TDA7292

40 + 40W STEREO AMPLIFIER WITH MUTE \& ST-BY

TARGET SPECIFICATION

1 FEATURES

- WIDE SUPPLY VOLTAGE RANGE (UP TO \pm 35V ABS MAX.)
- SPLIT SUPPLY
- HIGH OUTPUT POWER

■ $40+40 \mathrm{~W} @ \mathrm{THD}=10 \%, \mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~V}_{\mathrm{S}} \pm 26 \mathrm{~V}$

- NO POP AT TURN ON/OFF
- MUTE (POP FREE)
- STAND-BY FEATURE (LOW IQ)
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

2 DESCRIPTION

The TDA7292 is class AB dual Audio power amplifier assembled in the Multiwatt package, specially

Figure 1. Package

Table 1. Order Codes

Part Number	Package
TDA7292	Multiwatt11

designed for high quality sound application as HiFi music centers and stereo TV sets.

Figure 2. Typical Application Circuit in Split Supply

Table 2. Absolute Maximum Ratings

Symbol	Description	Value	Unit
V_{S}	DC Supply Voltage	± 35	V
I_{O}	Output Peak Current (internally limited)	4.5	A
$\mathrm{~T}_{\mathrm{op}}$	Operating Temperature	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}, \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

Table 3. Thermal Data

Symbol	Parameter	Value	Unit
$R_{\text {th } \mathrm{j} \text { case }}$	Thermal Resistance Junction-case	Typ.	1.5

Figure 3. Pin Connection (Top view)

Table 4 Electrical Characteristcs (Refer to the test circuit, $\mathrm{V}_{\mathrm{S}}= \pm 26 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{G}_{\mathrm{V}}=30 \mathrm{~dB} ; \mathrm{f}=1 \mathrm{kHz}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
V_{S}	Supply Range		± 8		± 33	V
I_{q}	Total Quiescent Current			50	130	mA
V OS	Input Offset Voltage		-20		+20	mV
lb	Non Inverting Input Bias Current			500		nA
Po	Output Power	$\begin{aligned} & \mathrm{THD}=10 \% \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \mathrm{~V}_{\mathrm{S}} \pm 18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$		$\begin{aligned} & 40 \\ & 31 \end{aligned}$		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
		$\begin{aligned} & \mathrm{THD}=1 \% \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega ; \\ & \mathrm{V}_{\mathrm{S}} \pm 18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$		$\begin{aligned} & 30 \\ & 24 \end{aligned}$		$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
IPeak	Output Peak Current	(Internally Limited)	3.6	4.7		A
THD	Total Harmonic Distortion	$\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{Po}=1 \mathrm{~W}$		0.02		\%
SR	Slew Rate			11		V/ms
Gol	Open Loop Voltage Gain			80		dB
e_{N}	Total Input Noise	$\mathrm{F}=20 \mathrm{~Hz}-22 \mathrm{kHz}$		4		$\mu \mathrm{V}$
Ri	Input Resistance			20		$\mathrm{k} \Omega$
SVR	Supply Voltage Rejection			75		dB
Tj	Thermal Shut-down			145		${ }^{\circ} \mathrm{C}$

MUTE FUNCTION \{ ref.: +Vs \}

VTmute	Mute / Play Threshold		-7	-6	-5	V
Am	Mute attenuation			75		dB
STANT-BY FUNCTION $\{$ ref.: +Vs \}	-3.5	-2.5	-1.5	V		
VTst-by	Stand-By / Mute Threshold			110		dB
Ast-by	Stand-By Attenuation			8		mA
I_{q}	Quiescent Current @ St-By					

3 .DMUTE STAND-BY FUNCTION

The pin 5 (MUTE/STAND-BY) controls the amplifier status by two different thresholds, referred to $+\mathrm{V}_{\mathrm{S}}$.

