback Register, RLOOP (02H)	
	11	TAOS Enable Register, TAOS (03H)	
	12	LOS Status Monitor Register, LOS (04H)	
	13	DFM Status Monitor Register, DFM (05H)	
	14	LOS Interrupt Enable Register, LIE (06H)	
	15	DFM Interrupt Enable Register, DIE (07H)	
	16	LOS Interrupt Status Register, LIS (08H)	
	17	DFM Interrupt Status Register, DIS (09H)	
	18	Software Reset Register, RES (0AH)	
	19	Performance Monitoring Register, MON (0BH)	
	20	Digital Loopback Register, DL (0CH)	
	21	LOS/AIS Criteria Register, LCS (0DH)	
	22	Automatic TAOS Select Register, ATS (0EH)	
	23	Global Control Register, GCR (0FH)	
	24	Pulse Shaping Indirect Address Register, PSIAD (10H)	
	25	Pulse Shaping Data Register, PSDAT (11H)	
	26	Output Enable Register, OER (12H)	
	27	AIS Status Monitor Register, AIS (13H)	
	28	AIS Interrupt Enable Register, AISIE (14H)	
	29 30	AIS Interrupt Status Register, AISIS (15H)	
	31	TAP State Description Device Identification Register (IDR)	
	32	Analog Port Scan Register (ASR)	
	33	Instruction Register (IR)	
	34	Absolute Maximum Ratings	
	35	Recommended Operating Conditions	
	36	DC Characteristics	
	37	E1 Transmit Transmission Characteristics	
	38	E1 Receive Transmission Characteristics	
	39	T1 Transmit Transmission Characteristics	
	40	T1 Receive Transmission Characteristics	
	41	Jitter Attenuator Characteristics	
	42	Analog Test Port Characteristics	
	43	Transmit Timing Characteristics	
	44	Receive Timing Characteristics	
		5	, ,

LXT386 — QUAD T1/E1/J1 Transceiver


45	JTAG Timing Characteristics	61
46	Intel Mode Read Timing Characteristics	
47	Intel Mode Write Timing Characteristics	
48	Motorola Bus Read Timing Characteristics	
49	Motorola Mode Write Timing Characteristics	
50	Serial I/O Timing Characteristics	
51	Transformer Specifications3	
52	G.703 2.048 Mbit/s Pulse Mask Specifications	71
53	T1.102 1.544 Mbit/s Pulse Mask Specifications	

1.0 Features

- Single rail 3.3V supply with 5V tolerant inputs
- Low power consumption of 150mW per channel (typical)
- Superior crystal-less jitter attenuator
 - Meets ETSI CTR12/13, ITU G.736, G.742, G.823 and AT&T Pub 62411 specifications
 - Optimized for SONET/SDH applications, meets ITU G.783 mapping jitter specification
 - Constant throughput delay jitter attenuator
- Hitless Protection Switching (HPS) for 1 to 1 protection without relays
- HDB3, B8ZS, or AMI line encoder/decoder
- Provides protected monitoring points per ITU G.772
- Analog/digital and remote loopback testing functions
- LOS per ITU G.775, ETS 300 233 and T1.231
- 8 bit parallel or 4 wire serial control interface
- Hardware and Software control modes
- JTAG Boundary Scan test port per IEEE 1149.1
- 160 PBGA and 100 pin LQFP packages

Figure 1. LXT386 Block Diagram

JTAG MODE LOOP 0..7 JASEL CLKE SERIAL/ PARALLEL HARDWARE / SOFTWARE CONTROL (JTAG INTERFACE) PORT MCLK Transceive<u>r 3</u> LOS → LOS3 RTIP3 -→ RPOS3 Point → RCLK3 RRING3 -→ RNEG3 TTIP3 ◀ TPOS3 G.772 Protected Monitoring - TCLK3 TRING3 ◀ TNEG3 → LOS2 RTIP2/RRING2-Transceiver 2 → RPOS2/RNEG2/RCLK2 TTIP2/TRING2 ◀ TPOS2/TNEG2/TCLK2 RTIP1/RRING1-→ LOS1 Transceiver 1 → RPOS1/RNEG1/RCLK1 TTIP1/TRING1 ← - TPOS1/TNEG1/TCLK1 Transceiver 0 → LOS0 LOS → RPOS0 RTIP0 -→ RCLK0 RRING0-MUX → RNEG0 TPOS0 TTIP0 **←** TCLK0 TRING0 ◀ TNEG0 A3 - A0 -

Figure 2. LXT386 Detailed Block Diagram

2.0 Pin Assignments and Signal Description

Figure 3. LXT386 Low-Profile Quad Flate Package (LQFP) 100 Pin Assignments and Package Markings

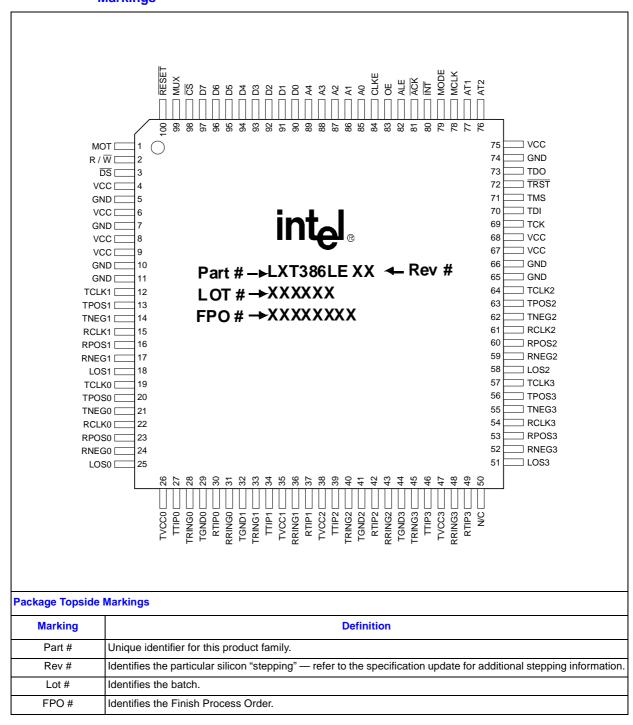


Figure 4. LXT386 Plastic Ball Grid Array (PBGA) 160 Ball Assignments

	14	13	12	11	10	9	8	7	6	5	4	3	2	1	,
A	N/C	N/C	N/C	TVCC	N/C	GND	N/C	N/C	GND	N/C	vcc	N/C	N/C	N/C	A
В	GND	GND	GND	TVCC	N/C	GND	N/C	N/C	GND	N/C	VCC	GND	GND	GND	В
С	N/C	N/C	N/C	VCC	N/C	GND	N/C	N/C	GND	N/C	VCC	N/C	N/C	N/C	С
D	GND	GND	GND	VCC	N/C	GND	N/C	N/C	GND	N/C	VCC	GND	GND	GND	D
E	OE	CLKE	N/C	N/C							N/C	N/C	MODE	MCLK	E
F	ТСК	TDO	TDI	TMS							$\begin{pmatrix} A \\ 4 \end{pmatrix}$	$\begin{pmatrix} A \\ 3 \end{pmatrix}$	A 2	A 1	F
G	VCC	AT 2	TRST	GND		ı	LXT3	86BE	=		GND	$\begin{pmatrix} A \\ 0 \end{pmatrix}$		VCC	G
н	vcc	AT 1	MOT	GND			_	M VIEN			GND	D1	D2	VCC	н
J	DS	R/\overline{W}	ALE	$\overline{\overline{\mathtt{cs}}}$								D4	D 5	D6	J
к	ACK	INT	LOS 2	LOS 3							LOS 0	LOS 1	MUX	D7	ĸ
L	TCLK 2	TPOS 2	TNEG 2	TVCC 2	TTIP 2	TGND 2	RRING 2	RRING 1	TGND 1	TTIP 1	TVCC 1	TNEG 1	TPOS 1	TCLK 1	L
М	RCLK 2	RPOS 2	RNEG 2	TVCC 2	TRING 2	TGND 2	RTIP 2	RTIP 1	TGND 1	TRING 1	TVCC 1	RNEG 1	RPOS 1	RCLK 1	м
N	TCLK 3	TPOS 3	TNEG 3	TVCC 3	TTIP 3	TGND 3	RRING 3	RRING 0	TGND 0	TTIP 0	TVCC 0	TNEG 0	TPOS 0	TCLK 0	N
Р	RCLK 3	RPOS 3	RNEG 3	TVCC 3	TRING 3	TGND 3	RTIP 3	RTIP 0	TGND 0	TRING 0	TVCC 0	RNEG 0	RPOS 0	RCLK 0	P
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

Table 1. Pin Assignments and Signal Descriptions

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹		Description			
				CLK is an independent, free-running reference clock. It's be 1.544 MHz for T1 operation and 2.048 MHz for E1				
			This reference close signals:	ck is used to generate several internal reference				
				Timing referen	nce for the integrated clock recovery unit			
				Timing referen	nce for the integrated digital jitter attenuator			
				Generation of	RCLK signal during a loss of signal condition			
F1	78 MCLK	DI	Reference clo	ck during a blue alarm transmit all ones condition				
	70	WOLK		Reference tim	ing for the parallel processor wait state generation logi			
				ne PLL clock recovery circuit is disabled. In this mode, tes as simple data receiver.				
				e complete receive path is powered down and the RPOS and RNEG are switched to Tri-state mode.				
			MCLK is not required if LXT386 is used as a simple analog front without clock recovery and jitter attenuation.					
				Note that wait state generation via RDY/ACK is not available if MCLK is not provided.				
				LXT386. In Hardw	s pin is used to select the operating mode of the are Mode, the parallel processor interface is disabled s are used to control configuration and report status.			
				In Parallel Host Mode, the parallel port interface pins are used to control configuration and report status.				
				, and the second	le the serial interface pins: SDI, SDO, SCLK and $\overline{\text{CS}}$ are			
E2	79	MODE	DI	MODE	Operating Mode			
				L	Hardware Mode			
				Н	Parallel Host Mode			
			Vcc/2	Serial Host Mode				
					ode, the pin should connected to a resistive divider 0 $k\Omega$ resistors across VCC and Ground.			
F4	89	A4	DI	Address Select. In host mode, this pin is Address 4 input pin. In hardware mode this pin must be connected to Ground.				

I I I I I

 DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.

 N/C means "Not Connected"

Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹				Descript	ion						
				intrusive m internally c routes the circuits. Th activating t order for th data can be	Mode e mode the onitoring. onnected data from the data on the remote is operation observe to Low, the	ese pins a During pro to a specification as specification	tre used to tection in fic transmed port to or port can for chaniplace). In CLKO/RP	Inputs. To select a specific port for non nonitoring receiver 0 inputs are not or receive port. Receiver 0 its data and clock recovery in be routed to TTIP0/TRING0 by nel 0 (TCLK0 must be active in addition, the recovered clock and OS0/RNEG0 outputs.						
				А3	A2	A 1	Α0	Selection						
				0	0	0	0	No Protection Monitoring						
				0	0	0	1	Receiver 1						
				0	0	1	0	Receiver 2						
F3	88	A3 A2	A2	A2	A2	A3	А3	DI	DI	0	0	1	1	Receiver 3
F2	87					DI	0	1	0	0	Reserved			
F1	86	A1	DI	0	1	0	1	Reserved						
G3	85	A0	DI	0	1	1	0	Reserved						
				0	1	1	1	Reserved						
						1	0	0	0	No Protection Monitoring				
						1	0	0	1	Transmitter 1				
													1	0
				1	0	1	1	Transmitter 3						
				1	1	0	0	Reserved						
				1	1	0	1	Reserved						
				1	1	1	0	Reserved						
				1	1	1	1	Reserved						
				to analog lo	oopback n	node.		when the respective channel is set						

DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.
 N/C means "Not Connected"

Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹			Description			
G2 H3 H2 J4 J3 J2 J1 K1	90 91 92 93 94 95 96 97	D0/LOOP0 D1/LOOP1 D2/LOOP2 D3/LOOP3 D4/DLOOP1 D6/DLOOP2 D7/DLOOP3	DI/O DI/O DI/O DI/O DI/O DI/O	function as a bi- When a multiple both bi-direction. In serial Mode, I Hardware Mode In hardware mod open (unconnec The LXT386 ent data on TPOS a RRING is looped data recovery m remote loopback The LXT386 ent DLOOP=0. In th and data transm routed back to tf The LXT386 ent this mode, data is RCLK/RPOS/RN LOOP Open 0 1 1 Note: Note: wh- impedanc signals w	tiplexed microproced and an incorproced and an incorproced and an incorproced and an incorproced and and an incorproced and and and and and and and and and an	processor interface is selected, these pins t data port. pessor interface is selected, these pins carry id address inputs A0 -A7. grounded. By works in normal operation if this pin is left operation in the pin is left operation in the pin is left operation of this pin is left operation of this pin is left operation of this pin is left operation of the pin is			
L1	12	TCLK1	DI	Transmit Clock	•				
L2	13	TPOS1/ TDATA1	DI DI	Transmit Positive Data. Transmit Data.					
L3	14	TNEG1/ UBS1	DI DI	Transmit Negative Data. Unipolar/Bipolar Select.					
M1	15	RCLK1	DO	Receive Clock.					
M2	16	RPOS1/ RDATA1	DO DO	Receive Positive Data. Receive Data.					
МЗ	17	RNEG1/ BPV1	DO DO	Receive Negative Data. Bipolar Violation Detect.					
K3	18	LOS1	DO	Loss of Signal.	Loss of Signal.				

^{1.} DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.

2. N/C means "Not Connected"

 Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹		Description				
				TNEG are sa drivers enter clock cycles to pulse widths When pulses LXT384 device a programma To prevent the	mpled on a low pow the pulse are determined is because the by leavible ASIC is, clock o	the faver hishaping the disaling transfer of	rmal operation TCLK is active, and alling edge of TCLK. If TCLK is Low gh Z mode. If TCLK is High for moing circuit is disabled and the transd by the TPOS and TNEG duty cycloled, it is possible to overheat and ransmit inputs high continuously. If tleave all outputs high until it is prothese signals: TPOS, TNEG, TCL is of these signals low: TPOS, TNEG.	w, the output ore than 16 smit output cles. damage the for example ogrammed. K or MCLK.	
N1	19	TCLK0	DI	Т	CLK		Operating Mode		
				Clo	ocked	Norr	mal operation		
					Н	TAO	S (if MCLK supplied)		
					Н		ble transmit pulse shaping (when .K is not available)		
					L	Drive	er outputs enter tri-state		
N2	20	TPOS0/ TDATA0	DI DI	to assure tha must have th Transmit Po Transmit Da Transmit Ne Unipolar/Bip Bipolar Mode TPOS/TNEG	t the outp e applicat sitive Dat ta. gative Da colar Sele :	ut fre ole sta ta. ect. e high	tor uses MCLK as a timing referen quency is within specification limit ability. n NRZ inputs. TPOS indicates the t	s, MCLK	
				TPOS	TNE	G	Selection		
				0	0		Space	†	
				1	0		Positive Mark	1	
				0	1		Negative Mark		
				1	1		Space		
Nia	21	TNEG0/	DI						
N3 21		UBS0	DI	cycles, unipo encoding/dec by the CODE	/UBS is pular I/O is soding is to the North I/O is to the North I/O is the	select deterr ne GC	High for more than 16 consecutive ted. In unipolar mode, B8ZS/HDB3 mined by the CODEN pin (hardwar CR register (software mode).	3 or AMI	

DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.
 N/C means "Not Connected"

Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹	Description
				Receive Clock.
				Normal Mode:
P1	22	RCLK0	DO	This pin provides the recovered clock from the signal received at RTIP and RRING. Under LOS conditions there is a transition from RCLK signal (derived from the recovered data) to MCLK signal at the RCLK output. Data Recovery Mode:
				If MCLK is High, the clock recovery circuit is disabled and RPOS and RNEG are internally connected to an EXOR that is fed to the RCLK output for external clock recovery applications.
				RCLK will be in high impedance state if the MCLK pin is Low.
				Receive Positive.
				Receive Data.
				Receive Negative Data.
	P2 23			Bipolar Violation Detect.
				Bipolar Mode:
P2			DO DO	In clock recovery mode these pins act as active high bipolar non return to zero (NRZ) receive signal outputs. A High signal on RPOS corresponds to receipt of a positive pulse on RTIP/RRING. A High signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. These signals are valid on the falling or rising edges of RCLK depending on the CLKE input.
				In Data recovery Mode these pins act as RZ data receiver outputs. The output polarity is selectable with CLKE (Active High output polarity when CLKE is High and Active Low Polarity when CLKE is Low).
				RPOS and RNEG will go to the high impedance state when the MCLK pin is Low.
				<u>Unipolar Mode</u> :
P3	24	RNEG0/	DO	In uni-polar mode, the LXT386 asserts BPV High if any in-service Line Code Violation is detected. RDATA acts as the receive data output.
		BPV0	DO	Hardware Mode: During a LOS condition, RPOS and RNEG will remain active.
				Host Mode: RPOS and RNEG will either remain active or insert AIS into the receive path. Selection is determined by the RAISEN bit in the GCR register.
K4	25	LOS0	DO	Loss of Signal. LOS goes High to indicate a loss of signal, i.e. when the incoming signal has no transitions for a specified time interval. The LOS condition is cleared and the output pin returns to Low when the incoming signal has sufficient number of transitions in a specified time interval. See "Loss of Signal Detector" on page 24.
				Multiplexed/Non-Multiplexed Select.
K2	99	MUX	DI	When Low the parallel host interface operates in non-multiplexed mode. When High the parallel host interface operates in multiplexed mode. In hardware mode tie this unused input low.
N4, P4	26	TVCC0	S	Transmit Driver Power Supply . Power supply pin for the port 0 output driver. TVCC pins can be connected to either a 3.3V or 5V power supply. Refer to the Transmitter description.

