3.2 z1g7289A 串行接口 LED 数码管及键盘管理器件

3.2.1 概述

zlg7289A 是广州周立功单片机发展有限公司自行设计的,具有 SPI 串行接口功能的可同时驱动 8 位共 阴式数码管(或 64 只独立 LED)的智能显示驱动芯片,该芯片同时还可连接多达 64 键的键盘矩阵,单片即可完成 LED 显示、键盘接口的全部功能。

zlg7289A 内部含有译码器,可直接接受 BCD 码或 16 进制码,并同时具有 2 种译码方式,此外,还具有多种控制指令,如消隐、闪烁、左移、右移、段寻址等。

zlg7289A 具有片选信号,可方便地实现多于8位的显示或多于64键的键盘接口。

典型应用

仪器仪表, 工业控制器, 条形显示器, 控制面板

特点

- 串行接口,无需外围元件可直接驱动 LED
- 各位独立控制译码/不译码及消隐和闪烁属性
- (循环) 左移/(循环) 右移指令
- 具有段寻址指令,方便控制独立 LED
- 64 键键盘控制器,内含去抖动电路

电特性(V_{CC}=5.0V, Fosc=16MHz,T_A=25℃)

符号	参数	测试条件	最小	典型	最大	单位
V_{CC}	电源电压		4.5	5.0	5.5	V
I_{CC}	工作电流	不接 LED		3	5	mA
I_{CC}	工作电流	LED 全亮,		60	100	mA
		I _{SEG} =10mA				
V_{IH}	逻辑输入高电平		2.0		5.5	V
$V_{\rm IL}$	逻辑输入低电平		0		0.8	V
T_{KEY}	按键响应时间	含去抖动时间	10	18	40	mS
I_{KO}	KEY 引脚输出电流				7	mA
I_{KI}	KEY 引脚吸入电流				10	mA
T1	从 CS 下降沿至 CLK 脉冲时间		25	50	250	uS
T2	传送指令时 CLK 脉冲宽度		5	8	250	uS
Т3	字节传送中 CLK 脉冲时间间隔		5	8	250	uS
T4	指令与数据时间间隔		15	25	250	uS
T5	读键盘指令中指令与输出数据时间间隔		15	25	250	uS
T6	输出键盘数据建立时间		5	8	_	uS
T7	读键盘数据时 CLK 脉冲宽度		5	8	250	uS
Т8	读键盘数据完成后 DATA 转为输入状态时				5	uS
	间					

引脚说明

引脚	名称	说明
1, 2	V_{DD}	正电源
3, 5	NC	悬空
4	V _{SS}	接地
6	/CS	片选输入端,此引脚为低电平时,可向芯片发送指令及读取键盘数据
7	CLK	同步时钟输入端,向芯片发送数据及读取键盘数据时,此引脚电平上升沿表示数据
		有效
8	DATA	串行数据输入/输出端,当芯片接收指令时,此引脚为输入端;当读取键盘数据时,
		此引脚在'读'指令最后一个时钟的下降沿变为输出端
9	/KEY	按键有效输出端,平时为高电平,当检测到有效按键时,此引脚变为低电平
10-16	SG-SA	段 g—段 a 驱动输出
17	DP	小数点驱动输出
18-25	DIG0-DIG	数字 0—数字 7 驱动输出
	7	
26	OSC2	振荡器输出端
27	OSC1	振荡器输入端
28	/RESET	复位端

3.2.2 控制指令

zlg7289A的控制指令分为二大类——纯指令和带有数据的指令。

1. 纯指令

(1) 复位(清除)指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	1	0	0

当 zlg7289A 收到该指令后,将所有的显示清除,所有设置的字符消隐、闪烁等属性也被一起清除。 执行该指令后,芯片所处的状态与系统上电后所处的状态一样。

(2) 测试指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	1	1	1	1	1

该指令使所有的 LED 全部点亮,并处于闪烁状态,主要用于测试。

(3) 左移指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	0	0	1

使所有的显示自右向左(从第1位向第8位)移动一位(包括处于消隐状态的显示位),但对各位所设置的消隐及闪烁属性不变。移动后,最右边一位为空(无显示)。例如,原显示为