- when $\mathrm{V}_{\text {pin5 }}$ higher than $=+\mathrm{V}_{\mathrm{S}}-2.5 \mathrm{~V}$ the amplifier is in Stand-by mode and the final stage generators are off
- when $\mathrm{V}_{\text {pin } 5}$ is between $+\mathrm{V}_{\mathrm{S}}-2.5 \mathrm{~V}$ and $+\mathrm{V}_{\mathrm{S}}$
- 6 V the final stage current generators are switched on and the amplifier is in mute mode
- when $\mathrm{V}_{\text {pin5 }}$ is lower than $+\mathrm{V}_{S}-6 \mathrm{~V}$ the amplifier is play mode.

Figure 4. MUTE/ST-By thresholds on pin 5.

Figure 5. Test and Application Circuit (stereo configuration)

Figure 6. PC Board and Components Layout of the figure 5

4 w. APPLICATIONS SUGGESTION (ref. to Figure 5)

The recommended values of the external components are those shown are the demo board schematic different values can be used: the following table can help the designer.

Table 5. Recommended values of the external components on the TDA7292 demo board schematic

Components	Recomm. Value	Purpose	Larger Than Recommended Value	Smaller Than Recommended Value
R1	$10 \mathrm{~K} \Omega$	Mute Circuit	Increase of Dz Biasing Current	
R2	$15 \mathrm{~K} \Omega$	Mute Circuit	$\mathrm{V}_{\text {pin }}$ \# 5 Shifted Downward	$\mathrm{V}_{\text {pin }}$ \# 5 Shifted Upward
R3	$18 \mathrm{~K} \Omega$	Mute Circuit	$\mathrm{V}_{\text {pin }}$ \# 5 Shifted Upward	$\mathrm{V}_{\text {pin \# 5 Shifted Downward }}$
R4	$15 \mathrm{~K} \Omega$	Mute Circuit	$\mathrm{V}_{\text {pin }}$ \# 5 Shifted Upward	$\mathrm{V}_{\text {pin \# 5 Shifted Downward }}$
R5, R8	$18 \mathrm{~K} \Omega$	Closed Loop Gain Setting $\left(^{*}\right)$	Increase of Gain	
	R6, R9	560Ω	Decrease of Gain	
R7, R10	4.7Ω	Frequency Stability	Danger of Oscillations	Danger of Oscillations
C1, C2	$1 \mu \mathrm{~F}$	Input DC Decoupling		Higher Low Frequency Cutoff
C3	$1 \mu \mathrm{~F}$	St-By/Mute Time Constant	Larger On/Off Time	Smaller On/Off Time
C4, C6	$1000 \mu \mathrm{~F}$	Supply Voltage Bypass		Danger of Oscillations
C5, C7	$0.1 \mu \mathrm{~F}$	Supply Voltage Bypass		Danger of Oscillations
C8, C9	$0.1 \mu \mathrm{~F}$	Frequency Stability		
Dz	5.1 V	Mute Circuit		
Q1	BC107	Mute Circuit		

${ }^{*}$) Closed loop gain has to be => 29dB
Table 6. Mute, Stand-by Truth Table

SW1	SW2	
B	A	STAND-BY
B	B	STAND-BY
A	A	MUTE
A	B	PLAY

Figure 7. Typical Application Circuit in Single Supply

Figure 8. Multiwatt 11 Mechanical Data \& Package Dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			5			0.197
B			2.65			0.104
C			1.6			0.063
D		1			0.039	
E	0.49		0.55	0.019		0.022
F	0.88		0.95	0.035		0.037
G	1.45	1.7	1.95	0.057	0.067	0.077
G1	16.75	17	17.25	0.659	0.669	0.679
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.87	0.886
L2	17.4		18.1	0.685		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
M	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.73	5.08	5.43	0.186	0.200	0.214
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND
MECHANICAL DATA

Multiwatt11 (Vertical)

Table $7{ }_{3}$ Revision History

Date	Revision	Description of Changes
November 2004	1	First Issue

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