^{1.} DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.

^{2.} N/C means "Not Connected"

Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹	Description
N5 P5	27 28	TTIP0 TRING0	AO AO	Transmit Tip. Transmit Ring. These pins are differential line driver outputs. TTIP and TRING will be in high impedance state if the TCLK pin is Low or the OE pin is Low. In software mode, TTIP and TRING can be tristated on a port-by-port basis by writing a '1' to the OEx bit in the Output Enable Register (OER).
N6, P6	29	TGND0	S	Transmit Driver Ground. Ground pin for the output driver.
P7 N7	30 31	RTIP0 RRING0	AI AI	Receive Tip. Receive Ring. These pins are the inputs to the differential line receiver. Data and clock are recovered and output on the RPOS/RNEG and RCLK pins.
L6, M6	32	TGND1	S	Transmit Driver Ground.
M5 L5	33 34	TRING1 TTIP1	AO AO	Transmit Ring. Transmit Tip.
L4, M4	35	TVCC1	S	Transmit Driver Power Supply. Power supply pin for the port 1 output driver. TVCC pins can be connected to either a 3.3V or 5V power supply. Refer to the Transmitter description.
L7	36	RRING1	Al	Receive Ring.
M7	37	RTIP1	Al	Receive Tip.
L11, M11	38	TVCC2	S	Transmit Driver Power Supply. Power supply pin for the port 2 output driver. TVCC pins can be connected to either a 3.3V or 5V power supply. Refer to the Transmitter description.
L10	39	TTIP2	AO	Transmit Tip.
M10	40	TRING2	AO	Transmit Ring.
L9, M9	41	TGND2	S	Transmit Driver Ground.
M8	42	RTIP2	Al	Receive TIP.
L8	43	RRING2	Al	Receive Ring.
N9, P9	44	TGND3	S	Transmit Driver Ground.
P10	45	TRING3	AO	Transmit Ring.
N10	46	TTIP3	AO	Transmit Tip.
N11, P11	47	TVCC3	S	Transmit Driver Power Supply. Power supply pin for the port 3 output driver. TVCC pins can be connected to either a 3.3V or 5V power supply. Refer to the Transmitter description.
N8	48	RRING3	Al	Receive Ring.
P8	49	RTIP3	Al	Receive Tip.
K11	51	LOS3	DO	Loss of Signal.
P12	52	RNEG3/ BPV3	DO DO	Receive Negative Data. Bipolar Violation Detect.
DAG	5 0	RPOS3/	DO	Receive Positive Data.
P13	53	RDATA3	DO	Receive Data.
P14	54	RCLK3	DO	Receive Clock.

I I
 DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.
 N/C means "Not Connected"

Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹	Description
N12	55	TNEG3/	DI	Transmit Negative Data.
INIZ	33	UBS3	DI	Unipolar/Bipolar Select.
N13	56	TPOS3/	DI	Transmit Positive Data.
	00	TDATA3	DI	Transmit Data.
N14	57	TCLK3	DI	Transmit Clock.
K12	58	LOS2	DO	Loss of Signal.
M12	59	RNEG2/	DO	Receive Negative Data.
WITZ	33	BPV2	DO	Bipolar Violation Detect.
M13	60	RPOS2/	DO	Receive Positive Data.
WITO	00	RDATA2	DO	Receive Data.
M14	61	RCLK2	DO	Receive Clock.
L12	62	TNEG2/	DI	Transmit Negative Data.
	02	UBS2	DI	Unipolar/Bipolar Select.
L13	63	TPOS2/	DI	Transmit Positive Data.
		TDATA2	DI	Transmit Data.
L14	64	TCLK2	DI	Transmit Clock.
K13	80	ĪNT	DO	Interrupt. This active Low, maskable, open drain output requires an external 10k pull up resistor. If the corresponding interrupt enable bit is enabled, INT goes Low to flag the host when the <i>LXT386</i> changes state (see details in the interrupt handling section). The microprocessor INT input should be set to level triggering.
				Data Transfer acknowledge (Motorola Mode).
				Ready (Intel mode).
				Serial Data Output (Serial Mode). Motorola Mode
K14	81	ACK/ RDY/ SDO	DO DO DO	A Low signal during a databus read operation indicates that the information is valid. A Low signal during a write operation acknowledges that a data transfer into the addressed register has been accepted (acknowledge signal). Wait states only occur if a write cycle immediately follows a previous read or write cycle (e.g. read modify write). Intel Mode A High signal acknowledges that a register access operation has been completed (Ready Signal). A Low signal on this pin signals that a data transfer operation is in progress. The pin goes tristate after completion of a bus cycle. Serial Mode If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK. This pin goes into high Z state during a serial port write access.

^{1.} DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.

2. N/C means "Not Connected"

 Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹	Description
J14	3	DS/ WR/ SDI/ LEN0	DI DI DI	Data Strobe (Motorola Mode). Write Enable (Intel mode). Serial Data Input (Serial Mode). Line Length Equalizer (Hardware Mode). Host Mode This pin acts as data strobe in Motorola mode and as Write Enable in Intel mode. In serial mode this pin is used as Serial Data Input. Hardware Mode This pin determines the shape and amplitude of the transmit pulse. Refer to Table 2.
J13	2	R / W/ RD/ LEN1	DI DI DI	Read/Write (Motorola Mode). Read Enable (Intel mode). Line Length Equalizer (Hardware Mode). Host Mode This pin functions as the read/write signal in Motorola mode and as the Read Enable in Intel mode. Hardware Mode This pin determines the shape and amplitude of the transmit pulse. Refer to Table 2.
J12	82	ALE/ SCLK/ ĀS/ LEN2	DI DI DI	Address Latch Enable (Host Mode). Shift Clock (Serial Mode). Address Strobe (Motorola Mode). Line Length Equalizer (Hardware Mode). Host Mode The address on the multiplexed address/data bus is clocked into the device with the falling edge of ALE. In serial Host mode this pin acts as serial shift clock. In Motorola mode this pin acts a an active Low address strobe. Hardware Mode This pin determines the shape and amplitude of the transmit pulse. Refer to Table 2.

DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.
 N/C means "Not Connected"

Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹	Description	
J11	98	ŪS∕ JASEL	DI DI	Chip Select/Jitter Attenuator Select. Host Mode This active Low input is used to access the serial/parallel interface. For each read or write operation, CS must transition from High to Low, and remain Low. Hardware Mode This input determines the Jitter Attenuator position in the data path: JASEL JA Position L Transmit path H Receive path Z Disabled	
H12	1	MOT/INTL/ CODEN	DI DI	Motorola/Intel/Codec Enable Select. Host Mode: When Low, the host interface is configured for Motorola microcontrollers. When High, the host interface is configured for Intel microcontrollers. Hardware Mode: This pin determines the line encode/decode selection when in unipolar mode: When Low, B8ZS/HDB3 encoders/decoders are enabled for T1/E1 respectively. When High, enables AMI encoder/decoder (transparent mode).	
G13	76	AT2	AO	JTAG Analog Output Test Port 2.	
H13	77	AT1	Al	JTAG Analog Input Test Port 1.	
G12	72	TRST		JTAG Controller Reset. Input is used to reset the JTAG controller. TRST is pulled up internally and may be left disconnected.	
F11	71	TMS	DI	JTAG Test Mode Select. Used to control the test logic state machine. Sampled on rising edge of TCK. TMS is pulled up internally and may be left disconnected.	
F14	69	TCK	DI	JTAG Clock. Clock input for JTAG. Connect to GND when not used.	
F13	73	TDO	DO	JTAG Data Output. Test Data Output for JTAG. Used for reading all serial configuration and test data from internal test logic. Updated on falling edge of TCK.	
F12	70	TDI	DI	JTAG Data Input. Test Data input for JTAG. Used for loading serial instructions and data into internal test logic. Sampled on rising edge of TCK. TDI is pulled up internally and may be left disconnected.	
E14	83	OE	DI	Output Driver Enable. If this pin is asserted Low all analog driver outputs immediately enter a high impedance mode to support redundancy applications without external mechanical relays. All other internal circuitry stays active. In software mode, TTIP and TRING can be tristated on a port-by-port basis by writing a '1' to the OEx bit in the Output Enable Register (OER).	

DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.
 N/C means "Not Connected"

Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹	Description	
E13	84	CLKE	DI	Clock Edge Select. In clock recovery mode, setting CLKE High causes RDATA or RPOS and RNEG to be valid on the falling edge of RCLK and SDO to be valid on the rising edge of SCLK. Setting CLKE Low makes RDATA or RPOS and RNEG to be valid on the rising edge of RCLK and SDO to be valid on the falling edge of SCLK. In Data recovery Mode, RDATA or RPOS/RNEG are active High output polarity when CLKE is High and active low polarity when CLKE is Low.	
				CLKE RPOS/RNEG SDO	
				Low rclk sclk	
				High RCLK SCLK	
N/C ²	100	RESET	DI	Reset Input. (Added in Revision B1) In either hardware mode or software mode, setting RESET low will begin to initialize the LXT386 and freeze the device until set high. One microsecond after setting RESET high, initialization will complete and the LXT386 will be ready for normal operation. For Revision B1 only, the device requires a pull up resistor to VCC at this pin between 1 and 10 kohms in value. It is not necessary to retain the pull up resistor for any other revision. Please refer to the section on Reset Operation for more information. The BGA package does not have this pin feature.	
A6, A9 B: 1, 2, 3, 6, 9, 12, 13, 14 C6, C9 D: 1, 2, 3, 6, 9, 12, 13, 14 G4, G11 H4, H11	5, 7, 10, 11, 65, 66, 74	GND	S	Power Supply Ground. Connect all pins to power supply ground.	

DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.
 N/C means "Not Connected"

Table 1. Pin Assignments and Signal Descriptions (Continued)

Ball # PBGA	Pin # LQFP	Symbol	I/O ¹	Description
A4, B4, C4, C11, D4, D11, G1, G14, H1, H14	4, 6, 8, 9, 67, 68, 75,	VCC	S	Power Supply. Connect all pins to +3.3 volt power supply.
A11, B11	-	TVCC	S	Transmit Driver Power Supply . Power supply pins for the output drivers. TVCC pins can be connected to either a 3.3V or 5V power supply. Refer to "Transmitter" on page 25 for details.
A: 1, 2, 3, 5, 7, 10, 12, 13, 14 B: 7, 8, 10 C: 1, 2, 3, 5, 7, 8, 10, 12, 13, 14 D: 5, 7, 8, 10 E: 3, 4, 11, 12	50	N/C	NC	Not Connected. These pins must be left open for normal operation.

DI: Digital Input; DO: Digital Output; DI/O: Digital Bidirectional Port; AI: Analog Input; AO: Analog Output S: Power Supply; N.C.: Not Connected.
 N/C means "Not Connected"

3.0 Functional Description

Figure 1 is a simplified block diagram of the LXT386. The LXT386 is a fully integrated quad line interface unit designed for T1 1.544 Mbps and E1 2.048 Mbps short haul applications.

Each transceiver front end interfaces with four lines, one pair for transmit, one pair for receive. These two lines comprise a digital data loop for full duplex transmission.

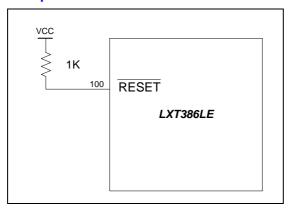
The LXT386 can be controlled through hard-wired pins or by a microprocessor through a serial or parallel interface (Host mode).

The transmitter timing reference is TCLK, and the receiver reference clock is MCLK. The LXT386 is designed to operate without any reference clock when used as an analog front-end (line driver and data recovery). MCLK is mandatory if the on chip clock recovery capability is used. All four clock recovery circuits share the same reference clock defined by the MCLK input signal.

3.1 Initialization

During power up, the transceiver remains static until the power supply reaches approximately 60% of VCC. During power-up, an internal reset sets all registers to their default values and resets the status and state machines for the LOS.

3.1.1 Reset Operation


In Revision B1, no connect pin 100 was converted to the $\overline{\text{RESET}}$ pin. Only revision B1 requires a pull up resistor to VCC at pin 100, the pull up resistor is unnecessary for all other revisions. Figure 4 shows the connections needed for revision B1 only. Note: The BGA package does not have a $\overline{\text{RESET}}$ pin.

There are two methods of resetting the LXT386:

- 1. Override Reset Setting the RESET pin low in either hardware mode or host mode. Until the RESET pin returns high, the LXT386 remains frozen and will not function. Once the RESET pin has returned high, the LXT386 will operaate normally. Override Reset changes all the internal registers to their default values.
- 2. Software Reset Writing to the RES reset register initiates a 1microsecond reset cycle, except in Intel non-multiplexed mode. In Intel non-multiplexed mode, the reset cycle takes 2 microseconds. Please refer to Host mode section for more information. This operation changes all LXT386 registers to their default values.

Figure 5. Pullup Resistor to RESET

3.2 Receiver

The four receivers in the LXT386 are identical. The following paragraphs describe the operation of one.

The twisted-pair input is received via a 1:2 step down transformer. Positive pulses are received at RTIP, negative pulses at RRING. Recovered data is output at RPOS and RNEG in the bipolar mode and at RDATA in the unipolar mode. The recovered clock is output at RCLK. RPOS/RNEG validation relative to RCLK is pin selectable (CLKE).

The receive signal is processed through the peak detector and data slicers. The peak detector samples the received signal and determines its maximum value. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. For DSX-1 applications (line length inputs LEN2-0 from 011 to 111) the threshold is set to 70% (typical) of the peak value. This threshold is maintained above the specified level for up to 15 successive zeros over the range of specified operating conditions. For E1 applications (LEN2-0 = 000), the threshold is 50% (typical).

The receiver is capable of accurately recovering signals with up to 12 dB of attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Maximum line length is 1500 feet of ABAM cable (approximately 6 dB of attenuation). Regardless of received signal level, the peak detectors are held above a minimum level of 0.150 V (typical) to provide immunity from impulsive noise.

After processing through the data slicers, the received signal goes to the data and timing recovery section. The data and timing recovery circuits provide an input jitter tolerance better than required by Pub 62411 and ITU G.823, as shown in Test Specifications, Figure 33.

Depending on the options selected, recovered clock and data signals may be routed through the jitter attenuator, through the B8ZS/HDB3/AMI decoder, and may be output to the framer as either bipolar or unipolar data.

3.2.1 Loss of Signal Detector

The loss of signal detector in the LXT386 uses a dedicated analog and digital loss of signal detection circuit. It is independent of its internal data slicer comparators and complies to the latest ITU G.775 and ANSI T1.231 recommendations. Under software control, the detector can be configured to comply to the ETSI ETS 300 233 specification (LACS Register). In hardware mode, the LXT386 supports LOS per G.775 for E1 and ANSI T1.231 for T1 operation.

The receiver monitor loads a digital counter at the RCLK frequency. The counter is incremented each time a zero is received, and reset to zero each time a one (mark) is received. Depending on the operation mode, a certain number of consecutive zeros sets the LOS signal. The recovered clock is replaced by MCLK at the RCLK output with a minimum amount of phase errors. MCLK is required for receive operation. When the LOS condition is cleared, the LOS flag is reset and another transition replaces MCLK with the recovered clock at RCLK. RPOS/RNEG will reflect the data content at the receiver input during the entire LOS detection period for that channel.

3.2.1.1 E1 Mode

In G.775 mode a loss of signal is detected if the signal is below 200mV (typical) for 32 consecutive pulse intervals. When the received signal reaches 12.5% ones density (4 marks in a sliding 32-bit period) with no more than 15 consecutive zeros and the signal level exceeds 250mV (typical), the LOS flag is reset and another transition replaces MCLK with the recovered clock at RCLK.