1	2	3	4	5	6	7	8	

其中第2位'2'和第4位'4'为闪烁显示,执行了左移指令后,显示变为

2	3 4	5 6	7	8	
---	-----	-----	---	---	--

第二位'3'和第四位'5'为闪烁显示。

(4) 右移指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	0	0	0

与左移指令类似,但所做移动为自左向右(从第8位向第1位)移动,移动后,最左边一位为空。

(5) 循环左移指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	0	1	1

与左移指令类似,不同之处在于移动后原最左边一位(第 8 位)的内容显示于最右位(第 1 位)。在 上例中,执行完循环左移指令后的显示为

2	3	4	5	6	7	8	1

第二位'3'和第四位'5'为闪烁显示。

(6) 循环右移指令

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	0	1	0

与循环左移指令类似,但移动方向相反。

2.带有数据的指令

(1)下载数据且按方式0译码

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	a_2	a_1	a_0

D7	D6	D5	D4	D3	D2	D1	D0
DP	X	X	X	d 3	d_2	d_1	d_0

X=无影响

命令由二个字节组成,前半部分为指令,其中 a_2 , a_1 , a_0 为位地址,具体分配如下(显示位编号请参阅典型应用电路图):

a_2	a_1	a_0	显示位
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

 d_0 — d_3 为数据,收到此指令时,zlg7289A 按以下规则(译码方式 0)进行译码,如下表:

d ₀ —d ₃ (十六进制)	d_3	d_2	D_1	d_0	7 段显示
00Н	0	0	0	0	0
01H	0	0	0	1	1
02H	0	0	1	0	2
03H	0	0	1	1	3
04H	0	1	0	0	4
05H	0	1	0	1	5
06H	0	1	1	0	6
07H	0	1	1	1	7
08H	1	0	0	0	8
09H	1	0	0	1	9
0AH	1	0	1	0	-
0BH	1	0	1	1	E
0СН	1	1	0	0	Н
0DH	1	1	0	1	L
0EH	1	1	1	0	P
0FH	1	1	1	1	空 (无显示)

小数点的显示由 DP 位控制, DP=1 时, 小数点显示, DP=0 时, 小数点不显示。

(2) 下载数据且按方式1译码

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	1	a_2	a_1	a_0

D7	D6	D5	D4	D3	D2	D1	D0
DP	X	X	X	d_3	d_2	\mathbf{d}_1	d_0

X=无影响

此指令与上一条指令基本相同,所不同的是译码方式,该指令的译码按下表进行:

d ₀ —d ₃ (十六进制)	d_3	d_2	d_1	d_0	7 段显示
00H	0	0	0	0	0
01H	0	0	0	1	1
02H	0	0	1	0	2
03H	0	0	1	1	3
04H	0	1	0	0	4
05H	0	1	0	1	5
06H	0	1	1	0	6
07H	0	1	1	1	7
08H	1	0	0	0	8
09H	1	0	0	1	9
0AH	1	0	1	0	A
0BH	1	0	1	1	В
0СН	1	1	0	0	С
0DH	1	1	0	1	D
0EH	1	1	1	0	Е
0FH	1	1	1	1	F

(3) 下载数据但不译码

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	0	a_2	a_1	a_0

D7	D6	D5	D4	D3	D2	D1	D0
DP	A	В	C	D	Е	F	G

其中, a_2 , a_1 , a_0 为位地址(参见'下载数据且译码'指令),A-G 和 DP 为显示数据,分别对应 7 段 LED 数码管的各段。数码管各段的定义见下图。当相应的数据位为'1'时,该段点亮,否则不亮。

