LSI|K &[0

LR2010
Floating-Point
Accelerator
Preliminary

Description

The LR2010 Floating-Point Accelerator (FPA) pro-
vides high-speed, floating-point capability for sys-
tems based on the LR2000 CPU. The organization
of FPA architecture is similar to that of the CPU,
allowing high-level language compilers to optimize
both integer and floating-point performance. The
LR2010, with associated system software, fully

conforms to the requirements and recommenda-
tions of the ANSI/IEEE Standard 754-1985. The
LR2010 connects seamlessly to the CPU. Since
both units receive instructions in parallel, floating-
point instructions can be initiated at the same
single cycle rate as fixed-point instructions.

Features

m Fully compatible to ANSI/IEEE Standard 754-1985
floating-point arithmetic

m Supports single and double precision data formats

m High speed throughput, low latency

m Two speed versions

LR2010LC-12 12.5 MHz
LR2010LC-16 16.7 MHz

m Highly pipelined architecture coupled with
optimizing compilers generates high throughput.

= Load/store oriented instruction set initiates
floating-point instructions in a single cycle and
overlaps execution with additional fixed or
floating-point instructions.

m Status/control registers implemented to provide
access to all IEEE Standard exception handling
capability.

m Sixteen on-chip 64-bit registers individually
accessible for flexible operation

m Complete instruction set
— Single and double precision multiply, divide, add,

subtract, negate, absolute value
— Conversion to/from all supported formats

— Comparisan instructions derived from predicates

named in IEEE Standard
w 84-pin ceramic leaded chip carrier
m LR2010 FPA performance floating-point
benchmarks

m Linpack
— Single precision 4.8 MFlops
- Double precision 2.2 MFlops
m Whetstone
— Single precision 11.4 MWips
- Double precision 9.1 MWips

m Livermaore loops
— Single precision 9.6xVAX 11/780
— Doubie precision 12.1xVAX 11/780
m Spice 9.7xVAX 11/780
a 256-Point FFT 23xVAX 11/780

21988 ¢ S! Logic Corporation. All rights reserved.

N RN

'3 GENETE O PRE T HE R

LR2010 FPA Chip Photo

November 1388 DOrder Number LR2010

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LSIEeIN(e

LR2010
Floating-Point
Accelerator
Preliminary
Block Diagram Cache
Data Data Bus
(32) {32)
Instructions Operands
Register Unit (16 <64}
Run* ‘ Exponent Part Fraction .
A
(1 jan |m (53) (53) (53)
v Y Y
FpBusy «—| A B Result A B Result
Exponent i
Unit Add Unit
Control Unit ““::""
o # And
Excoption™—>1 Clocks (53) 63 |6
| /
A B Result
Fpint* <— Divide Unit
[|
Clocks —» (63} (53) (56)
\J Yy
A B Result
Multiply Unit

Note: An asterisk * indicates an Active-LOW Signal.

Figure 1. Functional Block Diagram

Coprocessor The LR2010 FPA serves as a seamlessly integrated

Operation coprocessor in floating-point intensive LR2000-
based systems. The FPA continually monitors the
LR2000 instruction stream. If an instruction does
not apply to the copracessor, it is ignored. If an in-
struction does apply to the coprocessor, the FPA
executes the instruction and transfers results and
necessary exception data synchronously to the
memory. The FPA performs three types of

operations:

m Loads and stores
m Moves

m Two and three-register floating-point operations.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

NI .OGIC

LR2010
Floating-Point
Accelerator
Preliminary

FPA Pipeline Architecture

The execution of a single LR2010 instruction con-
sists of six primary steps:

IF Instruction Fetch. The main processor
calculates the instruction address re-
quired to read an instruction from the
I-cache. Na action is required of the
FPA during this pipe stage since the
main processor is responsible for ad-
dress generation.

RD The instruction is present on the data
bus during phase 1 of this pipe stage.
The FPA decodes the data and deter-
mines whether the instruction will be
executed.

ALU |f the decoded instruction applies to the
FPA, execution commences during this
pipe stage.

MEM If the instruction is a coprocessor load

ar store, the FPA captures or presents

data during phase 2 of this pipe stage.

WB The FPA uses this pipe stage to deal
with exceptions.

FWB During this stage the ALU writes re-

sults back to the repister file. This

stage is equivalent to the WB stage in

the LR2000 processor.

The LR2010 architecture contains a pipeline similar
to the LR2000 processor. The FPA pipeline con-
tains six stages in contrast to the five-stage CPU,
providing efficient coordination of exception re-
sponses between the FPA and the main processor.
Such an architecture operates efficiently because
different FPA resources (address and data bus ac-
cesses, ALU operations, register accesses, etc.)
are utilized on a non-interfering basis. With the use
of optimizing compilers to keep the pipeline full, the
LR2010 achieves an instruction rate approaching
one instruction per second.

| RO ALU MEM WB FWB
r tCache | RF oP D-Cache | Exceptions | FpWB
I
[——
One Cycle

Figure 2. FPA Instruction Execution Sequence

-

w1 [o [ro [aLu|mem] we [Fws

w2 [1] o [aLu[mem| we FWB|

w3 [1F | ro | aLumem| we [rws|

istuction W4 [16 | rD [ALu[mEm] we | Fws|

Flow

i#s [1F | ro | avu[mem] we [Fws)

16 | IF

ro [ALumem| we |Fwa

Current
CcPU
Cycle

Figure 3. FPA Instruction Pipeline

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

NI .OGIC

LR2010
Floating-Point
Accelerator
Preliminary

Programming Model

The LR2010 contains sixteen 64-bit floating-point
registers. These are intended to provide a sufficient
number of floating-point registers to support alloca-
tion of scalar floating-point values and to permit
overlapping execution and efficient scheduling of
floating-point operations. Each register can hold
one value of a single- or double-precision format
floating-point number. Extended precision or quad
precision floating-point formats can be accommo-
dated by combining adjacent registers.