In ETSI 300 233 mode, a loss of signal is detected if the signal is below 200mV for 2048 consecutive intervals (1 ms). The LOS condition is cleared and the output pin returns to Low when the incoming signal has transitions when the signal level is equal or greater than 250mV for more than 32 consecutive pulse intervals. This mode is activated by setting the LACS register bit to one. If it is necessary to use AIS with LOS, see errata 10.3 for a way to implement this.

3.2.1.2 T1 Mode

The T1.231 LOS detection criteria is employed. LOS is detected if the signal is below 200mV for 175 contiguous pulse positions. The LOS condition is terminated upon detecting an average pulse density of 12.5% over a period of 175 contiguous pulse positions starting with the receipt of a pulse. The incoming signal is considered to have transitions when the signal level is equal or greater than 250mV.

3.2.1.3 Data Recovery Mode

In data recovery mode the LOS digital timing is derived from a internal self timed circuit. RPOS/RNEG stay active during loss of signal. The analog LOS detector complies with ITU-G.775 recommendation. The LXT386 monitors the incoming signal amplitude. Any signal below 200mV for more than 30 μ s (typical) will assert the corresponding LOS pin. The LOS condition is cleared when the signal amplitude rises above 250mV. The LXT386 requires more than 10 and less than 255 bit periods to declare a LOS condition in accordance to ITU G.775.

3.2.2 Alarm Indication Signal (AIS) Detection

The AIS detection is performed by the receiver independent of any loopback mode. This feature is available in host mode only. Because there is no clock in data recovery mode, AIS detection will not work in that mode. AIS requires MCLK to have clock applied, since this function depends on the clock to count the number of ones in an interval.

3.2.2.1 E1 Mode

One detection mode suitable for both ETSI and ITU is available when the LACS register bits are cleared to zero. If the LACS register bit is set to one, see errata 10.3 to implement this:

ETSI ETS300233 and G.775 detection

The AIS condition is declared when the received data stream contains less than 3 zeros within a period of 512 bits.

The AIS condition is cleared when 3 or more zeros within 512 bits are detected.

3.2.2.2 T1 Mode

ANSI T1.231 detection is employed.

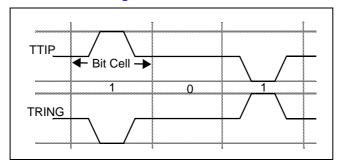
The AIS condition is declared when less than 9 zeros are detected in any string of 8192 bits. This corresponds to a 99.9% ones density over a period of 5.3ms.

The AIS condition is cleared when the received signal contains 9 or more zeros in any string of 8192 bits.

3.2.3 In Service Code Violation Monitoring

In unipolar I/O mode with HDB3/B8ZS decoding, the LXT386 reports bipolar violations on RNEG/BPV for one RCLK period for every HDB3/B8ZS code violation that is not part of the zero code substitution rules. In AMI mode, all bipolar violations (two consecutive pulses with the same polarity) are reported at the BPV output.

3.3 Transmitter


The four low power transmitters of the LXT386 are identical.

Transmit data is clocked serially into the device at TPOS/TNEG in the bipolar mode or at TDATA in the unipolar mode. The transmit clock (TCLK) supplies the input synchronization. Unipolar I/O and HDB3/B8ZS/AMI encoding/decoding is selected by pulling TNEG High for more than 16 consecutive TCLK clock cycles. The transmitter samples TPOS/TNEG or TDATA inputs on the falling edge of TCLK. Refer to the Test Specifications Section for MCLK and TCLK timing characteristics. If TCLK is not supplied, the transmitter remains powered down and the TTIP/TRING outputs are held in a High Z state. In addition, fast output tristatability is also available through the OE pin (all ports) and/or the port's \overline{OEx} bit in the Output Enable Register (OER).

Zero suppression is available only in Unipolar Mode. The two zero-suppression types are B8ZS, used in T1 environments, and HDB3, used in E1 environments. The scheme selected depends on whether the device is set for T1 or E1 operation (determined by LEN2-0 pulse shaping settings). The LXT386 also supports AMI line coding/decoding as shown in Figure 6. In Hardware mode, AMI coding/decoding is selected by the CODEN pin. In host mode, AMI coding/decoding is selected by bit 4 in the GCR (Global Control Register).

Figure 6. 50% AMI Encoding

Each output driver is supplied by a separate power supply (TVCC and TGND). The transmit pulse shaper is bypassed if no MCLK is supplied while TCLK is pulled high. In this case TPOS and TNEG control the pulse width and polarity on TTIP and TRING. With MCLK supplied and TCLK pulled high the driver enters TAOS (Transmit All Ones pattern). Note that the TAOS generator uses MCLK as a timing reference. In order to assure that the output frequency is within specification limits, MCLK must have the applicable stability. TAOS is inhibited during Remote Loopback.

3.3.1 Transmit Pulse Shaping

The transmitted pulse shape is internally generated using a high speed D/A converter. Shaped pulses are further applied to the line driver for transmission onto the line at TTIP and TRING. The line driver provides a constant low output impedance regardless of whether it is driving marks, spaces or if it is in transition. This well controlled dynamic impedance provides excellent return loss when used with external precision resistors (\pm 1% accuracy) in series with the transformer.

3.3.1.1 Hardware Mode

In hardware mode, pins LEN0-2 determine the pulse shaping as described in Table 2. The LEN settings also determine whether the operating mode is T1 or E1. Note that in T1 operation mode, all four ports will share the same pulse shaping setting. Independent pulse shaping for each channel is available in host mode

3.3.1.2 Host Mode

In Host Mode, the contents of the Pulse Shaping Data Register (PSDAT) determines the shape of pulse output at TTIP/TRING. Refer to Table 24 and Table 25.

LEN2	LEN1	LEN0	Line Length ¹	Cable Loss ²	Operation Mode
0	1	1	0 - 133 ft. ABAM	0.6 dB	
1	0	0	133 - 266 ft. ABAM	1.2 dB	
1	0	1	266 - 399 ft. ABAM	1.8 dB	
1	1	0	399 - 533 ft. ABAM	2.4 dB	T1
1	1	1	533 - 655 ft. ABAM	3.0 dB	
0	0	0	E1 G.703, 75Ω coaxial cable and 12	E1	

Table 2. Line Length Equalizer Inputs

3.3.2 Transmit Pulse Shaping

The transmitted pulse shape is internally generated using a high speed D/A converter. Shaped pulses are further applied to the line driver for transmission onto the line at TTIP and TRING. The line driver provides a constant low output impedance regardless of whether it is driving marks.

3.3.2.1 Output Driver Power Supply

The output driver power supply (TVCC pins) can be either 3.3V or 5V nominal. When TVCC=5V, LXT386 drives both E1 ($75\Omega/120\Omega$) and T1 100Ω lines through a 1:2 transformer and $11\Omega/9.1\Omega$ series resistors.

When TVCC=3.3V, the LXT386 drives E1 $(75\Omega/120\Omega)$ lines through a 1:2 transformer and 11Ω series resistor. A configuration with a 1:2 transformer and without series resistors should be used to drive T1 100Ω lines.

Removing the series resistors for T1 applications with TVCC=3.3V, improves the power consumption of the device. See Table 35.

On the other hand, series resistors in the transmit configuration improve the transmit return loss performance. Good transmit return loss performance minimizes reflections in harsh cable environments. In addition, series resistors provide protection against surges coupled to the device. The resistors should be used in systems requiring protection switching without external relays. Please refer to Figure 7 for the recommended external line circuitry.

3.3.2.2 Power Sequencing

For the LXT384, we recommend sequencing TVCC first then VCC second or at the same time as TVCC to prevent excessive current draw.

3.4 Driver Failure Monitor

The LXT386 transceiver incorporates an internal power Driver Failure Monitor (DFM) in parallel with TTIP and TRING that is capable of detecting secondary shorts without cable. DFM is available only in configurations with no transmit series resistors (T1 mode with TVCC=3.3V). This feature is available in the serial and parallel host modes but not available in the hardware mode of operation.

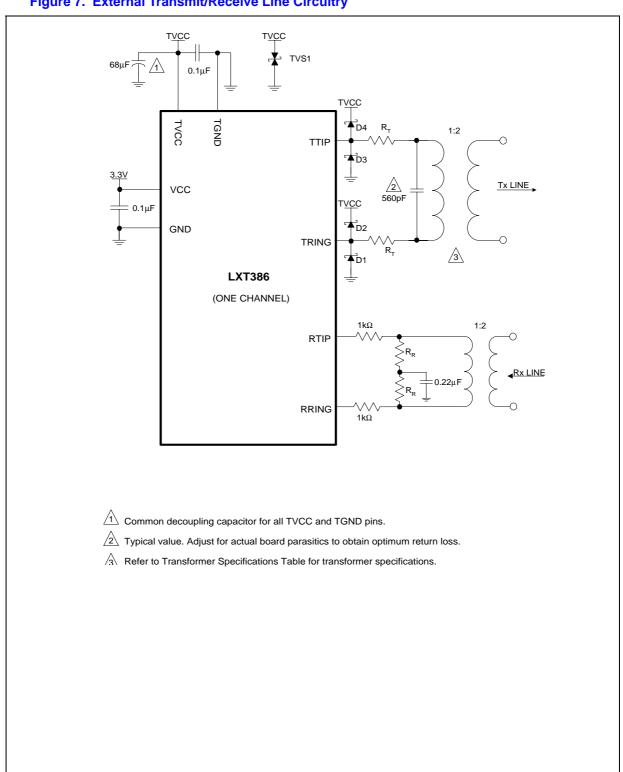
^{1.} Line length from LXT386 to DSX-1 cross-connect point.

^{2.} Maximum cable loss at 772KHz.

LXT386 — QUAD T1/E1/J1 Transceiver

A capacitor, charged via a measure of the driver output current and discharged by a measure of the maximum allowable current, is used to detect a secondary short failure. Secondary shorted lines draw excess current, overcharging the cap. When the capacitor charge deviates outside the nominal charge window, a driver short circuit fail (DFM) is reported in the respective register by setting an interrupt. During a long string of spaces, a short-induced overcharge eventually bleeds off, clearing the DFM flag.

Note that unterminated lines of adequate length ($\lambda/4$) may effectively behave as short-circuits as seen by the driver and therefore trigger the DFM. Under these circumstances, the alarm should be disabled.


In addition, LXT386 features output driver short-circuit protection. When the output current exceeds 100 mA, LXT386 limits the driver's output voltage to avoid damage.

3.5 Line Protection

Figure 7 on page 29 shows recommended line interface circuitry. In the receive side, the $1~k\Omega$ series resistors protect the receiver against current surges coupled into the device. Due to the high receiver impedance (70 $k\Omega$ typical) the resistors do not affect the receiver sensitivity. In the transmit side, the Schottky diodes D1-D4 protect the output driver. While not mandatory for normal operation, these protection elements are strongly recommended to improve the design robustness.

Figure 7. External Transmit/Receive Line Circuitry

3.6 Jitter Attenuation

A digital Jitter Attenuation Loop (JAL) combined with a FIFO provides Jitter attenuation. The JAL is internal and requires no external crystal nor high-frequency (higher than line rate) reference clock.

In Host Mode, the Global Control Register (GCR) determines whether the JAL is positioned in the receive or transmit path. In Hardware Mode, the JAL position is determined by the JASEL pin.

The FIFO is a 32 x 2-bit or 64 x 2-bit register (selected by the FIFO64 bit in the GCR). Data is clocked into the FIFO with the associated clock signal (TCLK or RCLK), and clocked out of the FIFO with the dejittered JAL clock. See Figure 8. When the FIFO is within two bits of overflowing or underflowing, the FIFO adjusts the output clock by 1/8 of a bit period. The Jitter Attenuator produces a constant delay of 17 or 33 bits in the associated path (refer to test specifications). This feature can be used for hitless switching applications. This advanced digital jitter attenuator meets latest jitter attenuation specifications. See Table 3.

Under software control, the low limit jitter attenuator corner frequency depends on FIFO length and the JACF bit setting (this bit is in the GCR register). In Hardware Mode, the FIFO length is fixed to 64 bits. The corner frequency is fixed to 6 Hz for T1 mode and 3.5 Hz for E1 mode.

Table 3. Jitter Attenuation Specifications

T1	E1		
AT&T Pub 62411	ITU-T G.736		
GR-253-CORE ¹	ITU-T G.742 ³		
	ITU-T G.783 ⁴		
TR-TSY-000009 ²	ETSI CTR12/13		
	BAPT 220		

- 1. Category I, R5-203.
- 2. Section 4.6.3.
- 3. Section 6.2 When used with the SXT6234 E2-E1 mux/demux.
- 4. Section 6.2.3.3 combined jitter when used with the SXT6251 21E1 mapper.

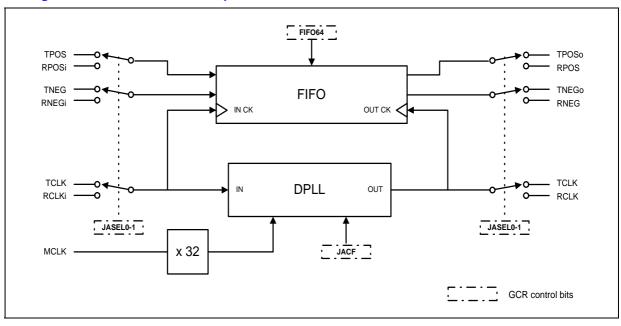
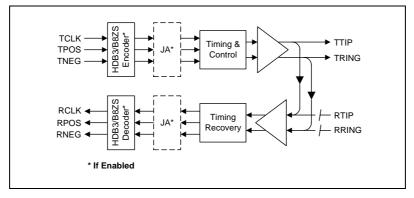


Figure 8. Jitter Attenuator Loop

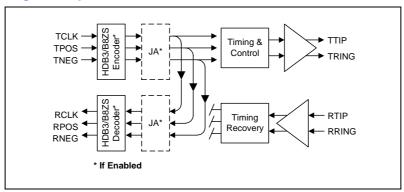

3.7 Loopbacks

The LXT386 offers three loopback modes for diagnostic purposes. In hardware mode, the loopback mode is selected with the LOOPn pins. In software mode, the ALOOP, DLOOP and RLOOP registers are employed.

3.7.1 Analog Loopback

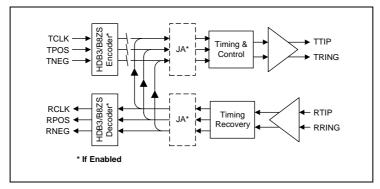
When selected, the transmitter outputs (TTIP & TRING) are connected internally to the receiver inputs (RTIP & RRING) as shown in Figure 9. Data and clock are output at RCLK, RPOS & RNEG pins for the corresponding transceiver. Note that signals on the RTIP & RRING pins are ignored during analog loopback.

Figure 9. Analog Loopback



3.7.2 Digital Loopback

The digital loopback function is available in software and hardware mode. When selected, the transmit clock and data inputs (TCLK, TPOS & TNEG) are looped back and output on the RCLK, RPOS & RNEG pins (Figure 10). The data presented on TCLK, TPOS & TNEG is also output on the TTIP & TRING pins. Note that signals on the RTIP & RRING pins are ignored during digital loopback.


Figure 10. Digital Loopback

3.7.3 Remote Loopback

During remote loopback (Figure 11) the RCLK, RPOS & RNEG outputs routed to the transmit circuits and output on the TTIP & TRING pins. Note that input signals on the TCLK, TPOS & TNEG pins are ignored during remote loopback.

Figure 11. Remote Loopback

Note: In data recovery mode, the pulse template cannot be guaranteed while in a remote loopback.

3.7.4 Transmit All Ones (TAOS)

In Hardware mode, the TAOS mode is set by pulling TCLK High for more than 16 MCLK cycles. In software mode, TAOS mode is set by asserting the corresponding bit in the TAOS Register. In addition, automatic ATS insertion (in case of LOS) may be set using the ATS Register.

Note: The TAOS generator uses MCLK as a timing reference, therefore TAOS doesn't work in data recovery mode. In order to assure that the output frequency is within specification limits, MCLK must have the applicable stability. DLOOP does not function with TAOS active.

Figure 12. TAOS Data Path

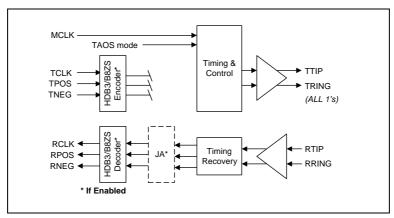
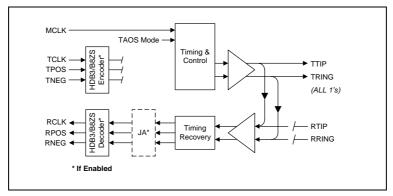



Figure 13. TAOS with Analog Loopback

3.8 G.772 Performance Monitoring

The LXT386 can be configured as a quad line interface unit with all channels working as regular transceivers. In applications using only three channels, the fourth channel can be configured to monitor any of the remaining channels inputs or outputs. The monitoring is non-intrusive per ITU-T G.772. Figure 2 on page 8 illustrates this concept.