(4) 闪烁控制

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0

D7	D6	D5	D4	D3	D2	D1	D0
d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1

此命令控制各个数码管的消隐属性。 d_1 — d_8 分别对应数码管 1—8,0=闪烁,1=不闪烁。开机后,缺省的状态为各位均不闪烁。

(5) 消隐控制

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	1	0	0	0

D7	D6	D5	D4	D3	D2	D1	D0
d_8	d_7	d_6	d_5	d_4	d_3	d_2	d_1

此命令控制各个数码管的消隐属性。 d_1 — d_8 分别对应数码管 1—8,1=显示,0=消隐。当某一位被赋予了消隐属性后,zlg7289A 在扫描时将跳过该位,因此在这种情况下无论对该位写入何值,均不会被显示,但写入的值将被保留,在将该位重新设为显示状态后,最后一次写入的数据将被显示出来。当无需用到全部 8 个数码管显示的时候,将不用的位设为消隐属性,可以提高显示的亮度。

注意: 至少应有一位保持显示状态,如果消隐控制指令中 d_1 一 d_8 全部为 0,该指令将不被接受,zlg7289A 保持原来的消隐状态不变。

(6) 段点亮指令

D7	D6	D5	D4	D3	D2	D1	D0
1	1	1	0	0	0	0	0

D7	D6	D5	D4	D3	D2	D1	D0
X	X	d_5	d_4	d_3	d_2	d_1	d_0

此为段寻址指令,作用为点亮数码管中某一指定的段,或 LED 矩阵中某一指定的 LED。指令中,X=无影响; d_0 一 d_5 段地址,范围从 00H—3FH,具体分配为:

第 1 个数码管的 G 段地址为 00H, F 段为 01H,A 段为 06H,小数点 DP 为 07H,第 2 个数码管的 G 段为 08H,F 段为 09H,....,依此类推直至第 8 个数码管的小数点 DP 地址为 3FH。

(7) 段关闭指令

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	0	0	0	0

D7	D6	D5	D4	D3	D2	D1	D0
X	X	d_5	d_4	d_3	d_2	d_1	d_0

段寻址命令,作用为关闭(熄灭)数码管中的某一段,指令结构与'段点亮指令'相同,请参阅上文。

(8) 读键盘数据指令

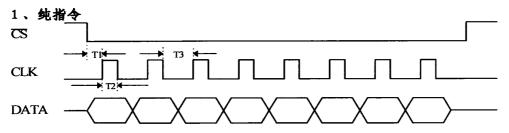
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	1

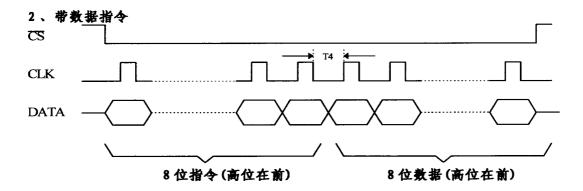
D7	D6	D5	D4	D3	D2	D1	D0
d_7	d_6	d_5	d_4	d_3	d_2	d_1	d_0

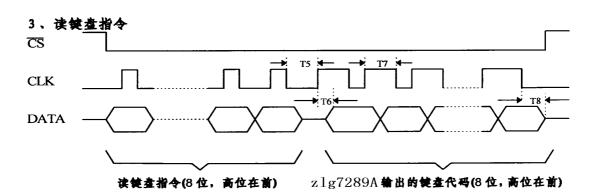
该指令从 zlg7289A 读出当前的按键代码。与其它指令不同,此命令的前一个字节 0001010B 为单片机 传送到 zlg7289A 的指令,而后一个字节 d_0 — d_7 则为 zlg7289A 返回的按键代码,其范围是 0——3FH(无键 按下时为 0xFF),各键键盘代码的定义,请参阅"zlg7289A 的典型应用图(第 7 页)",其中图中对应 S0—S63 号键分别对应键值的 0—63 (0—3FH)。