The coprocessor also contains control and status
registers used primarily with diagnostic software,
exception handling, state saving and restoring, and
control of rounding modes.

The LR2010 FPA provides three types of registers
shown in Figure 4.

General Purpose Registers

Floating-Point {FGR}
Registers (FPR) 31 0
¢ { {Least) FGRD
{Mast) FGR1
{ {Least) FGR2?
FPR2
{Most) FGR3
* L]
. L]
L] L]
{Least) FGR28
FPR28
(Most) FGR29
{ {Least) FGR3D
FP|
{Most} FGR31
Floating-Point
Control Registers
(FCR)
3t Control/Status Register ¢

I Interrupts/Enables/Modes I

Implementation/Revision

n Register 0

I il

Figure 4. FPA Registers

Floating-point general purpose registers (FGR) are
directly addressable, physical registers. The FPA

provides thirty-two 32-bit FGRs individually access-

able via move, load and store operations.

Table 1. Floating-Point General Registers

FGR
Number Usage
0 FPR O {Least)
1 FPR 0 (Most)
2 FPR 2 (Least)
3 FPR 2 {Most)
L] []
L L]
L *
28 FPR 28 (Least)
29 FPR 28 (Most)
30 FPR 30 (Least)
31 FPR 30 (Most)

Floating-point registers (FPR] are logical registers
used to store data values for floating-point opera-
tions. Each of the FPRs is 64 bits wide and is
formed by concatenating two FGRs. The FPRs may
hold either single- or double-precision format num-
bers. Only even-numbered addresses are used to
address: odd-numbered register numbers are
invalid. During single-precision operations only the
even-numbered registers are used. Double-precision
operations access general registers in pairs. For
example, in a double-precision operation, selecting
FPRO addresses the adjacent floating-point general
purpose registers FGRO and FGR1.

Floating-point controf registers (FCR} are used for
rounding mode control, exception handling, and
state saving. LR2000 coprocessors, in general, can
have up to 32 control registers. The FPA imple-
ments two: the cantrol/status register (FCR31) and
the implementation/revision (FCRO} register.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

)

[N .OGIC

LR2010
Floating-Point
Accelerator
Preliminary

Programming Model The control/status register contains control and

{Continued) status data that can be accessed by instructions
running in either kernel or user mode. It controls
the arithmetic rounding mode, the enabling of ex-
ceptions, and exception status. Bit assignments are
shown in Figure 5.

The bits in the control/status register can be set
or cleared by writing to the register using a move
control to coprocessor 1 (ctc1) instruction. The
register must only be written to when the FPA is
not actively executing floating-point operations.
This can be assured by first reading the contents
of the register to empty the pipeline. If a floating-
point exception occurs as the pipeline empties, the
exception is taken and the CFC1 instruction can be
re-executed after the exception is serviced.

The FPA control register 0 (FCRO) contains values
that define the implementation and revision number
of the LR2010 FPA. This information can be used
by diagnostic software to determine the coproces-
sor revision level. Only the low order bytes are
defined. Bits 15 through 8 identify the implementa-
tion and bits 7 through 0 identify the revision num-
ber as shown in Figure 6.

AN 16 15 87

Imp I H:VJ

6 8

Imp Implementation: 0x 10=1R2010.
Rev Revision of FPA.
Unused; ignored on writes, zero when read.

Figure 6. Implementation/Revision Register

76 21 0

Exeeptions Trap Enable Sticky Bits | pay
EVZOUI VZOoUul VZOUi

kil 2423 2 18 17 21
ﬁ | : Pl
8 1 5 6

C Condition bit. Set/cleared to reflect the re-

sult of a compare instruction and drives
the FPA CpCond output signal.

Exceptions These bits are set to indicate any excep-
tions that occurred during the most recent
instructions.

Trap Enable These bits enable assertion of the Cpint®
signal if the corresponding exceptien bit is
set during a floating-point operation.

Sticky Bits These bits are set if an exception occurs
and are reset only by explicity loading new
settings into this register (with a move

instruction).

RM Rounding Mode. These two bits specify
which of the four rounding modes is to be
used by the FPA.

m Reserved. Currently ignares writes, unde-

fined when read.

Figure 5. Control/Status Register Bit Assignments

5 2

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

111 .OGIC

LR2010
Floating-Point
Accelerator
Preliminary

Floating-Point
Formats

The LR2010 FPA supports both 32-bit single-
precision and 64-bit double-precision IEEE Standard
floating-point formats. The 32-bit format has a
24-hit signed magnitude fraction field and an 8-bit
exception, as shown in Figure 7.

3 30 23 22 0
S e 1
Sign Exponent Fraction
1 8 23

Figure 7. Single-Precision, Floating-Point Format

The 64-bit format has a 53-bit signed magnitude
fraction field and an 11-bit exponent, as shown in
Figure B.

63 62 52 51 0
S e f
Sign Exponent Fraction
1 1" 52

Figure 8. Double-Precision, Floating-Point Format

Floating-point representations in the LR2010 are
composed of three fields:

1. A 1-bit sign: £
2. A biased exponent: e=E +bias
3. A fraction: f=.b1b2 .. . bp-1

The range of unbiased exponent E includes every
integer between two values EMin and EMax inclu-
sive, and also two other reserved values: EMin-1
to encode +0 and denormalized numbers, and
EMax+ 1 to encode + oo and NaNs (Not-A-
Number). For single- and double-precision formats,
each representable non-zero value has just one
encoding.

The value of a floating-point number is shown in
Table 2.

Table 2. Equations for Calculating Values in
Floating-Point Format

(1) | if E=<EMax+ 1 and f 0, then v is NAN, regardless of s.