The monitored line signal (input or output) goes through channel 0 clock and data recovery. The signal can be observed digitally at the RCLK/RPOS/RNEG outputs. This feature can also be used to create timing interfaces derived from an E1 or T1 signal.

In addition, channel 0 can be configured to a Remote Loopback while in monitoring mode (TCLK0 must be active in order for this operation to take place). This will output the same data as in the signal being monitored at the channel 0 output (TTIP/TRING). The output signal can then be connected to a standard test equipment with a T1/E1 electrical interface for monitoring purposes (non-intrusive monitoring).

3.9 Hitless Protection Switching (HPS)

The LXT386 transceivers include an output driver tristatability feature for T1/E1 redundancy applications. This feature greatly reduces the cost of implementing redundancy protection by eliminating external relays. Please refer to Application Note 119 for guidelines for implementing redundancy systems for both T1 and E1 operation using the LXT380/1/4/6.

3.10 Operation Mode Summary

Table 4 lists summarizes all LXT386 hardware settings and corresponding operating modes.

Table 4. Operation Mode Summary

MCLK	TCLK	LOOP ¹	Receive Mode	Transmit Mode	Loopback
Clocked	Clocked	Open	Data/Clock recovery	Pulse Shaping ON	No Loopback
Clocked	Clocked	L	Data/Clock recovery	Pulse Shaping ON	Remote Loopback
Clocked	Clocked	Н	Data/Clock recovery	Pulse Shaping ON	Analog Loopback
Clocked	L	Open	Data/Clock recovery	Power down	No Loopback
Clocked	L	L	Data/Clock Recovery	Power down	No effect on op.
Clocked	L	Н	Data/Clock Recovery	Power down	No Analog Loopback
Clocked	Н	Open	Data/Clock Recovery	Transmit All Ones	No Loopback
Clocked	Н	L	Data/Clock Recovery	Pulse Shaping ON	Remote Loopback
Clocked	Н	Н	Data/Clock Recovery	Transmit All Ones	No effect on op.
L	Clocked	Open	Power Down	Pulse Shaping ON	No Loopback
L	Clocked	L	Power Down	Pulse Shaping ON	No Remote Loopback
L	Clocked	Н	Power Down	Pulse Shaping ON	No effect on op.
L	Н	Open	Power Down	Pulse Shaping OFF	No Loopback
L	Н	L	Power Down	Pulse Shaping OFF	No Remote Loop
L	Н	Н	Power Down	Pulse Shaping OFF	No effect on op.
L	L	Х	Power Down	Power down	No Loopback
Н	Clocked	Open	Data Recovery	Pulse Shaping ON	No Loopback
Н	Clocked	L	Data Recovery	Pulse Shaping OFF	Remote Loopback
Н	Clocked	Н	Data Recovery	Pulse Shaping ON	Analog Loopback
Н	L	Open	Data Recovery	Power down	No Loopback
Н	L	L	Data Recovery	Pulse Shaping OFF	Remote Loopback
Н	Н	Open	Data Recovery	Pulse Shaping OFF	No Loopback
Н	Н	L	Data Recovery	Pulse Shaping OFF	Remote Loopback
Н	Н	Н	Data Recovery	Pulse Shaping OFF	Analog Loopback
1. Hardware m	ode only.		•		

3.11 Interfacing with 5V logic

The LXT386 can interface directly with 5V logic. The internal input pads are tolerant to 5V outputs from TTL and CMOS family devices.

3.12 Parallel Host Interface

The LXT386 incorporates a highly flexible 8-bit parallel microprocessor interface. The interface is generic and is designed to support both non-multiplexed and multiplexed address/data bus systems for Motorola and Intel bus topologies. Two pins (MUX and $\overline{\text{MOT}/\text{INTL}}$) select four different operating modes as shown in Table 5.

Table 5. Microprocessor Parallel Interface Selection

MUX	MOT/INTL	Operating Mode		
Low	Low	Motorola Non-Multiplexed		
Low	High	Intel Non-Multiplexed		
High	Low	Motorola Multiplexed		
High	High	Intel Multiplexed		

The interface includes an address bus (A4 - A0) and a data bus (D7 - D0) for non-multiplexed operation and an 8-bit address/data bus for multiplexed operation. \overline{WR} , \overline{RD} , R/\overline{W} , \overline{CS} , ALE, \overline{DS} , \overline{INT} and RDY/ \overline{ACK} are used as control signals. A significant enhancement is an internal wait-state generator that controls an Intel and Motorola compatible handshake output signal (RDY/ \overline{ACK}). In Motorola mode \overline{ACK} Low signals valid information is on the data bus. During a write cycle a Low signal acknowledges the acceptance of the write data.

In Intel mode RDY High signals to the controlling processor that the bus cycle can be completed. While Low the microprocessor must insert wait states. This allows the LXT386 to interface with wait-state capable micro controllers, independent of the processor bus speed. To activate this function a reference clock is required on the MCLK pin.

There is one exception to write cycle timing for Intel non-multiplexed mode: Register 0Ah, the reset register. Because of timing issues, the RDY line remains high after the first part of the cycle is done, not signalling write cycle completion with another transition low. In this mode, add 2 microseconds of delay, overall 3 microseconds from CS low to end of cycle, to allow the reset cycle to completely initialize the device before proceeding.

An additional active Low interrupt output signal indicates alarm conditions like LOS and DFM to the microprocessor.

The LXT386 has a 5 bit address bus and provides 18 user accessible 8-bit registers for configuration, alarm monitoring and control of the chip.

3.12.1 Motorola Interface

The Motorola interface is selected by asserting the $\overline{MOT}/INTL$ pin Low. In non-multiplexed mode the falling edge of \overline{DS} is used to latch the address information on the address bus. In multiplexed operation the address on the multiplexed address data bus is latched into the device with the falling edge of \overline{AS} . In non-multiplexed mode, \overline{AS} should be pulled High.

LXT386 — QUAD T1/E1/J1 Transceiver

The R/\overline{W} signal indicates the direction of the data transfer. The \overline{DS} signal is the timing reference for all data transfers and typically has a duty cycle of 50%. A read cycle is indicated by asserting R/\overline{W} High with a falling edge on \overline{DS} . A write cycle is indicated by asserting R/\overline{W} Low with a rising edge on \overline{DS} .

Both cycles require the \overline{CS} signal to be Low and the Address pins to be actively driven by the microprocessor. Note that \overline{CS} and \overline{DS} can be connected together in Motorola mode. In a write cycle the data bus is driven by the microprocessor. In a read cycle the bus is driven by the LXT386.

3.12.2 Intel Interface

The Intel interface is selected by asserting the $\overline{MOT}/INTL$ pin High. The LXT386 supports non-multiplexed interfaces with separate address and data pins when MUX is asserted Low, and multiplexed interfaces when MUX is asserted High. The address is latched in on the falling edge of ALE. In non-multiplexed mode, ALE should be pulled High. R/\overline{W} is used as the \overline{RD} signal and \overline{DS} is used as the \overline{WR} signal. A read cycle is indicated to the LXT386 when the processor asserts \overline{RD} Low while the \overline{WR} signal is held High. A write operation is indicated to the LXT386 by asserting \overline{WR} Low while the \overline{RD} signal is held High. Both cycles require the \overline{CS} signal to be Low.

3.13 Interrupt Handling

Interrupt Sources

There are three interrupt sources:

- 1. Status change in the Loss Of Signal (LOS) status register (04H). The LXT386's analog/digital loss of signal processor continuously monitors the receiver signal and updates the specific LOS status bit to indicate presence or absence of a LOS condition.
- Status change in the Driver Failure Monitoring (DFM) status register (05H). The LXT386's smart power driver circuit continuously monitors the output drivers signal and updates the specific DFM status bit to indicate presence or absence of a secondary driver short circuit condition.
- 3. Status change in the Alarm Indication Signal (AIS) status register (13H). The LXT386's receiver monitors the incoming data stream and updates the specific AIS status bit to indicate presence or absence of a AIS condition.

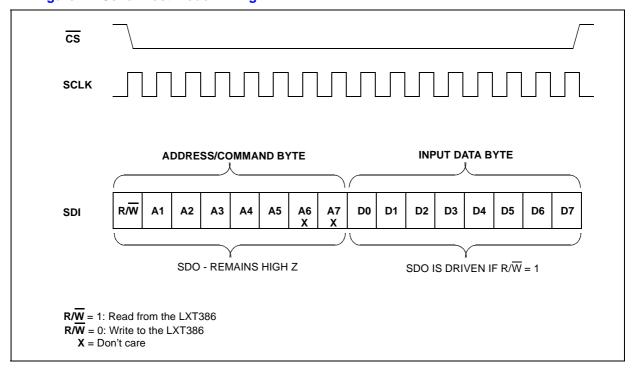
3.13.1 Interrupt Enable

The LXT386 provides a latched interrupt output ($\overline{\text{INT}}$). An interrupt occurs any time there is a transition on any enabled bit in the status register. Registers 06H, 07H and 14H are the LOS, DFM and AIS interrupt enable registers (respectively). Writing a logic "1" into the mask register will enable the respective bit in the respective Interrupt status register to generate an interrupt. The power-on default value is all zeroes. The setting of the interrupt enable bit does not affect the operation of the status registers.

Registers 08H, 09H and 15H are the LOS, DFM and AIS (respectively) interrupt status registers. When there is a transition on any enabled bit in a status register, the associated bit of the interrupt status register is set and an interrupt is generated (if one is not already pending). When an interrupt

occurs, the $\overline{\text{INT}}$ pin is asserted Low. The output stage of the $\overline{\text{INT}}$ pin consists only of a pull-down device; an external pull-up resistor of approximately 10k ohm is required to support wired-OR operation.

3.13.2 Interrupt Clear


When an interrupt occurs, the interrupt service routine (ISR) should read the *interrupt status* registers (08H, 09H and 15H) to identify the interrupt source. Reading the Interrupt Status register clears the "sticky" bit set by the interrupt. Automatically clearing the register prepares it for the next interrupt.

The ISR should then read the corresponding *status monitor register* to obtain the current status of the device. Note that there are three status monitor registers: the LOS (04H), the DFM (05H) and the AIS (013H). Reading either status monitors register will clear its corresponding interrupts on the rising edge of the read or data strobe. When all pending interrupts are cleared, the INT pin goes High.

3.14 Serial Host Mode

The LXT386 operates in Serial Host Mode when the MODE pin is tied to VCC÷2. Figure 14 shows the SIO data structure. The registers are accessible through a 16 bit word: an 8bit Command/ Address byte (bits R/\overline{W} and A1-A7) and a subsequent 8bit data byte (bits D0-7). Bit R/\overline{W} determines whether a read or a write operation occurs. Bits A5-0 in the Command/Address byte address specific registers (the address decoder ignores bits A7-6). The data byte depends on both the value of bit R/\overline{W} and the address of the register as set in the Command/Address byte.

Figure 14. Serial Host Mode Timing

4.0 Register Descriptions

Table 6. Serial and Parallel Port Register Addresses

		Add	Iress		
Name	Symbol	Serial Port A7-A1	Parallel Port A7-A0	Mode	
ID Register	ID	xx00000	xxx00000	R	
Analog Loopback	ALOOP	xx00001	xxx00001	R/W	
Remote Loopback	RLOOP	xx00010	xxx00010	R/W	
TAOS Enable	TAOS	xx00011	xxx00011	R/W	
LOS Status Monitor	LOS	xx00100	xxx00100	R	
DFM Status Monitor	DFM	xx00101	xxx00101	R	
LOS Interrupt Enable	LIE	xx00110	xxx00110	R/W	
DFM Interrupt Enable	DIE	xx00111	xxx00111	R/W	
LOS Interrupt Status	LIS	xx01000	xxx01000	R	
DFM Interrupt Status	DIS	xx01001	xxx01001	R	
Software Reset Register	RES	xx01010	xxx01010	R/W	
Performance Monitoring	MON	xx01011	xxx01011	R/W	
Digital Loopback	DL	xx01100	xxx01100	R/W	
LOS/AIS Criteria Selection	LOSC	xx01101	xxx01101	R/W	
Automatic TAOS Select	ATS	xx01110	xxx01110	R/W	
Global Control Register	GCR	xx01111	xxx01111	R/W	
Pulse Shaping Indirect Address Register	PSIAD	xx10000	xxx10000	R/W	
Pulse Shaping Data Register	PSDAT	xx10001	xxx10001	R/W	
Output Enable Register	OER	xx10010	xxx10010	R/W	
AIS Status Register	AIS	xx10011	xxx10011	R	
AIS Interrupt Enable	AISIE	xx10100	xxx10100	R/W	
AIS Interrupt Status	AISIS	xx10101	xxx10101	R	

Table 7. Register Bit Names

Register					Bit					
Name	Sym	RW	7	6	5	4	3	2	1	0
ID Register	ID	R	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Analog Loopback	ALOOP	R/W	-	-	-	-	AL3	AL2	AL1	AL0
Remote Loopback	RLOOP	R/W	-	-	-	-	RL3	RL2	RL1	RL0
TAOS Enable	TAOS	R/W	-	-	-	-	TAOS3	TAOS2	TAOS1	TAOS0

Table 7. Register Bit Names (Continued)

Register	Register				Bit							
Name	Sym	RW	7	6	5	4	3	2	1	0		
LOS Status Monitor	LOS	R	-	-	-	-	LOS3	LOS2	LOS1	LOS0		
DFM Status Monitor	DFM	R	-	-	-	-	DFM3	DFM2	DFM1	DFM0		
LOS Interrupt Enable	LIE	R/W	-	-	-	-	LIE3	LIE2	LIE1	LIE0		
DFM Interrupt Enable	DIE	R/W	-	-	-	-	DIE3	DIE2	DIE1	DIE0		
LOS Interrupt Status	LIS	R	-	-	-	-	LIS3	LIS2	LIS1	LIS0		
DFM Interrupt Status	DIS	R	-	-	-	-	DIS3	DIS2	DIS1	DIS0		
Software Reset Register	RES	R/W	-	-	-	-	RES3	RES2	RES1	RES0		
Performance Monitoring	MON	R/W	reserve d	reserve d	reserve d	reserve d	А3	A2	A1	A0		
Digital Loopback	DL	R/W	-	-	-	-	DL3	DL2	DL1	DL0		
LOS/AIS Criteria Select	LACS	R/W	-	-	-	-	LACS3	LACS2	LACS1	LACS0		
Automatic TAOS Select	ATS	R/W	-	-	-	-	ATS3	ATS2	ATS1	ATS0		
Global Control Register	GCR	R/W	reserve d	RAISE N	CDIS	CODEN	FIFO64	JACF	JASEL1	JASEL0		
Pulse Shaping Indirect Address Register	PSIAD	R/W	reserve d	reserve d	reserve d	reserve d	reserve d	LENAD2	LENAD1	LENAD0		
Pulse Shaping Data Register	PSDAT	R/W	reserve d	reserve d	reserve d	reserve d	reserve d	LEN2	LEN1	LEN0		
Output Enable Register	OER	R/W	-	-	-	-	OE3	OE2	OE1	OE0		
AIS Status Register	AIS	R	-	-	-	-	AIS3	AIS2	AIS1	AIS0		
AIS Interrupt Enable	AISIE	R/W	-	-	-	-	AISIE3	AISIE2	AISIE1	AISIE0		
AIS Interrupt Status	AISIS	R	-	-	-	-	AISIS3	AISIS2	AISIS1	AISIS0		

Table 8. ID Register, ID (00H)

Bit	Name	Function
7-0	ID7-ID0	This register contains a unique revision code and is mask programmed. For Revision A1, ID register = 00h For Revision B1, ID register = 21h For Revision B2, ID register = 22h

Table 9. Analog Loopback Register, ALOOP (01H)

Bit	Name	Function
3-0	AL3-AL0	Setting a bit to "1" enables analog local loopback for transceivers 3- 0 respectively.

Table 10. Remote Loopback Register, RLOOP (02H)

Bit	Name	Function
3-0	RL3-RL0	Setting a bit to "1" enables remote loopback for transceivers 3-0 respectively.

Table 11. TAOS Enable Register, TAOS (03H)

Bit ¹	Name	Function ²
3-0	TAOS3-TAOS0	Setting a bit to "1" causes a continuous stream of marks to be sent out at the TTIP and TRING pins of the respective transceiver 3-0.
7-4	-	Write "0" to these positions for normal operation.