此指令的前半段,zlg7289A的 DATA 引脚处于高阻输入状态,以接受来自微处理器的指令;在指令的

后半段,DATA 引脚从输入状态转为输出状态,输出键盘代码的值。故微处理器连接到 DATA 引脚的 I/O 口应有一从输出态到输入态的转换过程,详情请参阅本文'串行接口'一节的内容。

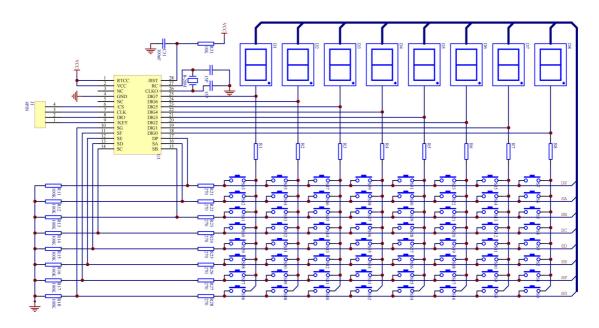

当 zlg7289A 检测到有效的按键时, KEY 引脚从高电平变为低电平,并一直保持到按键结束。在此期间,如果 zlg7289A 接收到'读键盘数据指令',则输出当前按键的键盘代码;如果在收到'读键盘指令'时没有有效按键,zlg7289A 将输出 FFH (11111111B)。


3.2.3 SPI 串行接口


zlg7289A 采用串行方式与微处理器通讯,串行数据从 DATA 引脚送入芯片,并由 CLK 端同步。当片选信号变为低电平后,DATA 引脚上的数据在 CLK 引脚的上升沿被写入 zlg7289A 的缓冲寄存器。

zlg7289A的指令结构有三种类型: 1.不带数据的纯指令,指令的宽度为8个BIT,即微处理器需发送8个CLK脉冲。2.带有数据的指令,宽度为16个BIT,即微处理器需发送16个CLK脉冲。3.读取键盘数据指令,宽度为16个BIT,前8个为微处理器发送到zlg7289A的指令,后8个BIT为zlg7289A返回的键盘代码。执行此指令时,zlg7289A的DATA端在第9个CLK脉冲的上升沿变为输出状态,并与第16个脉冲的下降沿恢复为输入状态,等待接收下一个指令。

串行接口的时序如下图:



3、应用设计实例

zlg7289A的典型应用图如下所示。

zlg7289A 应连接共阴式数码管,应用中,无需用到的数码管和键盘可以不连接,省去数码管和对数码管设置消隐属性均不会影响键盘的使用。

如果不用键盘,则典型电路中连接到键盘的 8 只 10K 电阻和 8 只 100K 下拉电阻均可以省去。如果使用了键盘(**哪怕只使用了一个键**),则电路中没有用到的的 10K 电阻可以省掉,但 8 只 100K 下拉电阻都不得省略。除非不接数码管,否则串入 DP 及 SA-SG 连线的 8 只电阻均不能省去。

实际应用中,8 只下拉电阻和8 只键盘连接位选线 DIGO-DIG7 的8 只电阻(位选电阻),应遵从一定的比例关系,下拉电阻应大于位选电阻的5 倍而小于其50倍,典型值为10倍。下拉电阻的取值范围是10K-100K,位选电阻的取值范围是1K-10K。在不影响显示的前提下,下拉电阻应尽可能的取较小的值,这样可以提高键盘部分的抗干扰能力。

因为采用循环扫描的工作方式,如果采用普通的数码管,亮度有可能不够,采用高亮或超高亮的型号,可以解决这个问题。数码管的尺寸,也不宜选的过大,一般字符高度不超过1英寸,如使用大型的数码管,应使用适当的驱动电路。

zlg7289A 需要一外接晶体振荡电路供系统工作。其典型值分别为 F=16MHz, C=15P, 如果芯片无法 正常工作,请首先检查此振荡电路。在印刷电路板布线时,所有元件,尤其是振荡电路的元件应尽量靠近 zlg7289A, 并尽量使电路联线最短。

zlg7289A的 RESET 复位端在一般应用情况下,可以直接和 VCC 相连,在需要较高可靠性的情况下,可以连接一外部复位电路,或直接由 MCU 控制。在上电或 RESET 端由低电平变为高电平后,zlg7289A 大约要经过 18-25MS 的时间才会进入正常工作状态。