(2) | if E=EMax+ 1 and f=0, then v={-1)° oo

(3) | if EMin < E <EMax, then v={-1)° 2E(1.f)

{#) | if E~EMin-1 and f %0, then v=(-1)° 2™n (0 f)

(5) | if E=EMin-1 and =0, then v=(-1)50

For all floating-point formats, if v is a NaN, the
most significant bit of f determines whether the
value is a signaling NaN or a quiet NaN. The most
significant bit of f will be set for signaling NaN.

The values for the parameters described are shown
in Table 3.

Table 3. Floating-Point Format

Parameter Values

Parameter Single Double
P 24 53
EMax +127 +1023
EMin -126 -1022
Exponent Bias +127 +1023
Exponent Width in Bits 8 1
Integer Bit Hidden Hidden
Fraction Width in Bits 23 52
Format Width in Bits 32 64

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

7

LSIne®1e

LR2010
Floating-Point
Accelerator
Preliminary

Number Definitions

The IEEE Standard 754-1985 specifies four vari-
eties of numbers that must be represented:
normalized numbers, denormalized numbers,
infinity, and zero. The definition of each number
type in the LR2010 follows:

Normalized Numbers

Most floating-point calculations are performed on
normalized numbers. For single-precision opera-
tions, narmalized numbers have a biased exponent
that ranges from 1 to 254 (- 126 to +127 un-
biased) and a normalized fraction field, meaning
that the leftmost (hidden) hit is one. In decimal no-
tation this allows representation of a range of posi-
tive and negative values from approximately 10%
to 10738, with accuracy to seven decimal places.

Denormalized Numbers
Denormalized numbers have a zero exponent and a
denormalized (hidden bit =0) non-zero fraction field.

Infinity

Inifinity has an exponent of all ones and a fraction
field equal to zero. Both positive and negative in-
finity are supported.

Zero

Zero has an exponent of zero, a hidden bit equal to
zero, and a value of zera in the fraction field. Both
+0 and -0 are supported.

Instruction Set
Summary

The floating-point instructions supported by the
LR2010 are all implemented using the coprocessor
unit 1 {COP1) operation instructions of the LR2000
CPU instruction set. The basic operations per-
formed hy the CPU are:

Load, Store and Move Instructions

All movement of data between the LR2010 FPA
and memory is accomplished by load word to co-
processor 1 (LWC1) and store word to coprocessor
1 (SWC1) instructions which reference a single
32-bit word of the FPAs general registers. These

loads and stores are unformatted; no format con-
versions are performed and therefore no floating-
point exceptions occur due to these operations.

= Load/store aperations from/to the FPA registers

m Moves between the CPU and the FPA registers

m Computational instructions including floating-point
add, subtract, multiply, divide and convert
instructions

m Fioating point comparisons

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LSIIFSINI®

LR2010
Floating-Point
Accelerator
Preliminary

Instruction Set
Summary
{Continued)

Data may also be directly moved between the FPA
and the LR2000 CPU by the move to coprocessor 1
{MTC1) and move from coprocessor 1 (MFC1) in-
structions. Like the floating-point load and store
operations, these operations perform no format
conversions and never cause floating-point excep-
tions. The load and move instructions have a la-
tency of one instruction. Data being loaded from

memary or the CPU into an FPA register is not
available to the instruction that inmediately fol-
lows the load instruction. Data becomes available
to the second instruction following the load.

Table 4 summarizes the LR2010 load, store and
move instructions.

Table 4. FPA Load, Store and Move Instruction Summary

Instruction

Format and Description

Load Word to FPA
(Coprocessor 1)

LWC1 ft,0ffset(Basel

Sign-extend 16-bit offset and add to contents of CPU register base to form address. Load

contents of addressed word into FPA general register ft.

Store Word from FPA
(Coprocessor 1)

SWC1 ft,0ffset(Basel

Sign-extend 16-bit offset and add to contents of CPU register base to form address. Store 32-bit

contents of FPA general register ft at addressed location.

{Coprocessor 1)

Move Word to FPA MTC1 rtfs
(Coprocessar 1) Move contents of CPU register rt into FPA register fs.
Move Word from FPA MFC1 i fs

Move contents of FPA general register fs into CPU register rt.

Move Control Word to
FPA {Coprocessor 1)

CTC1 rtfs
Move contents of CPU register rt into FPA control register fs.

Move Control Word
from FPA (Coprocessor 1}

CFC? rtfs
Move contents of FPA contral register fs into CPU register rt.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

-

LR2010
Floating-Point
Accelerator
Preliminary

Instruction Set
Summary
(Continued)

Computational Instructions

Computational instructions perform arithmetic
operations on floating-point values in registers.
There are four categories of floating-point
computational instruction:

3-operand register-type instructions that perform
floating-point addition, subtraction, multiplication
and division operations.

2-operand register-type instructions that perform
floating-point absolute value, move and negate
operations

m Convert instructions that perform conversions be-

tween the various formats

m Compare instructions that perform comparisons of

the contents of two registers and set or clear a
condition flag based on the result of the
comparison.

Table 5 summarizes the computational instructions.
The fmt term appended to the instruction op code
is the data format specifier: s specifies single-preci-
sion binary floating point, d specifies double-preci-
sion binary floating point, and w specifies fixed

point. When fmt is single precision or fixed point,
the odd register of the destination is undefined.

Table 5. FPA Computational Instruction Summary

Instruction

Format and Description

Floating-Point
Add

ADD.fmt fd fs,ft

Interpret contents of FPA registers fs and f in specified farmat (fmt) and add arithmetically. Place
raunded result in FPA register fd.

Floating-Point
Subtract

SUB.fmt fd fsft

interpret contents of FPA registers fs and ft in specified format (fmt) and arithmetically subtract ft
from fs. Place result in FPA register fd.

Floating-Point
Multiply

MUL.fmt fd,fs,ft

Interpret contents of FPA registers #s and ft in specified format (fmt} and arithmetically multiply ¢ and
fs. Place result in FPA register fd.