^{1.} On power up all register bits are set to "0".

Table 12. LOS Status Monitor Register, LOS (04H)

Bit ¹	Name	Function			
3-0	LOS3-LOS0	Respective bit(s) are set to "1" every time the LOS processor detects a valid loss of signal condition in transceivers 3-0.			
	On power up all register bits are set to "0". Any change in the state causes an interrupt. All LOS interrupts are cleared by a single read operation.				

Table 13. DFM Status Monitor Register, DFM (05H)

Bit ¹	Name	Function		
3-0	DFM3-DFM0	Respective bit(s) are set to "1" every time the short circuit monitor detects a valid secondary output driver short circuit condition in transceivers 3-0. Note that DFM is available only in configurations with no transmit series resistors (T1 mode with TVCC=3.3V).		
1. On pow	. On power-up all the register bits are set to "0". All DFM interrupts are cleared by a single read operation.			

Table 14. LOS Interrupt Enable Register, LIE (06H)

Bit ¹	Name	Function			
3-0	LIE3-LIE0	Transceiver 3-0 LOS interrupts are enabled by writing a "1" to the respective bit.			
7-4	-	Write "0" to these positions for normal operation.			
1. On pow	On power-up all the register bits are set to "0" and all interrupts are disabled.				

Table 15. DFM Interrupt Enable Register, DIE (07H)

Bit ¹	Name	Function			
3-0	DIE3-DIE0	Transceiver 3-0 DFM interrupts are enabled by writing a "1" to the respective bit.			
7-4	-	Write "0" to these positions for normal operation.			
1. On pow	On power-up all the register bits are set to "0" and all interrupts are disabled.				

Of power up all register bits are set to 0.
 MCLK is used as timing reference. If MCLK is not available then the channel TCLK is used as the reference. This feature is not available in data recovery and line driver mode (MCLK= High and TCLK = High)

Table 16. LOS Interrupt Status Register, LIS (08H)

Bit	Name	Function
3-0	LIS3-LIS0	These bits are set to "1" every time a LOS status change has occurred since the last clear interrupt in transceivers 3-0 respectively.

Table 17. DFM Interrupt Status Register, DIS (09H)

Bit	Name	Function	
3-0	DIS3-DIS0	These bits are set to "1" every time a DFM status change has occurred since the last cleared interrupt in transceivers 3-0 respectively.	

Table 18. Software Reset Register, RES (0AH)

Bit	Name	Function
3-0	RES3-RES0	Writing to this register initiates a 1 microsecond reset cycle, except for Intel non-multiplexed mode. When using Intel non-multiplexed host mode, extend cycle time to 2 microseconds. Please refer to Host Mode section for more information. This operation sets all LXT386 registers to their default values.

Table 19. Performance Monitoring Register, MON (0BH)

Bit	Name	Function	
3-0	A3:A0	Protected Monitoring selection. See Table 1 on page 11.	
4-7	reserved	Reserved.	

Table 20. Digital Loopback Register, DL (0CH)

Bit ¹	Name	Function ²
3-0	DL3-DL0	Setting a bit to "1" enables digital loopback for the respective transceiver.

Table 21. LOS/AIS Criteria Register, LCS (0DH)

Bit ¹	Name	Function ²	
3-0	LCS3-LCS0 ¹	T1 Mode ² Don't care. T1.231 compliant LOS/AIS detection is used. E1 Mode Setting a bit to "1" selects the ETS1 300233 LOS. Setting a bit to "0" selects G.775 LOS mode. AIS works correctly for both ETSI and ITU when the bit is cleared to "0". See errata revision 10.3 or higher for a way to implement ETSI LOS and AIS.	
1. On power-on reset the register is set to "0".			

On power up all register bits are set to "0".
 During digital loopback LOS and TAOS stay active and independent of TCLK, while data received on TPOS/TNEG/TCKLK is looped back to RPOS/RNEG/RCLK.

^{2.} T1 or E1 operation mode is determined by the PSDR settings.

Table 22. Automatic TAOS Select Register, ATS (0EH)

Bit ¹	Name	ne Function	
3-0	ATS3-ATS0	Setting a bit to "1" enables automatic TAOS generation whenever a LOS condition is detected in the respective transceiver.	
7-4	-	Write "0" to these positions for normal operation.	

Table 23. Global Control Register, GCR (0FH)

Bit ¹	Name	Function			
0	JASEL0	These bits determine the jitter attenuator position:			
		JASEL0 JASEL1 JA Position			
	140514	1 0 Transmit Path			
1	JASEL1	1 1 Receive Path			
		0 x Disabled			
2	JACF	This bit determines the jitter attenuator low limit 3dB corner frequency. Refer to the Jitter Attenuator specifications for details (Table 41 on page 58).			
3	FIFO64	This bit determines the jitter attenuator FIFO depth: 0 = 32 bit 1 = 64 bit			
4	CODEN	This bit selects the zero suppression code for unipolar operation mode: 0 = B8ZS/HDB3 (T1/E1 respectively) 1 = AMI			
5	CDIS	This bit controls enables/disables the short circuit protection feature: 0 = enabled 1 = disabled			
6	RAISEN	This bit controls automatic AIS insertion in the receive path when LOS occurs: 0 = Receive AIS insertion disabled on LOS 1 = RPOS/RNEG = AIS on LOS			
		Note: this feature is not available in data recovery mode (MCLK=High). Disable AIS interrupts when changing this bit value to prevent inadvertent interrupts.			
7	-	Reserved.			
1. On pow	er-on reset the register	is set to "0".			

On power-on reset the register is set to "0".
 This feature is not available in data recovery and line driver mode (MCLK= High and TCLK = High)

Table 24. Pulse Shaping Indirect Address Register, PSIAD (10H)

Bit ¹	Name	Function			
0-2	LENAD 0-2	The three bit value written to these bits determine the channel to be addressed: 0H = channel 0 1H = channel 1 2H = channel 2 3H = channel 3 Data can be read from (written to) the Pulse Shaping Data Register (PSDAT).			
3 - 7	-	Reserved.			
1. On power-on reset the register is set to "0".					

Table 25. Pulse Shaping Data Register, PSDAT (11H)

Bit	Name		Function						
		LEN2-0	LEN0-2 determine the LXT386 operation mode: T1 or E1. In addition, for T1 operation, LEN2-0 set the pulse shaping to meet the T1.102 pulse template at the DSX-1 cross-connect point for various cable lengths:						
		LEN2	LEN1	LEN0	Line Length	Cable Loss ²	Operation Mode		
0-2	LEN 0-2 ^{1, 3}	0	1	1	0 - 133 ft. ABAM	0.6 dB			
0-2	LEIN U-Z	1	0	0	133 - 266 ft. ABAM	1.2 dB			
		1	0	1	266 - 399 ft. ABAM	1.8 dB	T1		
		1	1	0	399 - 533 ft. ABAM	2.4 dB			
		1	1	1	533 - 655 ft. ABAM	3.0 dB			
		0	0	0	E1 G.703, 75Ω coaxial twisted pair cable.	cable and 120 Ω	E1		
3 - 7	-	Reserve	d.						

^{1.} On power-on reset the register is set to "0".

Table 26. Output Enable Register, OER (12H)

Bit ¹	Name	Function	
3-0	OE3 - OE0	Setting a bit to "1" tristates the output driver of the corresponding transceiver.	
On power-up all the register bits are set to "0".			

Table 27. AIS Status Monitor Register, AIS (13H)

Bit ¹	Name	Function	
3-0	AIS3-AIS0	Respective bit(s) are set to "1" every time the receiver detects a AIS condition in transceivers 3-0.	
1. On power-up all the register bits are set to "0". All AIS interrupts are cleared by a single read operation.			

^{2.} Maximum cable loss at 772 KHz.

^{3.} When reading LEN, bit values appear inverted. "B1" revision silicon will fix this so the bits read back correctly.

Table 28. AIS Interrupt Enable Register, AISIE (14H)

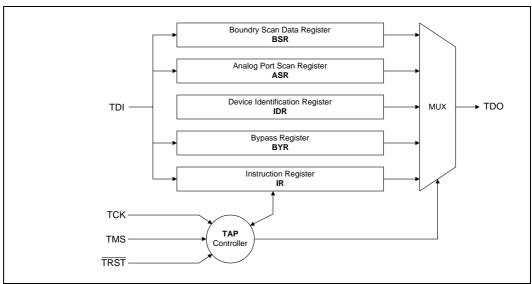
Bit ¹	Name	Function	
3-0	AISIE3-AISIE0	ransceiver 3-0 AIS interrupts are enabled by writing a "1" to the respective bit.	
7-4	-	Write "0" to these positions for normal operation.	
1. On power-up all the register bits are set to "0".			

Table 29. AIS Interrupt Status Register, AISIS (15H)

Bit ¹	Name	Function				
3-0	AISIS3-AISIS0	These bits are set to "1" every time a AIS status change has occurred since the last clear interrupt in transceivers 3-0 respectively.				
1. On power-up all the register bits are set to "0".						

5.0 JTAG Boundary Scan

5.1 Overview


The LXT386 supports IEEE 1149.1 compliant JTAG boundary scan. Boundary scan allows easy access to the interface pins for board testing purposes.

In addition to the traditional IEE1149.1 digital boundary scan capabilities, the LXT386 also includes analog test port capabilities. This feature provides access to the TIP and RING signals in each channel (transmit and receive). This way, the signal path integrity across the primary winding of each coupling transformer can be tested.

5.2 Architecture

Figure 15 represents the LXT386 basic JTAG architecture. The LXT386 JTAG architecture includes a TAP Test Access Port Controller, data registers and an instruction register. The following paragraphs describe these blocks in detail.

Figure 15. LXT386 JTAG Architecture

5.3 TAP Controller

The TAP controller is a 16 state synchronous state machine controlled by the TMS input and clocked by TCK (Figure 16). The TAP controls whether the LXT386 is in reset mode, receiving an instruction, receiving data, transmitting data or in an idle state. Table 30 describes in detail each of the states represented in Figure 16.

LXT386 — QUAD T1/E1/J1 Transceiver

Table 30. TAP State Description

State	Description					
Test Logic Reset	In this state the test logic is disabled. The device is set to normal operation mode. While in this state, the instruction register is set to the ICODE instruction.					
Run -Test/Idle	Test/Idle The TAP controller stays in this state as long as TMS is low. Used to perform tests.					
Capture - DR	The Boundary Scan Data Register (BSR) is loaded with input pin data.					
Shift - DR	Shifts the selected test data registers by one stage tword its serial output.					
Update - DR	Data is latched into the parallel output of the BSR when selected.					
Capture - IR	Used to load the instruction register with a fixed instruction.					
Shift - IR	Shifts the instruction register by one stage.					
Update - IR	Loads a new instruction into the instruction register.					
Pause - IR Pause - DR	Momentarily pauses shifting of data through the data/instruction registers.					
Exit1 - IR Exit1 - DR Exit2 - IR Exit2 - DR	Temporary states that can be used to terminate the scanning process.					

TEST-LOGIC RESET 0 RUN TEST/IDLE SELECT-DR SELECT-IR 0 CAPTURE-DR CAPTURE-IR 0 0 SHIFT-DR SHIFT-IR 1 1 EXIT1-DR EXIT1-IR 0 0 PAUSE-DR PAUSE-IR EXIT2-DR EXIT2-IR 1 0 UPDATE-DR UPDATE-IR

Figure 16. JTAG State Diagram

5.4 JTAG Register Description

The following paragraphs describe each of the registers represented in Figure 15.

5.4.1 Boundary Scan Register (BSR)

The BSR is a shift register that provides access to all the digital I/O pins. The BSR is used to apply and read test patterns to/from the board. Each pin is associated with a scan cell in the BSR register. Bidirectional pins or tristatable pins require more than one position in the register. Table 1 shows the BSR scan cells and their functions. Data into the BSR is shifted in LSB first.

Example 1. Boundary Scan Register (BSR)

Example it Boundary Countregister				, , T
Bit #	Pin Signal	I/O Type	Bit Symbol	Comments
0	LOS3	0	LOS3	
	RNEG3	0	RNEG3	
	N/A	-	HIZ3	HIZ3 controls the RPOS3, RNEG3 and RCLK3 pins. Setting HIZ3 to "0" enables output on the pins. Setting HIZ3 to "1" tristates the pins.
	RPOS3	0	RPOS3	
	RCLK3	0	RCLK3	
	TNEG3	I	TNEG3	
	TPOS3	I	TPOS3	
	TCLK3	I	TCLK3	
	LOS2	0	LOS2	
	RNEG2	0	RNEG2	
	N/A	-	HIZ2	HIZ2 controls the RPOS2, RNEG2 and RCLK2 pins. Setting HIZ2 to "0" enables output on the pins. Setting HIZ2 to "1" tristates the pins.
	RPOS2	0	RPOS2	
	RCLK2	0	RCLK2	
	TNEG2	I	TNEG2	
	TPOS2	I	TPOS2	
	TCLK2	I	TCLK2	
	MCLK	I	MCLK	
	MODE	I	MODE	
	ĪNT	0	INTRUPTB	
	N/A	-	SDORDYENB	SDORDYENB controls the \overline{ACK} pin. Setting SDORDYENB to "0" enables output on \overline{ACK} pin. Setting SDORDYENB to "1" tristates the pin.
	ACK	0	SDORDY	
	ALE	I	ALE	
	OE	I	OE	
	CLKE	I	CLKE	
	A0	I	A0	
	A1	I	A1	
	A2	I	A2	
	А3	I	А3	
	A4	I	A4	
	LOOP0	I/O	PADD0	

Example 1. Boundary Scan Register (BSR) (Continued)

		1	<u> </u>	(BSK) (Continued)				
Bit #	Pin Signal	I/O Type	Bit Symbol	Comments				
	LOOP0	I/O	PDO0					
	LOOP1	I/O	PADI1					
	LOOP1	I/O	PDO1					
	LOOP2	I/O	PADI2					
	LOOP2	I/O	PDO2					
	LOOP3	I/O	PADI3					
	LOOP3	I/O	PDO3					
	LOOP4	I/O	PADI4					
	LOOP4	I/O	PDO4					
	LOOP5	I/O	PADI5					
	LOOP5	I/O	PDO5					
	LOOP6	I/O	PADI6					
	LOOP6	I/O	PDO6					
	LOOP7	I/O	PADI7					
	N/A	-	PDOENB	PDOENB controls the LOOP0 through LOOP7 pins. Setting PDOENB to "0" configures the pins as outputs. The output value to the pin is set in PDO[07]. Setting PDOENB to "1" tristates all the pins. The input value to the pins can be read in PADD[07].				
	LOOP7	I/O	PDO7					
	CS	I	CSB					
	MUX	I	MUX					
	RESET	I	RSTB					
	MOT/INTL	I	IMB					
	R/W	I	RDB					
	DS	I	WRB					
	TCLK1	I	TCLK1					
	TPOS1	I	TPOS1					
	TNEG1	I	TNEG1					
	RCLK1	0	RCLK1					
	RPOS1	0	RPOS1					
	N/A	-	HIZ1	HIZ1 controls the RPOS1, RNEG1 and RCLK1 pins. Setting HIZ1 to "0" enables output on the pins. Setting HIZ1 to "1" tristates the pins.				
	RNEG1	0	RNEG1					
	LOS1	0	LOS1					
	TCLK0	I	TCLK0					
	TPOS0	I	TPOS0					
	TNEG0	I	TNEG0					
	RCLK0	0	RCLK0					

Example 1. Boundary Scan Register (BSR) (Continued)

Bit #	Pin Signal	I/O Type	Bit Symbol	Comments
	RPOS0	0	RPOS0	
	N/A	-	HIZ0	HIZ0 controls the RPOS0, RNEG0 and RCLK0 pins. Setting HIZ0 to "0" enables output on the pins. Setting HIZ0 to "1" tristates the pins.
	RNEG0	0	RNEG0	
	LOS0	0	LOS0	

5.5 Device Identification Register (IDR)

The IDR register provides access to the manufacturer number, part number and the LXT386 revision. The register is arranged per IEEE 1149.1 and is represented in Table 31. Data into the IDR is shifted in LSB first.

Table 31. Device Identification Register (IDR)

Bit #	Comments
31 - 28	Revision Number
27 - 12	Part Number
11 - 1	Manufacturer Number
0	Set to "1"

5.5.1 Bypass Register (BYR)

The Bypass Register is a 1 bit register that allows direct connection between the TDI input and the TDO output.