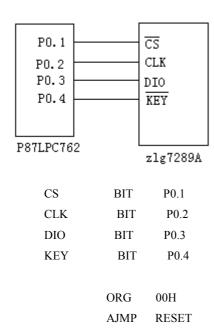
上电后,所有的显示均为空。所有显示位的显示属性均为"显示"及"不闪烁"。当有键按下时,KEY 引脚输出低电平,此时如果接收到"读键盘"指令,zlg7289A 将输出所按下键的代码。键盘代码的定义,请参阅图 2,图中代码以 10 进制表示。如果在没有按键的情况下收到"读键盘"指令,zlg7289A 将输出 0FFH (255)。

程序中,尽可能地减少 CPU 对 zlg7289A 的访问次数,可以使得程序更有效率。

因为芯片直接驱动 LED 数码管显示,电流较大,且为动态扫描方式,故如果该部分电路电源连线较细较长,可能会引入较大的电源噪声干扰,在电源的正负极并入一47U到220U的电容可以提高电路抗干

扰的能力。

注意: 如果有 2 个键同时按下,zlg7289A 将只能给出其中一个键的代码,因此 zlg7289A 不适于应用在需要 2 个或 2 个以上键同时按下的场合。


3.2.5 接口程序

下面给出 PHILIPS 公司的 P87LPC762 与 zlg7289A 连接的应用实例。程序所完成的功能为等待键盘输入,然后将所读到的键盘码转换成 10 进制后,送回 zlg7289A 显示,同时将前面的显示内容左移,并使当前按键值闪烁。

硬件连接如图,P87LPC762 所用时钟频率为 6MHz,程序编译通过并经过验证。程序中延时时间以 zlg7289A 外接 12MHz 晶体振荡器为准。

w.DataSneet4U.co

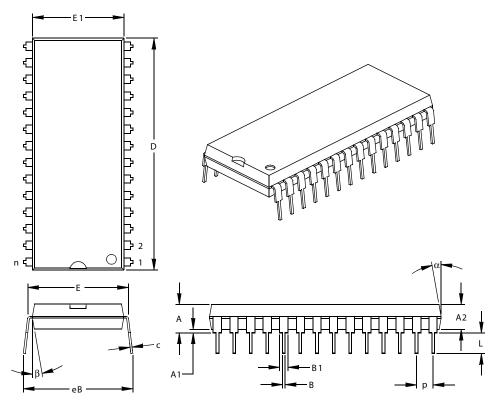
BIT_CNT DATA 30H
DELAY1 DATA 31H
DECIMAL DATA 32H
REC_BUF DATA 20H
SEND_BUF DATA 21H

RESET:

MOV		P0M2,#00000000B	
MOV		WDCON,#00010101B	;设定看门狗溢出时间为1秒
SETB	CS		
SETB		KEY	
SETB		DIO	
MOV		DELAY,#25	;延时 25MS
RST_DELAY1	:		
MOV		WDRST,#01EH	
MOV		WDRST,#0E1H	
DJNZ		DELAY1,RST_DELAY1	
DJNZ		DELAY,RST_DELAY1	
MOV		SEND_BUF,#10100100B	;初始化命令
CALL		SEND	
SETB		CS	
MAIN_LP:			
MOV		WDRST,#O1EH	;清除看门狗定时器
MOV		WDRST,#0E1H	
JB	KEY	/,MAIN_LP	

```
MOV
               SEND_BUF,#00010101B
                                      ;有键按下,发送读键盘命令
   CALL
               SEND
                                      ;读键盘
   CALL
               RECEIVE
   SETB
               CS
   MOV
               B,#10
                                      ;10 进制转换
   MOV
               A,REC_BUF
   DIV
           AB
   MOV
               DECIMAL,A
               SEND BUF,#10100001B
   MOV
                                      ;左移 2 次.
               SEND
   CALL
               CS
   SETB
   MOV
               SEND_BUF,#10100001B
   CALL
               SEND
   SETB
               CS
               SEND_BUF,#10000001B
   MOV
                                      ;下载数据且译码.
               SEND
   CALL
   MOV
               SEND_BUF,DECIMAL
                                          ;发送 10 位数到 zlg7289A 显示
   CALL
               SEND
   SETB
               CS
   MOV
               SEND_BUF,#10000000B
                                      ;下栽数据且译码.
   CALL
               SEND
   MOV
               SEND_BUF,B
                                      ;发送个位数据到 zlg7289A
   CALL
               SEND
   SETB
               CS
   MOV
               SEND BUF,#10001000B
                                      ;设定刚发送数据显示为闪烁
   CALL
               SEND
   MOV
               SEND_BUF,#11111100B
   CALL
               SEND
   SETB
               CS
MAIN LP2:
   JNB
                                      ;等待键松开.
           KEY,MAIN_LP2
   AJMP
               MAIN_LP
; 发送一字节到 zlg7289A,高位在前
SEND:
   MOV
               BIT_CNT,#8
                                      ;设发送位数为8位.
   CLR
           CS
               LONG_DELAY
                                          ;延时 50 微秒.
   CALL
SEND LP:
   MOV
               A,SEND_BUF
   RLC
           Α
               SEND_BUF,A
   MOV
```

MOV DIO,C NOP NOP **SETB** CLK CALL SHORT DELAY ;延时 10 微秒. CLK CLK CALL SHORT_DELAY ;延时 10 微秒. DJNZ BIT_CNT,SEND_LP CLR DIO RET ;由 zlg7289A 接收一字节数据,高位在前 ; ------RECEIVE:: MOV BIT_CNT,#8 ;定义接收8位. DAT **SETB** ;延时 50 微秒. CALLLONG_DELAY RECEIVE LP: **SETB** CLK CALL $SHORT_DELAY$;延时 10 微秒. MOV C,DIO ;接收数据送 REC_BUF 低位. MOV A,REC_BUF RLC MOV REC_BUF,A CLR CLK ;延时 10 微秒. CALL SHORT_DELAY DJNZ BIT_CNT,RECEIVE_LP CLR DIO RET LONG DELAY:: MOV DELAY,#25 DJNZ DELAY,\$ RET SHORT_DELAY: MOV DELAY,#4


DJNZ

RET

DELAY,\$

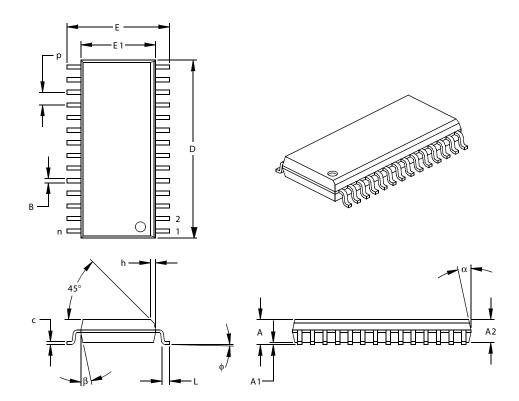
- 11 -

28-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

	Units		INCHES*		N	IILLIMETERS	
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
S houlder to S houlder Width	E	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E 1	.505	.545	.560	12.83	13.84	14.22
Overall Length	D	1.395	1.430	1.465	35.43	36.32	37.21
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eВ	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

^{*} Controlling Parameter

Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010''(0.254mm) per side.

JEDEC Equivalent: MO-011

Drawing No. C04-079

[§] Significant Characteristic

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E 1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	ф	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

^{*} Controlling Parameter

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.
JEDEC Equivalent MS-013

Drawing No. C04-052

[§] Significant Characteristic