Floating-Peint
Divide

DiV.fmt fd fs,ft

Interpret contents of FPA registers /s and ft in specified format (fmt) and arithmetically divide fs by ft.
Place rounded result in register fd.

Floating-Point
Absolute Value

ABS.fmt fd fs

Interpret contents of FPA register fs in specified format (fmt) and take arithmetic absolute value. Place
result in FPA register fd.

Floating-Point
Move

MOVfmt fdfs
Interpret contents of FPA register fs in specified format (fmt) and copy into FPA register fd.

Floating-Paint
Negate

NEG.fmt fdfs

Interpret contents of FPA register fs in specified format (fmt) and take arithmetic negation. Place
result in FPA register fd.

Floating-Point
Convert to Single
FP Format

CVT.S.fmt fdfs

Interpret contents of FPA register fs in specified format {fmt) and arithmetically convert to the single
binary floating-point format. Place rounded result in FPA register fd.

Floating-Point
Convert to Double
FP Format

CVT.0.fmt fdfs

interpret contents of FPA register fs in specified format /fm¢/ and arithmetically convert to the double
binary floating-point format. Place rounded result in FPA register fd.

Floating-Point
Convert to Single
Fixed-Point Format

CVT.W.fmt fdfs

interpret contents of FPA register fs in specified format {fmt) and arithmetically convert to the single
fixed-point format. Place result in FPA register fd.

Floating-Point
Compare

C.cond.fmt fs,ft

Interpret contents of FPA registers fs and ft in specified format (fmt) and arithmetically compare. The
result is determined by the comparison and the specified condition fcond). After a one instruction delay,
the condition is available for testing by the CPU with the branch on floating-point copracessor condition
{BC1T, BC1F) instructions.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LSIguel

LR2010
Floating-Point
Accelerator
Preliminary

Instruction Set
Summary
(Continued}

Floating-Paint Relational Operations

The floating-point compare instructions
(C.fmt.cond) interpret the contents of two FPA
registers (fs, ft) in the specified format (fmt) and
arithmetically compare them. The result is based
on the comparison and the conditions (cond) speci-
fied in the instruction. Table 6 lists the conditions
that can be specified for the compare instruction
and Table 7 summarizes the floating-point relational
operations that may be performed.

Table 7 is derived from a similar table in the IEEE
Standard and describes 26 predicates named in the
standard. The table also includes six additional
predicates to round out the set of possible pred-
icates based on a condition tested by a compar-
ison. Four mutually exclusive relations are possible:

Table 6. Relational Mnemonic Definitions

less than, greater than, equal, and unordered. Note
that invalid operations occur only when the com-
parisons include the less-than and greater-than
characters but not the unordered character in the
ad hoc form of the predicate.

Branch on FPA Condition Instructions

Table 8 summarizes the two branch on FPA (co-
processor unit 1) condition instructions that can be
used to test the result of the FPA compare instruc-
tions. The term delay slot, described in the table,
refers to the instruction immediately following the
branch instruction.

Mnemonic Definition Mnemonic Definition
F False T True
UN Unordered OR Ordered
EQ Equal NEQ Not Equal
UEQ Unordered or Equal OLG Ordered or Less Than or Greater Than
oLt Ordered Less Than UGE Unordered or Greater Than or Equal
uLT Unordered or Less Than 0GE Ordered Greater Than
OLE Ordered Less Than or Equal UGT Unordered or Greater Than
ULE Unordered or Less Than or Equal 0GT Ordered Greater Than
SF Signaling False ST Signaling True
NGLE Not Greater Than or Less Than or Equal GLE Greater Than, or Less Than or Equal
SEQ Signaling Equal SNE Signaling Not Equal
NGL Not Greater Than or Less Than GL Greater Than or Less Than
I Less Than NLT Not Less Than
NGE Not Greater Than or Equal GE Greater Than or Equal
LE Less Than or Equal NLE Not Less Than or Equal
NGT Not Greater Than GT Greater Than

10

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

»

LR2010

Floating-Point

Accelerator
Preliminary

Instruction Set
Summary
(Continued)

Table 7. Floating-Point Relational Operators

Predicates Relations 0:]1‘::2;:",
Condition Greater Less Exception if
Mnemonic Ad Hoc FORTRAN Than Than Equal Unordered Unordered
F false F F F F no
UN ? F F F T no
EQ = .EQ. F F T F no
UEQ 7= .UE. F F T T no
0a NOT{(? > =) NOT. .UG F T F F no
UT 1< UL F T F T no
OLE NOT(?>) NOT. .UG F T T F no
ULE 7<= .ULE. F T T T no
0GT NOT(? < =) .NOT. .ULE T F F F no
uGT 7> {UGT. T F F T ne
0GE NOT(? <) .NOT. .UL. T F T F no
UGE 7> = .UGE. T F T T no
0LG NOT(?=) T T F F no
NEQ NOT(=) NE. T T F T no
OR NOT(?) T T T F no
T true T T T T no
SF F F F F yes
NGLE NOT(< = >} .NOT. .LEG. F F F T yes
SEQ F F T F yes
NGL NOTI < >) .NOT. LG. F F T T yes
LT < AT. F T F F yes
NGE NOT(> =) NOT. .GE F T F T yes
LE < = LE. F T T F yes
NGT NOT(>) NOT. .GT f T T T yes
6T > .GT. T F F F yes
NLE NOT(< =] NOT. .LE T F F T yes
GE > = .GE. T F T F yes
NLT NOT(<) NOT. .T T F T T yes
GL <> LG. T T F F yes
SNE T T F T yes
GLE <=> LEG. T T T F yes
ST T T T T yes

Table 8. Branch on FPA Condition Instructions

Instruction

Format and Description

Branch on FPA True BCIT

Compute a branch target address by adding address of instruction in the delay slot and the 16-bit
offset (shifted left two bits and sign-extended to 32 bits). Branch to the target address (with a delay
of one instruction) if the FPAs CpCond signal is true.