5.5.2 Analog Port Scan Register (ASR)

The ASR is a 5 bit shift register used to control the analog test port at pins AT1, AT2. When the INTEST_ANALOG instruction is selected, TDI connects to the ASR input and TDO connects to the ASR output. After 5 TCK rising edges, a 5 bit control code is loaded into the ASR. Data into the ASR is shifted in LSB first.

Table 32 shows the 8 possible control codes and the corresponding operation on the analog port. The Analog Test Port can be used to verify continuity across the coupling transformers primary winding.

The Analog Test Port can be used to verify continuity across the coupling transformer's primary winding as shown in Figure 17. By applying a stimulus to the AT1 input, a known voltage will appear at AT2 for a given load. This, in effect, tests the continuity of a receive or transmit interface.

Table 32. Analog Port Scan Register (ASR)

ASR Control Code	AT1 Forces Voltage To:	AT2 Senses Voltage From:					
11111	TTIP0	TRING0					
11110	TTIP1	TRING1					
11101	TTIP2	TRING2					
11100	TTIP3	TRING3					
11011	Rese	erved					
11010	Rese	erved					
11001	Reserved						
11000	Rese	erved					
10111	RTIP0	RRING0					
10110	RTIP1	RRING1					
10101	RTIP2	RRING2					
10100	RTIP3	RRING3					
10011	Reserved						
10010	Reserved						
10001	Reserved						
10000	Rese	erved					

5.5.3 Instruction Register (IR)

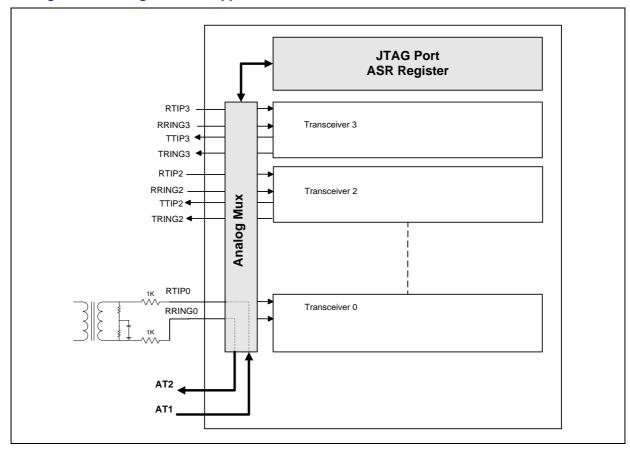

The IR is a 3 bit shift register that loads the instruction to be performed. The instructions are shifted LSB first. Table 33 shows the valid instruction codes and the corresponding instruction description.

Table 33. Instruction Register (IR)

Instruction	Code #	Comments
EXTEST 000		Connects the BSR to TDI and TDO. Input pins values are loaded into the BSR. Output pins values are loaded from the BSR.
INTEST_ANALOG	010	Connects the ASR to TDI and TDO. Allows voltage forcing/sensing through AT1 and AT2. Refer to Table 32.
SAMPLE / PRELOAD	100	Connects the BSR to TDI and TDO. The normal path between the LXT386 logic and the I/O pins is maintained. The BSR is loaded with the signals in the I/O pins.
IDCODE	110	Connects the IDR to the TDO pin.
BYPASS	111	Serial data from the TDI input is passed to the TDO output through the 1 bit Bypass Register.

Figure 17. Analog Test Port Application

6.0 Test Specifications

Note: Table 34 through Table 53 and Figure 18 through Figure 33 represent the performance specifications of the LXT386 and are guaranteed by test except, where noted, by design. The minimum and maximum values listed in Table 36 through Table 53 are guaranteed over the recommended operating conditions specified in Table 35.

Table 34. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
DC supply voltage	Vcc	-0.5	4.0	V
DC supply voltage	Tvcc 0-3	-0.5	7.0	V
Input voltage on any digital pin	Vin	GND-0.5	5.5	V
Input voltage on RTIP, RRING ¹	Vin	GND-0.5	Vcc + 0.5 Vcc + 0.5	V
ESD voltage on any Pin ²	Vin	2000	-	V
Transient latch-up current on any pin	lin		100	mA
Input current on any digital pin ³	lin	-10	10	mA
DC input current on TTIP, TRING ³	lin	-	±100	mA
DC input current on RTIP, RRING ³	lin	-	±100	mA
Storage temperature	Tstor	-65	+150	°C
Maximum power dissipation in package	P _P		830	mW
Case Temperature, 100 pin LQFP package	T_{case}	-	120	°C
Case Temperature, 160 pin PBGA package	T _{case}	-	120	°C

Caution: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- 1. Referenced to ground.
- 2. Human body model.
- 3. Constant input current.

Table 35. Recommended Operating Conditions

Parameter	LEN	Sym	Min	Тур	Max	Unit	Test Condition
Digital supply voltage (VCC)		VCC	3.135	3.3	3.465	V	3.3V ± 5%
Transmitter supply voltage, TVCC=5V nominal		TVCC	4.75	5.0	5.25	V	5V ± 5%
Transmitter supply voltage, TVCC=3.3V nominal		TVCC	3.135	3.3	3.465	V	3.3V ± 5%
Ambient operating temperature		Ta	-40	25	+85	°C	

^{1.} Maximum power and current consumption over the full operating temperature and power supply voltage range. Includes all channels.

^{2.} Power consumption includes power absorbed by line load and external transmitter components.

^{3.} T1 maximum values measured with maximum cable length (LEN = 111). Typical values measured with typical cable length (LEN = 101).

^{4.} Digital inputs are within 10% of the supply rails and digital outputs are driving a 50pF load.

Table 35. Recommended Operating Conditions (Continued)

	J. Recomme	- Паста орога		()					
	Parameter	LEN	Sym	Min	Тур	Max	Unit	Test Condition	
Average Transmitter Power Supply Current, T1 Mode ^{1, 2, 3}				I _{TVCC}	-	215 110	245 -	mA mA	100% 1's 50% 1's
Average Digita	al Power Supply	Current 1, 4		I _{VCC}	-	50	60	mA	
Output load at	Output load at TTIP and TRING			RI	25	-	-	Ω	
			Device Po	wer Cons	umption				
Mode	TVCC	Load	LEN			Тур	Max ^{1,2}	Unit	Test Condition
	3.3V	75 Ω	000	-	-	440	-	mW	50% 1's
E1				-	-	-	680	mW	100% 1's
		120 Ω	000	-	-	400	-	mW	50% 1's
				-	-	-	600	mW	100% 1's
T1 ³	3.3V	100 Ω	101-111	-	-	550	-	mW	50% 1's
	3.3 V	100 22	101-111	-	-	-	1025	mW	100% 1's
		75 Ω	000	-	-	610	-	mW	50% 1's
E1	5.0V	75 22	000	-	-	-	930	mW	100% 1's
L 1	J.0 v	120 Ω	000	-	-	540	-	mW	50% 1's
		120 32	000	-	-	-	810	mW	100% 1's
T1 ³	5 OV	100.0	101 111	-	-	830	-	mW	50% 1's
11.	5.0V	100 Ω	101-111	-	-	-	1400	mW	100% 1's

^{1.} Maximum power and current consumption over the full operating temperature and power supply voltage range. Includes all channels.

2. Power consumption includes power absorbed by line load and external transmitter components.

3. Til maximum values measured with maximum cable length (LEN = 111). Typical values measured with typical cable length

Table 36. DC Characteristics

Parameter		Sym	Min	Тур	Max	Unit	Test Condition			
High level in	High level input voltage		2	-	_	V				
Low level in	put voltage	Vil	_	-	0.8	V				
High level or	High level output voltage ¹		2.4	-	VCC	V	IOUT= 400μA			
Low level ou	Low level output voltage ¹		_	-	0.4	V	IOUT= 1.6mA			
	Low level input voltage	Vinl	_	-	1/3VCC-0.2	V				
MODE, LOOP0-3	Midrange level input voltage	Vinm	1/3VCC+0.2	1/2VCC	2/3VCC-0.2	V				
and	High level input voltage	Vinh	2/3VCC+0.2	-	_	V				
JASEL	Low level input current	linl	_	-	50	μA				
	High level input current	linh	_	-	50	μA				
1. Output d	Output drivers will output CMOS logic levels into CMOS loads.									

⁽LEN = 101).

^{4.} Digital inputs are within 10% of the supply rails and digital outputs are driving a 50pF load.

Table 36. DC Characteristics (Continued)

Parameter	Sym	Min	Тур	Max	Unit	Test Condition				
Input leakage current	lil	-10		+10	μA					
Tri state leakage current	lhz	-10		+10	μA					
Tri state output current	lhz	-	_	1	μA	TTIP, TRING				
Line short circuit current	-	_	_	50	mA RMS	2 x 11 Ω series resistors and 1:2 transformer				
Input Leakage (TMS, TDI, TRST)	_	-	_	50	μA					
Output drivers will output CMOS logic levels into CMOS loads.										

Table 37. E1 Transmit Transmission Characteristics

P	arameter	Sym	Min	Тур	Max	Unit	Test Condition
Output pulse amplitude	75Ω 120Ω	_	2.14 2.7	2.37 3.0	2.60 3.3	V V	Tested at the line side
Peak voltage of a space	Itage of a 75Ω 120Ω		-0.237 -0.3		0.237 0.3	V V	
Transmit amplitude v	rariation with supply	_	-1		+1	%	
Difference between p	oulse sequences	-			200	mV	For 17 consecutive pulses
Pulse width ratio of the pulses	Pulse width ratio of the positive and negative pulses		0.95		1.05		At the nominal half amplitude
Transmit transformer turns ratio for $75/120\Omega$ characteristic impedance		_		1:2			Rt = 11 Ω ± 1%
Transmit return loss 75 Ω coaxial cable ¹	51kHz to 102 kHz 102 kHz to 2.048 MHz 2.048 MHz to 3.072 MHz	_	15 15 15	17 17 17	_	dB dB dB	Using components in the LXD384 evaluation board.
Transmit return loss 120 Ω twisted pair cable ¹	51kHz to 102 kHz 102 kHz to 2.048 MHz 2.048 MHz to 3.072 MHz	_	15 15 15	20 20 20	-	dB dB dB	Using components in the LXD384 evaluation board.
Transmit intrinsic jitter; 20Hz to 100kHz		-	-	0.030	0.050	U.I.	Tx path TCLK is jitter free
Transmit path delay	ransmit path delay Bipolar mode Unipolar mode			2 7		U.I.	- JA Disabled
1. Guaranteed by de	esign and other correlation me	ethods.					1

Table 38. E1 Receive Transmission Characteristics

Parameter	Sym	Min	Тур	Max	Unit	Test Condition			
Permissible cable attenuation	_	-	-	12	dB	@1024 kHz			
Receiver dynamic range	DR	0.5	_	_	Vp				
Signal to noise interference margin S/I -15 - dB Per G.703, O.151 @ 6 dB cable Attenuation									
Guaranteed by design and other correlation methods.									

Table 38. E1 Receive Transmission Characteristics (Continued)

	Parameter	Sym	Min	Тур	Max	Unit	Test Condition
Data decision	threshold	SRE	43	50	57	%	Rel. to peak input voltage
Data slicer thr	reshold	_	_	150	_	mV	
Loss of signal threshold		_	_	200	_	mV	
LOS hysteres	is	_	_	50	_	mV	
Consecutive z	eros before loss of signal	-	-	32 2048	-	-	G.775 recommendation ETSI 300 233 specification
LOS reset		_	12.5%	-	_	-	1's density
Low limit input jitter tolerance ¹	1Hz to 20Hz 20Hz to 2.4kHz 18kHz to 100kHz	_	36 1.5 0.2	_	-	U.I. U.I. U.I.	G735 recommendation Note 1 Cable Attenuation is 6 dB
Differential receiver input impedance		_	_	70	_	kΩ	@1.024 MHz
Input terminat	ion resistor tolerance	_	_	-	±1	%	
Common mod	le input impedance to ground	_	_	20	_	kΩ	
Input return loss ¹	51 kHz - 102 kHz 102 - 2048 kHz 2048kHz - 3072 kHz	_	20 20 20		-	dB dB dB	Measured against nominal impedance using components in the LXD384 evaluation board.
LOS delay tim	ne	_	_	30	_	μs	Data recovery mode
LOS reset		_	10	_	255	marks	Data recovery mode
Receive intrin	sic jitter, RCLK output	_	_	0.040	0.0625	U.I.	Wide band jitter
Receive	Bipolar mode			1		U.I.	JA Disabled
path delay	Unipolar mode			6		U.I.	- JA Disabled
1. Guarantee	ed by design and other correlation	methods		ı	1		•

Table 39. T1 Transmit Transmission Characteristics

Parameter		Sym	Min	Тур	Max	Unit	Test Condition
Output pulse amplit	ude	_	2.4	3.0	3.6	V	Measured at the DSX
Peak voltage of a s	pace	_	-0.15	-	+0.15	V	
Driver output imped	ance ¹	_	_	1	_	Ω	@ 772 KHz
Transmit amplitude variation with power supply		-	-1	_	+1	%	
Ratio of positive to negative pulse amplitude		_	0.95	-	1.05	_	T1.102, isolated pulse
Difference between	pulse sequences	_	_	-	200	mV	For 17 consecutive
Pulse width variatio	n at half amplitude	_	_	-	20	ns	pulses, GR-499-CORE
Jitter added by Transmitter ¹	10Hz - 8KHz 8KHz - 40KHz 10Hz - 40KHz Wide Band	-	-	-	0.020 0.025 0.025 0.050	UI _{pk-pk}	AT&T Pub 62411 TCLK is jitter free.

Guaranteed by design and other correlation methods.
 Power measured in a 3 KHz bandwidth at the point the signal arrives at the distribution frame for an all 1's pattern.

Table 39. T1 Transmit Transmission Characteristics (Continued)

Parameter		Sym	Min	Тур	Max	Unit	Test Condition
Output power levels ²	@ 772 KHz @ 1544 KHz	-	12.6 -29	-	17.9	dBm dBm	T1.102 - 1993 Referenced to power at 772 KHz
Transmit return loss ¹	51kHz to 102 kHz 102 kHz to 2.048 MHz 2.048 MHz to 3.072 MHz	-	15 15 15	21 21 21	-	dB dB dB	With transmit series resistors (TVCC=5V). Using components in the LXD384 evaluation board.
Transmit path delay	Bipolar mode Unipolar mode			7		U.I.	JA Disabled

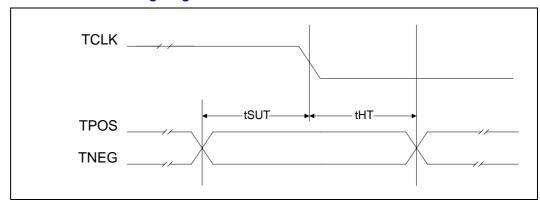
Table 40. T1 Receive Transmission Characteristics

Parameter		Sym	Min	Тур	Max	Unit	Test Condition
Permissible ca	able attenuation	_	_	_	12	dB	@ 772 KHz
Receiver dyna	amic range	DR	0.5	_	_	Vp	
Signal to noise interference margin		S/I	-16.5	_	_	dB	@ 655 ft. of 22 ABAM cable
Data decision	threshold	SRE	63	70	77	%	Rel. to peak input voltage
Data slicer thr	eshold	-	_	150	_	mV	
Loss of signal	threshold	-	_	200	_	mV	
LOS hysteres	is	_	_	50	_	mV	
Consecutive z	eros before loss of signal	_	100	175	250	-	T1.231 - 1993
LOS reset		_	12.5%	_	_	-	1's density
Low limit	0.1Hz to 1Hz		138			U.I.	
input jitter	4.9Hz to 300Hz	-	28	-	-	U.I.	AT&T Pub. 62411
tolerance 1	10KHz to 100KHz		0.4			U.I.	
Differential red	ceiver input impedance	-	-	70	-	kΩ	@772 kHz
Input terminat	ion resistor tolerance	-	-		±1	%	
Common mod	le input impedance to ground	-	-	20	-	kΩ	
Input return loss ¹	51 KHz - 102 KHz 102 - 2048 KHz 2048 KHz - 3072 KHz	-	20 20 20	-	-	dB dB dB	Measured against nominal impedance. Using components in the LXD384 evaluation board.
LOS delay tim	e	-	-	30	-	μs	Data recovery mode
LOS reset		-	10	-	255	-	Data recovery mode
Receive intrin	sic jitter, RCLK output ¹	-	-	0.035	0.0625	U.I.	Wide band jitter
Receive	Bipolar mode			1		U.I.	- JA Disabled
path delay	Unipolar mode			6		U.I.	- JA DISADIEO
1. Guarantee	d by design and other correlation	n methods	S.	•	•	•	

Guaranteed by design and other correlation methods.
 Power measured in a 3 KHz bandwidth at the point the signal arrives at the distribution frame for an all 1's pattern.