Branch on FPA False BCTF

Compute a branch target address by adding address of instruction in the delay slot and the 16-bit
offset (shifted left two bits and sign-extended to 32 bits). Branch to the target address (with a delay
of one instruction if the FPAs CpCond signal is false.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LSIENIe

LR2010
Floating-Point
Accelerator
Preliminary
Instruction Execution Unlike the LR2000 which executes nearly all its in- instruction. With the exception of loads and stores,
Times structions in a single cycle, the time to execute an other FPA instructions cannet be overlapped during
FPA instruction ranges from 1 cycle to 19 cycles. these cycles. Those instruction cycles that are
Figure 9 illustrates the number of cycles required lightly shaded place minimal demands on FPA re-
to execute each of the FPA instructions. The cy- sources and may be overlapped (with some excep-
cles of an instruction’s execution time that are tions) to obtain simultaneous execution without
darkly shaded require exclusive access to an FPA stalling the pipeline.
resource that precludes concurrent use by another
Cycles
0 2 1 6 8 10 12 1 16 18 2
I I oo o |
ADD.fmt
SUB.fmt
MULS

MUL.D
DIVS
DivD

ABS.fmt
MOV.fmt
NEG.fmt

15 JE

D Other FPA instructions can proceed during these cycles. However, two multiply
operations or two divide operations cannot he overlapped.

CVT.SD Software must schedule operations to avoid reading the FP register that is the target
CVISW of an FP Load or Move ta FPA instruction less than two cycles later. Software must

also ensure that FP branch instructions occur two or more cycles after an FP compare
CVT.D.S instruction. The MIPS compilers and assembler generate code that obeys these
CVTDW restrictions.

CVTW - The results are not available in the CPU's destination register until after this cycle.
C.cond fmt - Load, store, and move instructions can he executed regardless of what other FPA
BCITBCIF instructions are in progress.

LWC1 - Other FPA instructions cannot be overlapped during these cycles.
SWC1
MTC1

MFC1

CTC1

CFC1

Figure 9. FPA Instruction Execution Times

12

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LSI|pe®(®

LR2010
Floating-Point
Accelerator
Preliminary

Overlapping FPA
Instructions

Figure 10 illustrates the overlapping of several FPA
{and non-FPA) instructions. In this example, the
first instruction requires 12 total cycles for execu-
tion but only the first cycle and the last three
cycles inhibit simultaneous execution of other in-
structions. Similarly, the second instruction
(MUL.S) has twao cycles in the middle of its total of
four required cycles that can be used to advance
the execution of the third and fourth instructions.

Cycles

{1#1) DIV.S
(H2) MUL.S

(1#3) ADD.S

(1i14) SWC1

{1#5) Non FPA

(146) MUL.S

(I#7) MOV.S

(1#8) ABS.S

{1#9) SWC1

Figure 10. Overlapping FPA Instructions

Although pracessing of a single instruction consists
of six pipe stages, the FPA does not require that
the instruction actually be completed in six cycles
to avoid stalling the pipeline. If a subsequent in-
struction does not require the resources being used
by a preceding instruction and has no data depen-
dencies on uncompleted instructions, then execu-
tion continues.

E Other FPA instructions can proceed during these cycles.
However, two multiply operations or two divide operations
cannot be overlapped.

- Other FPA instructions cannot be overlapped during these
cycles.

- Load, store, and move instructions can be executed
regardless of what other FPA instructions are in
progress.

Floating-Point
Exceptions

Floating-point exceptions occur when the FPA can-
not handle the results of a floating-point operation
in a normal way. The FPA responds by either
generating an interrupt or setting a status flag. The
control status register previously described con-
tains a trap enable bit for each exception type that
determines whether an exception will cause the
FPA to initiate a trap or set a status flag. If a trap
is taken, the FPA remains in the state found at the
beginning of the operation and a software handling
routine is executed. If no trap is taken, an appropri-
ate value is written into the FPA destination regis-
ter and execution continues.

The FPA supports the five IEEE exceptions — in-
exact {l), overflow (0), underflow (U}, divide by zero
{2), and invalid (V) — with exception hits, trap en-
ables and sticky bits. The LR2010 FPA adds a
sixth exception type, unimplemented operation (E),
to be used in those cases where a software imple-
mentation must be employed to conform to the
MIPS floating-point architecture. The unimple-
mented operation exception has no trap enable or
sticky bit. Whenever this exception occurs, an
unimplemented exception trap is taken (if the FP
interrupt input to the LR2000 is enabled).

13

Figure 11 shows the control/status register asso-
ciated with the five IEEE exceptions (V,Z,0,1,U).
When an exception occurs, the corresponding ex-
ception and sticky bits are set. If the corresponding
trap enable bit is set, the FPA generates an inter-
rupt to the LR2000 processor and subsequent ex-
ception pracessing allows a trap to be taken.

Bité 17 1® 1B W 13 12

ffl\lllflfll:l:lf“;i‘.‘:‘““
MFITI?JI;I?J sicky

4 3 12
Tzl ol v]™ae™

L L inexact Operation
Underflow Exception
Dverflow Exception

Division-by-Zero
L Invalid Operation
Unimplemented Operation

Figure 11. Control/Status Register Exception/
Sticky[Trap Enable Bits

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

I .OGIC

LR2010
Floating-Point
Accelerator
Preliminary

Floating-Point
Exceptions
{Continued)

Exception Trap Processing

When a floating-point exception trap is taken, the
LR2000s cause register indicates that an external
interrupt is the cause of the exception and the
LR2000s EPC (exception program counter) con-
tains the address of the instruction that caused the
exception trap.

For each IEEE Standard exeeption, a sticky-bit
status flag is provided that is set on the occurrence
of the corresponding condition with no correspond-
ing exception trap signaled. The sticky bits may

be reset by writing a new value into the control/
status register and may be saved and restored by
software.

When no exception trap is signaled, a default action
is taken by the FPA which provides a substitute

Table 9. FPA Exception Situations

value for the original exceptional result of the float-

ing-point operation. The default action depends on
the type of exception and, in the case of overfiow,
the current rounding mode. Table 10 lists the de-
fault action taken by the FPA for each of the IEEE
exceptions.

The FPA internally detects eight different condi-
tions that can cause exceptions. When the FPA en-
counters one of these situations it will cause either
an |EEE exception or an unimplemented operation
(E) exception. Table 9 lists the exception-causing
situations.

The following sections describe the conditions that
cause the FPA to generate each of its six excep-
tions and details the FPAs response to each of
these situations.

IEEE Trap Trap
FPA Internal Result Standard Enabled Disabled Note
Inexact Result | | | Loss of accuracy
Exponent Qverflow o 0l 0l Normalized exponent > EMax
Divide by Zero z Z z Zero is {exponent =EMin- 1, mantissa=0)
Overflow on Convert v v E Source out of integer range
Signaling NaN Source v '} E Quiet NaN source produces quiet NaN result
Invalid Operation v v E 0/0 etc.
Exponent Underflow U E E Normalized exponent < EMin
Denormalized Source None E E Exponent=EMin-1 and mantissa < >0

*Standard specifies inexact exception on overflow only it overflow trap is disabled.

Table 10. FPA Exception Default Actions

Rounding
Exception Mode Default Action {No Exception Trap Signaled)
v Invalid Operation — Supply a quiet NaN.
pa Division by Zero - Supply a properly signed oo.
0 Dverfiow RN Modify overflow values to oo with the sign of the intermediate result.
RZ Modify overflow values to the format’s largest finite number with the
sign of the intermediate result.
RP Modify negative overflows to the format’s most negative finite number.
Modify positive overflows to + oo.
RM Modify positive overflows te the format's largest finite number. Modify
negative overflows to - oo,
U Underflow - Generate an unimplemented exception.
| Inexact — Supply a rounded result.

14

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

INI11.OGIC

LR2010
Floating-Point
Accelerator
Preliminary

Floating-Point
Exceptions
(Continued)

Inexact Exception (1)
The FPA generates this exception if the rounded re-
sult of an operation is not exact or if it overflows.

The FPA usually examines the operands of
floating-point operations before execution actually
begins to determine (based on the exponent values
of the operands) if the operation can possibly cause
an exception. If there is a possibility of an instruc-
tion causing an exception trap, then the FPA uses
the coprocessor stall mechanism previously de-
scribed. It is impossible, however, far the FPA to
predetermine if an instruction will produce an in-
exact result. Therefore, if inexact exception traps
are enabled, the FPA uses the coprocessor stall
mechanism to execute all floating-point operations
that require more than one cycle. Since this mode
of execution can impact performance, inexact ex-
ception traps should be enahled only when
necessary.

Trap Enabled Results: If inexact exception traps are
enabled, the result register is not modified and the
source registers are preserved.

Trap Disabled Results: The rounded or overflowed
result is delivered to the destination register if no
other software trap occurs.

Underflow Exception (U)

The FPA never generates an underflow exception
and never sets the U bit in either the exceptions
field or sticky field of the control/status register. If
the FPA detects a condition that could be either an
underflow or a loss of accuracy, it generates an
unimplemented exception.

Overflow Exception (0)

The overflow exception is signaled when what
would have been the magnitude of the rounded
floating-point result, were the exponent range un-
bounded, is larger than the destination format's
largest finite number. (This exception also sets the
inexact exception and sticky bits.)

Trap Enabled Results: The result register is not
modified, and the source registers are preserved.

Trap Disabled Results: The result, when no trap
occurs, is determined by the rounding mode and the
sign of the intermediate result {as listed in

Table 10).

15

Division-by-Zero Exception (Z)

The division-by-zero exception is signaled on a di-
vide operation if the divisor is zero and the dividend
is a finite non-zero number.

Trap Enabled Results: The result register is not
modified, and the source registers are preserved.

Trap Disabled Results: The result, when no trap oc-
curs, is a carrectly signed infinity.

Invalid Operation Exception (V)

The invalid operation exception is signaled if one or
both of the operands are invalid for an implemented
operation. The invalid operations are:

1. Addition or subtraction: magnitude subtraction
of infinities, such as: (+ o) — (+ o0}

2. Mutliplication: 0x oo, with any signs

3. Division: 0+0, or oo + oo, with any signs

4. Conversion of a floating-point number to a
fixed-point format when an overflow, or
operand value of infinity or NaN, precludes a
faithful representation in that format

5. Comparison of predicates involving < or >
without ?, when the operands are “unordered”

B. Any arithmetic operation on a signaling NaN.
Note that a move (MOV) operation is not consid-
ered to be an arithmetic operation, but that
ABS and NEG are considered to be arithmetic
operations and will cause this exception if one
ar both operands is a signaling NaN.

Software may simulate this exception for other
operations that are invalid for the given source op-
erands. Fxamples of these operations include IEEE-
specified functions implemented in software, such
as remainder: x REM y, where y is zera or x is infi-
nite; conversion of a floating-point number to a dec-
imal format whose value causes an overflow or is
infinity or NaN; and transcendental functions, such
as 1n(-5) or cos'(3).

Trap Enabled Results: The original operand values
are undisturbed.

Trap Disabled Results: The FPA always signals an
unimplemented exception because it does not cre-
ate the NaN that the IEEE Standard specifies
should be returned under these circumstances.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LSI{EI[®

LR2010
Floating-Point
Accelerator
Preliminary

Floating-Point
Exceptions
{Continued)

Unimplemented Operation Exception (E)

The FPA generates this exception when it attempts
to execute an instruction with an OpCode (bits
31-26) or format code (bits 24-21) which has
been reserved for future use.