Table 41. Jitter Attenuator Characteristics

Para	meter		Min	Тур	Max	Unit	Test Condition
	JACF = 0	32bit FIFO	-	2.5	-	Hz	
E1 jitter attenuator 3dB		64bit FIFO	-	3.5	-	Hz	
corner frequency, host mode ¹	JACF = 1	32bit FIFO	-	2.5	-	Hz	
	JACF = 1	64bit FIFO	-	3.5	-	Hz	
	JACF = 0	32bit FIFO	-	3	-	Hz	Sinusoidal jitter modulation
T1 jitter attenuator 3dB corner frequency, host		64bit FIFO	-	3	-	Hz	
mode ¹	JACF = 1	32bit FIFO	-	6	-	Hz	
	3701 - 1	64bit FIFO	-	6	-	Hz	
Jitter attenuator 3dB co	rner	E1	-	3.5	-	Hz	
frequency, hardware m	ode ¹	T1	-	6	-	Hz	
Data latency delay		32bit FIFO	-	17	-	UI	Delay through the Jitter attenuator only. Add receive and transmit path
Data lateries delay		64bit FIFO	-	33	-	UI	delay for total throughput delay.
Input jitter tolerance be	fore FIFO	32bit FIFO	-	24	-	UI	
overflow or underflow		64bit FIFO	-	56	-	UI	
E1 jitter attenuation	@ 3 Hz	@ 40 Hz @ 400 Hz @ 100 KHz	-0.5 -0.5 +19.5 +19.5	_	_	dB	ITU-T G.736 (Figure 34 on page 74)
T1 jitter attenuation	@ 1 Hz	@ 20 Hz @ 1 KHz @ 1.4 KHz @ 70 KHz	0 0 33.3 40 40	-	-	dB	AT&T Pub. 62411 (Figure 34 on page 74)
Output Jitter in remote	loopback ¹			0.060	0.11	UI	ETSI CTR12/13 Output jitter
Guaranteed by desi	gn and other co	rrelation m	nethods.	ı	ı	1	ı


Table 42. Analog Test Port Characteristics

Parameter	Sym	Min	Тур	Max	Unit	Test Condition
3 dB bandwidth	At13db	-	5	-	MHz	
Input voltage range	At1iv	0	-	VCC	V	
Output voltage range	At2ov	0	-	VCC	V	

Table 43. Transmit Timing Characteristics

Parameter		Sym	Min	Тур	Max	Unit	Test Condition
Master electromagnes	E1	MCLK	-	2.048	-	MHz	
Master clock frequency	T1	MCLK	-	1.544	-	MHz	
Master clock tolerance		-	-100	-	100	ppm	
Master clock duty cycle		-	40	-	60	%	
Output pulse width	E1	Tw	219	244	269	ns	
Output puise width	T1	Tw	291	324	356	ns	
Transmit clock frequency	E1	Tclke1	-	2.048	-	MHz	
Transmit clock frequency	T1	Tclkt1	-	1.544	-	MHz	
Transmit clock tolerance		Tclkt	-50	_	+50	ppm	
Transmit clock burst rate		Tclkb	-	_	20	MHz	Gapped transmit clock
Transmit clock duty cycle		Tdc	10	_	90	%	NRZ mode
E1 TPOS/TNEG pulse width (RZ mod	de)	Tmpwe1	236	_	252	ns	RZ mode (TCLK = H for >16 clock cycles)
TPOS/TNEG to TCLK setup time		Tsut	20	-	-	ns	
TCLK to TPOS/TNEG hold time		Tht	20	-	-	ns	
Delay time OE Low to driver High Z		Toez	-	-	1	μs	
Delay time TCLK Low to driver High 2	7	Ttz	50	60	75	μs	

Figure 18. Transmit Clock Timing Diagram

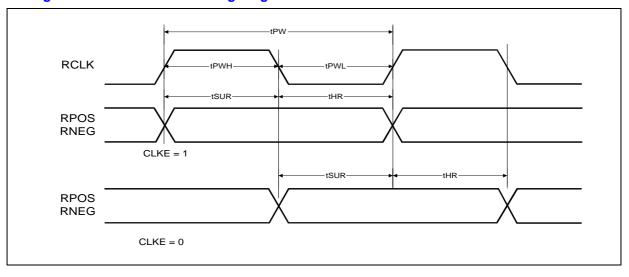


Table 44. Receive Timing Characteristics

Parameter		Sym	Min	Тур	Max	Unit	Test Condition
	E1	_	-	±80	-	ppm	Relative to
Clock recovery capture range	T1	_	-	±180	-	ppm	nominal frequency MCLK = ±100 ppm
Receive clock duty cycle ¹		Rckd	40	50	60	%	
Receive clock pulse width ¹	E1	Tpw	447	488	529	ns	
Receive clock pulse width	T1	Tpw	583	648	713	ns	
Receive clock pulse width Low time	E1	Tpwl	203	244	285	ns	
Receive clock pulse width Low time	T1	Tpwl	259	324	389	ns	
Describe also les autoristes l'internations	E1	Tpwh	203	244	285	ns	
Receive clock pulse width High time	T1	Tpwh	259	324	389	ns	
Rise/fall time ⁴		Tr	20	_	_	ns	@ CL=15 pF
RPOS/RNEG pulse width (MCLK=H) ²	E1	Tpwdl	200	244	300	ns	
RFOS/RIVEG puise width (MCLR=11)	T1	Tpwdl	250	324	400	ns	
RPOS/RNEG to RCLK rising setup time	E1	Tsur	200	244	_	ns	
KPOS/KNEG to KCEK listing setup time	T1	- ISUI	200	324	_	ns	
PCLK Picing to PPOS/PNEC hold time	E1	Thr	200	244	_	ns	
CLK Rising to RPOS/RNEG hold time	T1] ''"	200	324	_	ns]
Delay time between RPOS/RNEG and RCI	-K	-	-	_	5	ns	MCLK = H ³

^{1.} RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst case jitter conditions (0.2UI displacement for E1 per ITU G.823).

Figure 19. Receive Clock Timing Diagram

^{2.} Clock recovery is disabled in this mode.

^{3.} If MCLK = H the receive PLLs are replaced by a simple EXOR circuit.

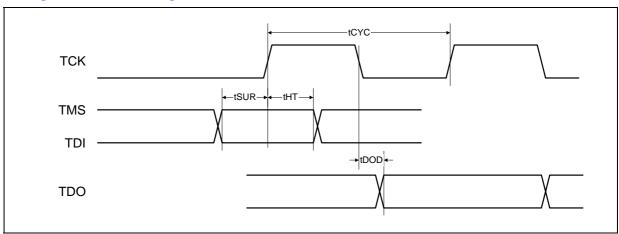

^{4.} For all digital outputs.

Table 45. JTAG Timing Characteristics

Parameter	Sym	Min	Тур	Max	Unit	Test Conditions
Cycle time	Тсус	200	-	-	ns	
J-TMS/J-TDI to J-TCK rising edge time	Tsut	50	-	-	ns	
J-CLK rising to J-TMS/L-TDI hold time	Tht	50	-	-	ns	
J-TCLK falling to J-TDO valid	Tdod	-	-	50	ns	

Figure 20. JTAG Timing

Table 46. Intel Mode Read Timing Characteristics

Sym	Min	Typ ¹	Max	Unit	Test Conditions
Tsalr	10	-	-	ns	
Tvl	30	-	-	ns	
Tslr	10	-	-	ns	
Tscsr	0	-	-	ns	
Thcsr	0	-	-	ns	
Thalr	5			ns	
Tprd	10	-	50	ns	
Thar	1	-	-	ns	
Tsar	5	-	-	ns	
Tzrd	3	-	35	ns	
Tvrd	60	-	-	ns	
Tint	_	-	10	ns	
Tdrdy	0	-	12	ns	
Tvrdy	_	-	40	ns	
Trdyz	-	-	3	ns	
	Tsalr Tvl Tslr Tscsr Thcsr Thalr Tprd Thar Tsar Tzrd Tvrd Tint Tdrdy Tvrdy	Tsalr 10 Tvl 30 Tslr 10 Tscsr 0 Thcsr 0 Thalr 5 Tprd 10 Tsar 5 Tzrd 3 Tvrd 60 Tint - Tdrdy 0 Tvrdy -	Tsalr 10 - Tvl 30 - Tslr 10 - Tslr 10 - Tscsr 0 - Thcsr 0 - Thalr 5 Tprd 10 - Thar 1 - Tsar 5 - Tzrd 3 - Tvrd 60 - Tint - Tdrdy 0 - Tvrdy -	Tsalr 10 Tvl 30 Tslr 10 Tscsr 0 Thcsr 0 Thalr 5 Tprd 10 - 50 Thar 1 Tsar 5 Tzrd 3 - 35 Tvrd 60 Tint - 10 Tdrdy 0 - 12 Tvrdy - 40	Tsalr 10 - - ns Tvl 30 - - ns Tslr 10 - - ns Tscsr 0 - - ns Thcsr 0 - - ns Thair 5 ns ns Tprd 10 - 50 ns Thar 1 - - ns Tsar 5 - - ns Tzrd 3 - 35 ns Tvrd 60 - - ns Tint - - 10 ns Tdrdy 0 - 12 ns Tvrdy - - 40 ns

Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.
 C_L= 100pF on D0-D7, all other outputs are loaded with 50pF.

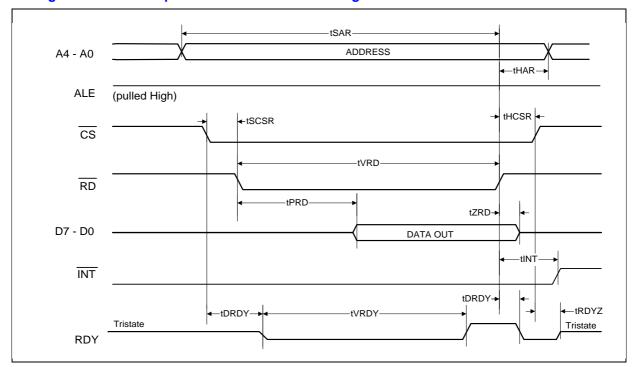


Figure 21. Non-Multiplexed Intel Mode Read Timing

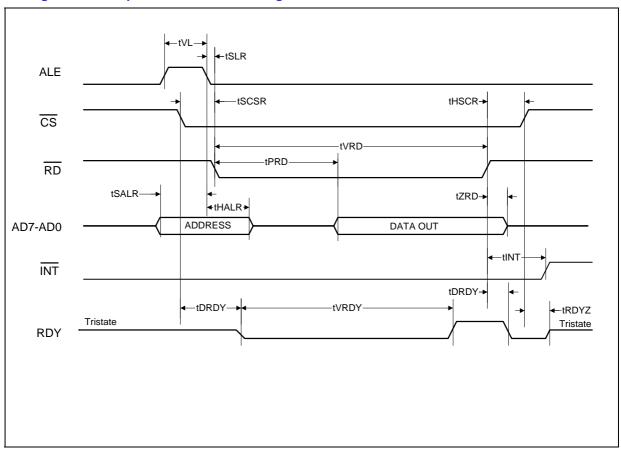


Figure 22. Multiplexed Intel Read Timing

Table 47. Intel Mode Write Timing Characteristics

Parameter ²	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Address setup time to latch	Tsalw	10	-	_	ns	
Valid address latch pulse width	Tvl	30	-	_	ns	
Latch active to active write setup time	Tslw	10	_	_	ns	
Chip select setup time to active write	Tscsw	0	_	_	ns	
Chip select hold time from inactive write	Thcsw	0	_	_	ns	
Address hold time from inactive ALE	Thalw	5			ns	
Data valid to write active setup time	Tsdw	40	_	_	ns	
Data hold time to active write	Thdw	30	_	_	ns	
Address setup time to WR inactive	Thaw	2	-	-	ns	
Address hold time from WR inactive	Tsaw	6	_	_	ns	

Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.
 C_L= 100pF on D0-D7, all other outputs are loaded with 50pF.
 These times don't apply for Reset Register 0Ah, since RDY line goes low once during the cycle. Please refer to Reset Operation and Host Mode sections for more information.

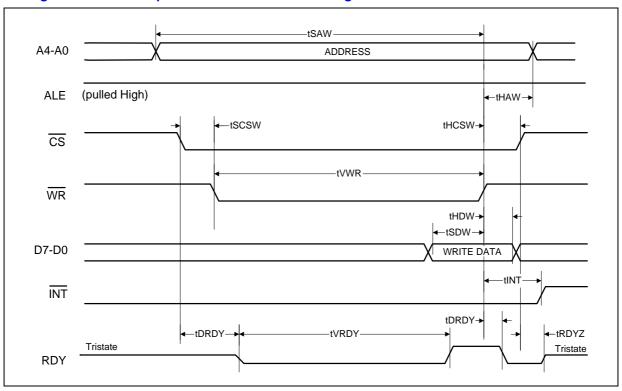


Table 47. Intel Mode Write Timing Characteristics (Continued)

Parameter ²	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Valid write signal pulse width	Tvwr	60	_	_	ns	
Inactive write to inactive INT delay time	Tint	_	_	10	ns	
Chip select to RDY delay time ³	Tdrdy	0	_	12	ns	
Active ready Low time	Tvrdy	_	_	40	ns	
Inactive ready to tri-state delay time ³	Trdyz	_	-	3	ns	

^{1.} Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.

Figure 23. Non-Multiplexed Intel Mode Write Timing

Datasheet Datasheet

^{2.} C_L= 100pF on D0-D7, all other outputs are loaded with 50pF.

^{3.} These times don't apply for Reset Register 0Ah, since RDY line goes low once during the cycle. Please refer to Reset Operation and Host Mode sections for more information.

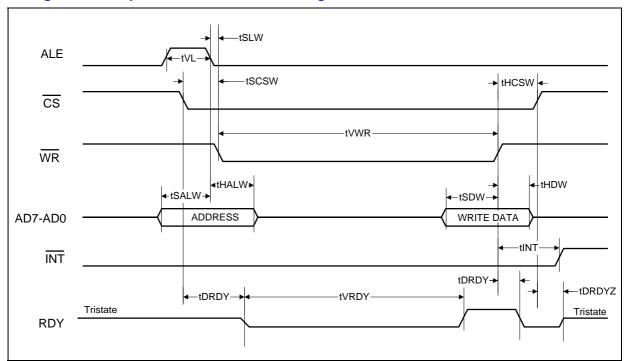
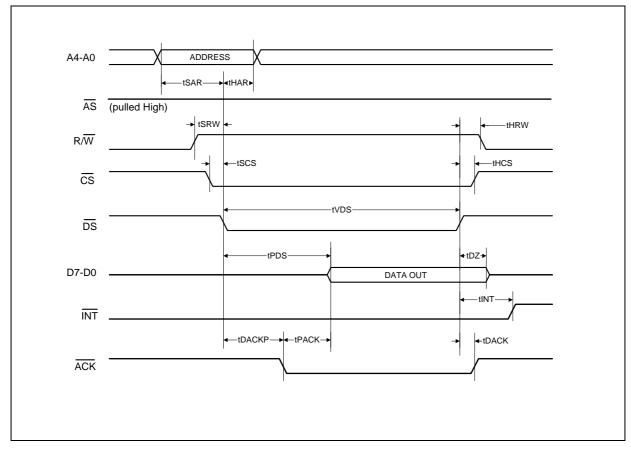


Figure 24. Multiplexed Intel Mode Write Timing


Table 48. Motorola Bus Read Timing Characteristics

Parameter ²	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Address setup time to address or data strobe	Tsar	10	_	-	ns	
Address hold time from address or data strobe	Thar	5	-	-	ns	
Valid address strobe pulse width	Tvas	95	-	-	ns	
R/W setup time to active data strobe	Tsrw	10	-	-	ns	
R/W hold time from inactive data strobe	Thrw	0	-	-	ns	
Chip select setup time to active data strobe	Tscs	0	-	-	ns	
Chip select hold time from inactive data strobe	Thcs	0	-	-	ns	
Address strobe active to data strobe active delay	Tasds	20	-	-	ns	
Delay time from active data strobe to valid data	Tpds	3	-	30	ns	
Delay time from inactive data strobe to data High Z	Tdz	3	-	30	ns	
Valid data strobe pulse width	Tvds	60	-	-	ns	
Inactive data strobe to inactive INT delay time	Tint	_	-	10	ns	
Data strobe inactive to address strobe inactive delay	Tdsas	15	-	-	ns	
DS asserted to ACK asserted delay	Tdackp	_	-	40	ns	
DS deasserted to ACK deasserted delay	Tdack	_	-	10	ns	
Active ACK to valid data delay	Tpack	_		0	ns	

Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.
 C_L= 100pF on D0-D7, all other outputs are loaded with 50pF.

Datasheet Datasheet

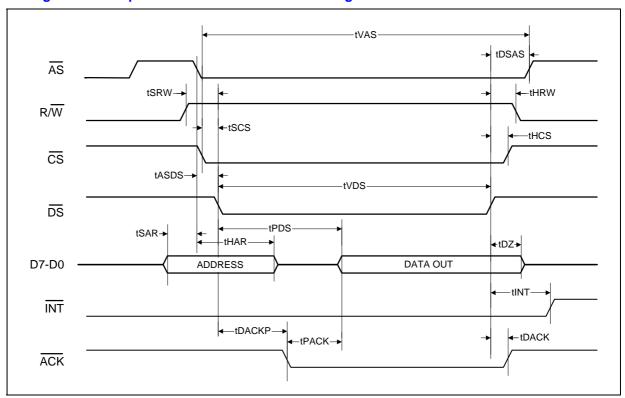


Figure 26. Multiplexed Motorola Mode Read Timing

Table 49. Motorola Mode Write Timing Characteristics

Parameter ²	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Address setup time to address strobe	Tsas	10	-	-	ns	
Address hold time to address strobe	Thas	5	-	=	ns	
Valid address strobe pulse width	Tvas	95	-	_	ns	
R/W setup time to active data strobe	Tsrw	10	-	_	ns	
R/W hold time from inactive data strobe	Thrw	0	-	_	ns	
Chip select setup time to active data strobe	Tscs	0	-	_	ns	
Chip select hold time from inactive data strobe	Thcs	0	-	_	ns	
Address strobe active to data strobe active delay	Tasds	20	-	_	ns	
Data setup time to DS deassertion	Tsdw	40	-	_	ns	
Data hold time from DS deassertion	Thdw	30	-	_	ns	
Valid data strobe pulse width	Tvds	60	-	_	ns	
Inactive data strobe to inactive INT delay time	Tint	_	_	10	ns	

Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.
 C_L= 100pF on D0-D7, all other outputs are loaded with 50pF.

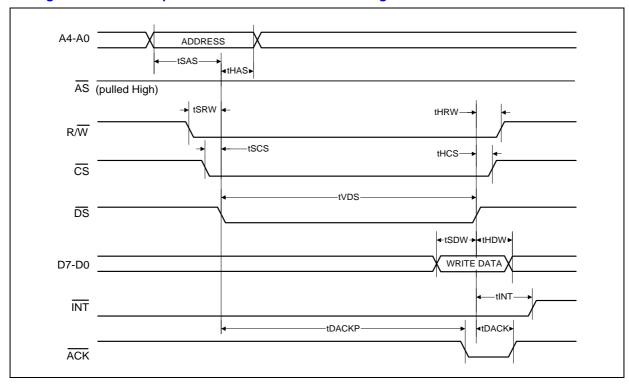


Table 49. Motorola Mode Write Timing Characteristics (Continued)

Parameter ²	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Data strobe inactive to address strobe inactive delay	Tdsas	15	-	-	ns	
Active data strobe to ACK output enable time	Tdack	0	-	12	ns	
DS asserted to ACK asserted delay	Tdackp		ı	40	ns	

Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.
 C_L= 100pF on D0-D7, all other outputs are loaded with 50pF.

Figure 27. Non-Multiplexed Motorola Mode Write Timing

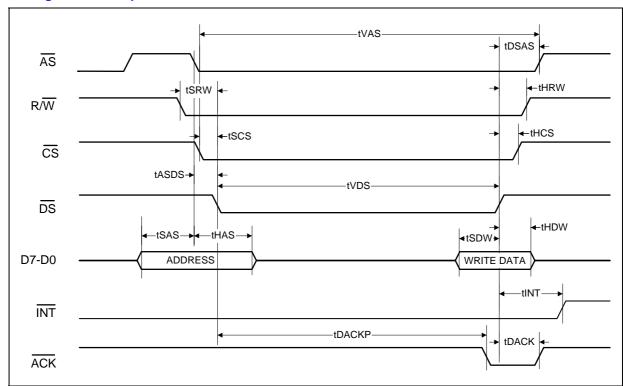


Figure 28. Multiplexed Motorola Mode Write Timin

Table 50. Serial I/O Timing Characteristics

Parameter	Sym	Min	Typ ¹	Max	Unit	Test Condition
Rise/fall time any pin	Trf	-	-	100	ns	Load 1.6mA, 50 pF
SDI to SCLK setup time	Tdc	5	-	-	ns	
SCLK to SDI hold time	Tcdh	5	-	-	ns	
SCLK Low time	Tcl	25	-	-	ns	
SCLK High time	Tch	25	-	-	ns	
SCLK rise and fall time	Tr, Tf	-	-	50	ns	
CS falling edge to SCLK rising edge	Tcc	10	-	-	ns	
Last SCLK edge to CS rising edge	Tcch	10	-	-	ns	
CS inactive time	Tcwh	50	-	-	ns	
SCLK to SDO valid delay time	Tcdv	-	-	5	ns	
SCLK falling edge or $\overline{\text{CS}}$ rising edge to SDO High Z	Tcdz	-	10	-	ns	

Typical figures are at 25 C and are for design aid only; not guaranteed and not subject to production testing.

Figure 29. Serial Input Timing

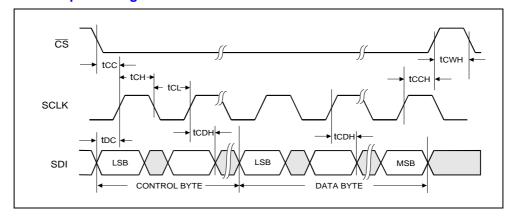


Figure 30. Serial Output Timing

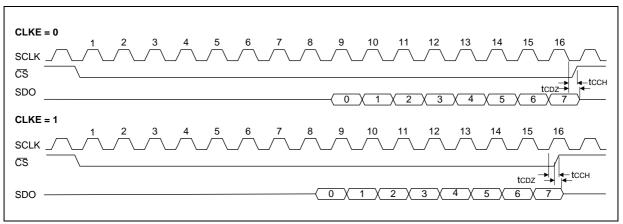


Table 51. Transformer Specifications³

Tx/Rx	Turns Ratio ¹	Primary Inductance mH (min.)	Leakage Inductance μΗ (max.)	Interwinding Capacitance pF (max.)	$\begin{array}{c} \text{DCR} \\ \Omega \\ \text{(max.)} \end{array}$	Dielectric Breakdown Voltage V ² (min.)
TX	1:2	1.2	0.60	60	0.70 pri 1.20 sec	1500 Vrms
RX	1:2	1.2	0.60	60	1.10 pri 1.10 sec	1500 Vrms

Transformer turns ratio accuracy is ± 2%.
 This parameter is application dependent.LIU side: Line side.
 Refer to the FAQ or Application Note 118 for recommended magnetics.

Table 52. G.703 2.048 Mbit/s Pulse Mask Specifications

Parameter		Cable		
Parameter	TWP	Coax	Unit	
Test load impedance	120	75	Ω	
Nominal peak mark voltage	3.0	2.37	V	
Nominal peak space voltage	0 ±0.30	0 ±0.237	V	
Nominal pulse width	244	244	ns	
Ratio of positive and negative pulse amplitudes at center of pulse	95-105	95-105	%	
Ratio of positive and negative pulse amplitudes at nominal half amplitude	95-105	95-105	%	

Figure 31. E1, G.703 Mask Templates

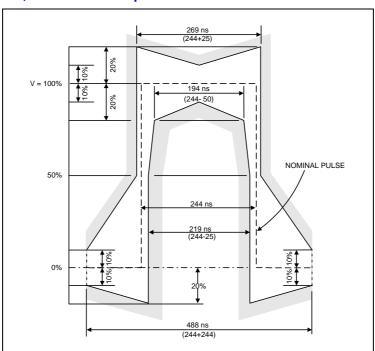
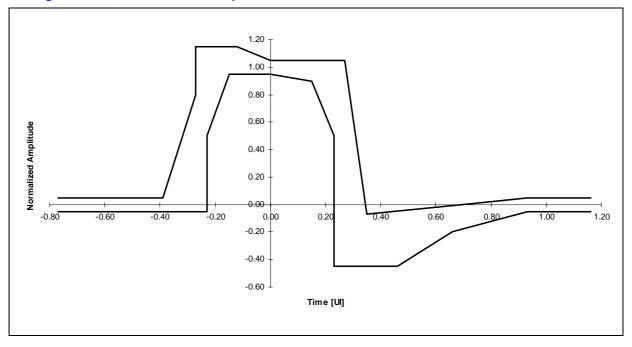



Table 53. T1.102 1.544 Mbit/s Pulse Mask Specifications

Parameter	Cable	l la it
Parameter	TWP	Unit
Test load impedance	100	Ω
Nominal peak mark voltage	3.0	V
Nominal peak space voltage	0 ±0.15	V
Nominal pulse width	324	ns
Ratio of positive and negative pulse amplitudes	95-105	%

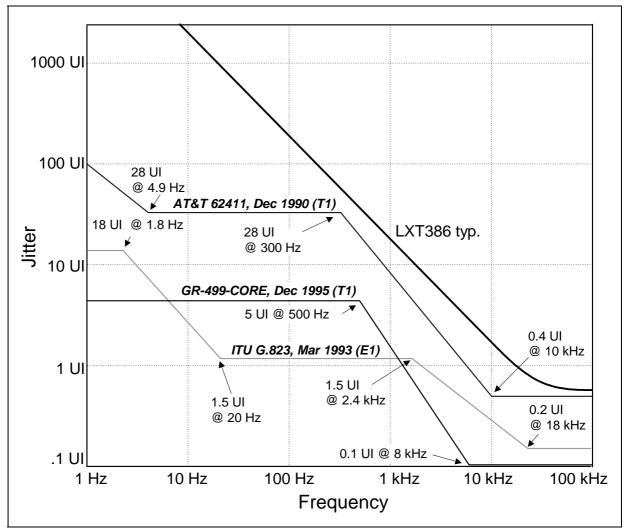


Figure 32. T1, T1.102 Mask Templates

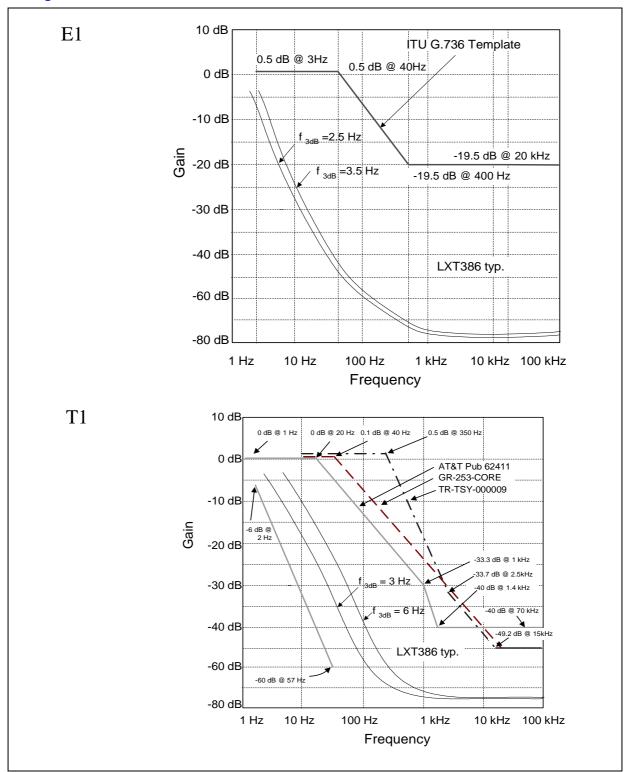


Figure 34. Jitter Transfer Performance

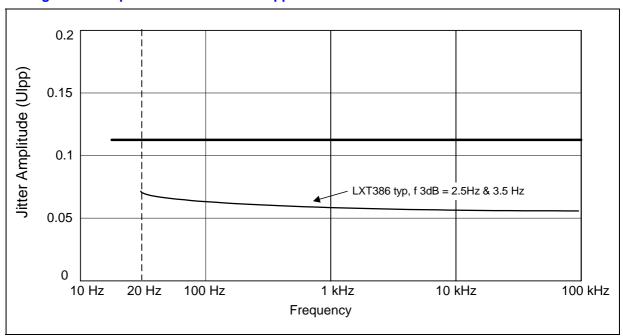


Figure 35. Output Jitter for CTR12/13 applications

6.1 Recommendations and Specifications

AT&T Pub 62411

ANSI T1.102 - 199X Digital Hierarchy Electrical Interface

ANSI T1.231 -1993 Digital Hierarchy Layer 1 In-Service Digital Transmission Performance Monitoring

Bellcore TR-TSY-000009 Asynchronous Digital Multiplexes Requirements and Objectives

Bellcore GR-253-CORE SONET Transport Systems Common Generic Criteria

Bellcore GR-499-CORE Transport Systems Generic Requirements

G.703 Physical/electrical characteristics of hierarchical digital interfaces

G. 704 Functional characteristics of interfaces associated with network nodes

 $G.735 \qquad \text{Characteristics of Primary PCM multiplex equipment operating at 2048 kbit/s and offering digital access at}$

384 kbit/s and/or synchronous digital access at 64 kbit/s

G.736 Characteristics of a synchronous digital multiplex equipment operating at 2048 kbit/s

G.772 Protected Monitoring Points provided on Digital Transmission Systems

G.775 Loss of signal (LOS) and alarm indication (AIS) defect detection and clearance criteria

G.783 Characteristics of Synchronous Digital Hierarchy (SDH) Equipment Functional Blocks

G.823 The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy

O.151 Specification of instruments to measure error performance in digital systems

OFTEL OTR-001 Short Circuit Current Requirements

ETS 300166 Physical and Electrical Characteristics

ETS 300386-1 Electromagnetic Compatibility Requirement

7.0 Mechanical Specifications

Figure 36. 60 Plastic Ball Grid Array (PBGA) Package Dimensions

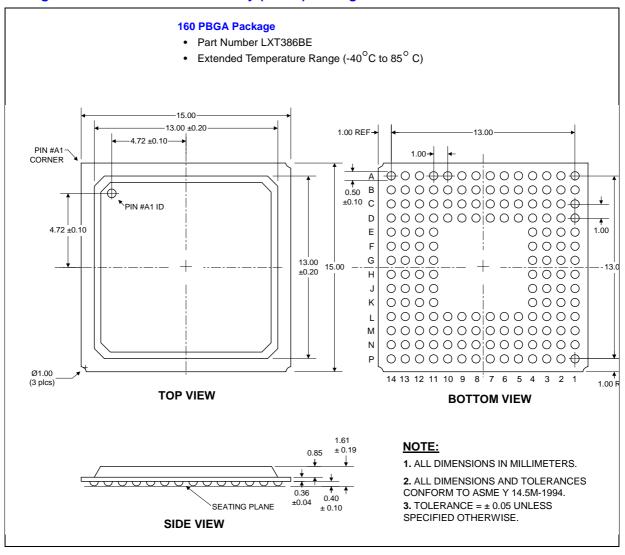
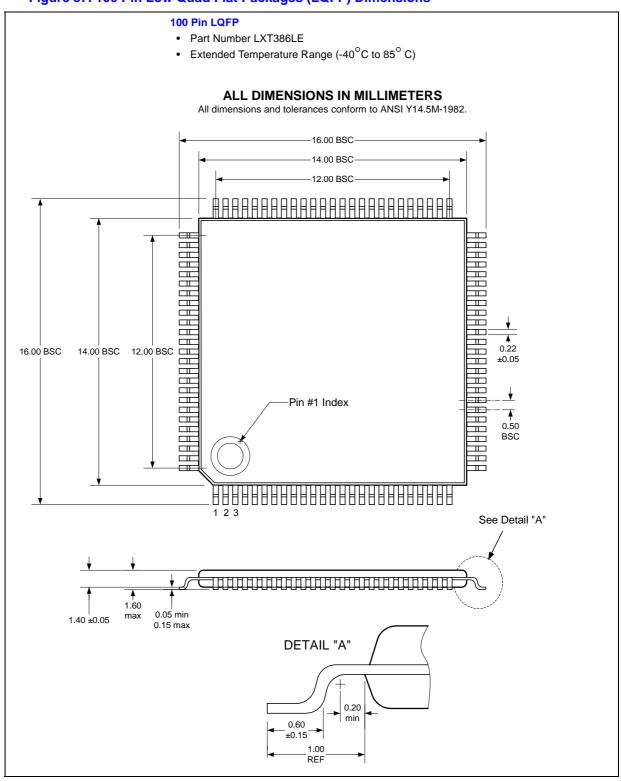



Figure 37. 100 Pin Low Quad Flat Packages (LQFP) Dimensions