This exception is not maskable: the trap is always
enabled. When an unimplemented operation is
signaled, an interrupt is sent to the LR2000 proces-
sor so that the operation can be emulated in soft-
ware. When the operation is emulated in software,
any of the IEEE exceptions may arise; these excep-
tions must, in turn, be simulated.

This exception is also generated when any of the
following exceptions are detected by the FPA:

w Extended and quad precision

= Square root

m Denormalized operand

m Not-a-number (NaN) operand

m Invalid operation with trap disabled
m Denormalized result

m Underflow

Trap Enabled Results: The original operand values
are undisturbed.

Trap Disabled Results: This trap cannot be
disabled.

Saving and Restoring
State

Thirty-two coprocessor load or store instructions
will save or restore the FPAs floating-point register
state in memory. The contents of the control/status
register can be saved using the “move to/from co-
processor control register” instructions (CTC1/
CFC1). Normally, the control/status register con-
tents are saved first and restored last.

If the control/status register is read when the co-
processor is executing one or more floating-point
instructions, the instructions in progress (in the
pipeline) are completed hefore the contents of the
register are moved to the main processor. If an
exception occurs during one of the in-progress in-
structions, that exception is written into the con-
trol/status register exceptions field.

16

Note that the exceptions field of the control/status
register holds the results of only one instruction:
the FPA examines source operands before an
operation is initiated to determine if the instruction
can possibly cause an exception. If an exception is
possible, the FPA executes the instruction in
“’stall” mode to ensure that no more than one in-
struction at a time is executed that might cause an
exception.

All of the bits in the exceptions field can be cleared
by writing a zero value to this field. This permits
restarting of normal processing after the control/
status register state is restored.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

|11 1 .OGIC

LR2010
Floating-Point
Accelerator
Preliminary

Pin Descriptions

(Note: an asterisk * indicates an Active-LOW
signal)

Data (31:0)

{1/0) A multiplexed 32-bit bus used for instruction
and data transfers on phase 1 and phase 2,
respectively.

Data P(3:0)
{0} A 4-bit bus cantaining even parity over the data
bus. Parity is generated by the FPC on stores.

Run*

(I) Input to the FPC which indicates whether the
processor-coprocessor system is in the run or stall
state.

Exception™
{1} INput to the FPC which indicates exception re-
lated status information.

FpBusy
(0) Signal to the CPU indicating a request for a co-
processor busy stall.

FpCond
(0} Signal to the CPU indicating the result of the
last comparisan operation.

Fpint*

(0) Signal to the CPU indicating that a floating-
point exception has occurred for the current FPC
instruction.

Reset”

{) Synchronous initialization input used to distin-
guish the processor-FPC synchronization period
from the execution period. Reset™ must be syn-
chronized by the leading edge of SysQut from the
CPU.

17

PLLOn"

(1) Input which during the reset period determines
whether the phase lock mechanism is enabled and
during the execution period determines the output
timing model.

FpPresent”

(0) Output which is pulled to ground through an
impedance of approximately 0.5K €2. By providing
an external pullup on this line, an indication of the
presence or absence of the FPC can be obtained.

Clk2 xSys
{I) A double-frequency clock input used for generat-
ing FpSysOut™.

Clk2xSmp

{I) A double-frequency clock input used to deter-
mine the sample point for data coming into the
FPC.

Clk2xRd
{1} A double-frequency clock input used to
determine the disable point for the data drivers.

Clk2 = Phi

(1) A double-frequency clock input used to
determine the position of the internal phases;
phase 1 and phase 2.

FpSysOut”
(0) Synchronization clock from the FPC.

FpSysin®
{1} Input used to receive the synchronization clock
from the FPC.

FpSync”
(I} Input used to receive the synchronization clock
from the CPU.

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

|11 1.OGIC

LR2010

Floating-Point

Accelerator

Preliminary /\»

Pin Assignments Table 11. FPC Pinout 84-Pin Quad J-Lead CerPak
Pin Pin Pin Pin
Name Number Name Number

Data(0) 33 FpSync* 23
Data(1) KL} Reset” 22
Data(2) 35 PllOn* 28
Data(3) 36 Run” 66
Datal4) 39 Exception” 67
Datal(5) 40 Fpint* 68
Datai(6) 1 FpBusy 69
Data(7) 42 FpCond 70
Data(8) 44 VCCO 7
Data(9) 45 VvCC1 15
Data{10) 46 VCC2 24
Data{11) 47 VCC3 26
Data{12) 50 VCC4 29
Data({13) 51 VCCh 3
Data(14) 52 VCC6 38
Data(15) 53 VCC7 49
Data(16) 76 VCC8 55 i
Data(17) 77 VCC9 57
Data(18) 78 VCC10 61
Data(19) 79 veen 63
Data(20) 82 VCC12 72
Data(21) 83 VCC13 75
Data(22) 84 VCC14 81
Data(23) 1 Gnd0 6
Data{24} 3 Gnd1 16
Data(25} 4 Gnd2 25
Data(26) 5 Gnd3 27
Data(27) 8 Gnd4 30
Data(28) 9 Gndb 32 /\»
Datal29} 10 GndB 37
Data(30} 11 Gnd?7 48
Data(31} 14 GndB 54
DataP(0} 43 Gnd9 56
DataP{1} 73 Gnd10 60
DataP(2} 2 Gnd11 62
DataP(3) 17 Gnd12 71
Cik2xSys 19 Gnd13 74
Clk2xSmp 20 Gnd14 80
Clk2xRd 12 Resvd0 58
Clk2xPhi 21 Resvd1 64
FpSysin* 13 Resvd2 B5
FpSysOut® 18 FpPresent™ 59

Note: An asterisk * indicates an Active-LOW signal

Operating Parameters Absolute Maximum Ratings' Operating Range
Parameter | Description Min | Max |Units Ambient
vCC Supply Voltage -05}+70] V Range Temperature vee
VIN Input Voltage -0.62|+70] V Commercial 0°C to 70°C 5V+5%
TST Storage Temperature -65 |+150| €
TA Operating Temperature 0 [+70]| C
CLD Load Capacitance 100 | pF
on Any Pin
Notes:

1. Operation beyond the fimits set forth in this table may
impair the useful life of the device.

2. VIN Min.= - 3.0 V for pulse width less than 15 ns.

3. Not more than one output should be shorted at a time. /}
Duration of the short should not exceed 30 seconds.

18

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LSIu# (@

LR2010

Floating-Point

Accelerator

Preliminary

DC Characteristics
Test 12.5 MHz 16.67 MHz
Parameter Description Conditions Min Max Min Max Units
VOH Output High Voltage VCC=Min. 3.5 35)
10H=-4 mA
voL Output Low Voltage VCC=Min. 0.4 0.4 v
10L=-4 mA
VIH Input High Voltage 20 VCC+0.5 20 VCC+0.5 v
ViL Input Low Voltage -0.5' 0.8 -0.5' 0.8 v
VIHS Input High Voltage -2.8 VCC+0.5 3.0 VCC+0.5 v
VILS Input Low Voltage -0.5' 0.4 -0.5' 0.4 v
VIHC Input High Valtage 4.0° VCC+0.5 4.0° VCC+0.5 v
ViLe Input Low Voltage -0.5' 04 -0.5' 0.4 v
Cln Input Capacitance 10 10 pF
COut Output Capacitance 10 10 pF
ICC Operating Current 500 550 mA
Notes:

1. VIL Min. = - 3.0 V for pulse width less than 15 ns.
2. VIHS and VILS apply to Cik2xSys, Clk2xSmp, Clk2xRd, Clk2xPhi.
3. VIHC and VILC apply to Run* and Exception™

Packaging

84-Pin Quad Type “J" Package

Index 1"] 75
N 00000N00nNnnooanonNnnnn

12

nnnonooonNnoNnaonprannn.

©w
~N

~
=

Bottom View

Toogoooooooooououooay

19

51
oo ooooouooououy
3 53 0.019:+0.003 | 0.050+0.003
| {0.483+0.076) | (1.270+0.076)
1.000:+0.004
- {25.40+0.102)
1.160+0.012
- (29.21+D.305)
1.180
| -——————— —_——
(20.97) Max
0.055+0.003
0.050-+0.005
(1270+0.127) (1.397?.0761
7
0.006 .., 0.040
Lead {0.152) Thk 1.016) Typ

Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

LSIiFeI# e

LR2010
Floating-Point
Accelerator
Preliminary
SN
Sales Offices LSI Logic Corporation Michigan Edmonton Netherlands
and Design Headquarters 313.930.6975 m 403.45D.4400 LS1 Logic/Arcobel
Resource Centers Milpitas CA Minnesota Ottawa = 31.4120.30335
w 408.433.9000 = 612.921.8300 = 6135921263 Scotland
Arizona New Jorsey Montreal LSI Logic Limited
602.951.4560 a 201.549.4500 m 514.694.2417 = 44.506.416767
California Y Toronto Sweden
San Jose New York = 416.622.0403 LS! Logic Limited
408.248.5100 914.226.1620 Vancouver 46.8.703.4680
Irvine North Carolina = 604.433.5705 Switzerland
s 714.553.5600 = 918.872.8400 France LS Logic/Sulzer
Sherman Oaks Ohio LS1 Logic S.A. = 41.32.515441
= 818.906.0333 614.438.2644 m» 33.1.46212525 United Kingdom
Colorado Oregon Israel LSI Logic Limited
303.756.8800 503.644.6697 LSI Logic Limited = 44.344.426504
Florida Pennsylvania = 972.3.5403741 West Germany
Altamonte Springs 215.638.3010 Italy LS| Logic GmbH
407.339.2242 - LSI Logic SPA aeaqqlt:arters TN
exas unicl
Bocafaton Austin = 3939651575 » 49.89.926903.0
- it 512.338.2140 Japan Dusseldorf
; LSI Logic K. K. usse'dar
%ﬁ:ﬂ% 2898 Dallas Tokyo » 49.211.5961066
i it " = 8135892711 iglt;f | r;262151
inois Washington Tsukuba-Shi » A8
s 3127730111 n 206.8224384 w 81.208.52.8371 LS! LogiclEKB
Maryland Austria Dsaka Berlin
= 301.897.5800 LSI Logic/Steiner » 81.6.947.5281 = 49.30.311006.0
43.222.827474. | Logic/Purfirst
Massachusetts " 8 0 LSI Logic Corporation Ilsirnhgﬂ urfirs
= 617.890.0180 {Design Ctr} LSI Logic Corporation of Korea Limited
m 49.511.6104.0
617.890.0161 {Sales Ofc) of Canada, Inc. m 82.2.7685.1693 . . T
Headquarters LSI Logic/TEP Elektronik
Calgary Ingenieurtechnik
= 403.262.9292 Luebeck
n 49.451.893941
m Sales Offices with
Design Resource Centers
TN
LS! Logic Carporation reserves the right to make changes to any praducts and
services herein at any time without notice. LS) Logic does not assume any re-
sponsibility or liability arising out of the application or use of any product or
service described herein, except as expressly agreed to in writing by LSI Logic;
nor does the purchase, lease, or use of a product or service from LSI Logic
. . convey a license under any patent rights, copyrights, trademark rights, or any
Printed in USA other of the intellectual property rights of LSI Logic or of third parties. Al rights
108.83.05032.10K.IM.CS LS! Logic and logo design are trademarks of LS Logic Corporation. reserved.

o136 X X
Power ed by | Cniner.com El ectronic-Library Service CopyRi ght 2003

