DATA SHEET

TDA3618AJR
 Multiple voltage regulator with switch and ignition buffers

Product specification
2001 May 02
File under Integrated Circuits, IC01

Multiple voltage regulator with switch and ignition buffers

FEATURES

Genera

- Extremely low noise behaviour and good stability with very small output capacitors
- Two V_{P}-state controlled regulators and a power switch
- Regulator 2, reset and ignition buffer operate during load dump and thermal shutdown
- Separate control pins for switching regulator 1 , regulator 3 and the power switch
- Supply voltage range from -18 to +50 V
- Low reverse current of regulator 2
- Low quiescent current when regulator 1 , regulator 3 and the power switch are switched off
- Hold output for low V_{P}
- Hold output for regulators 1 and 3
- Hold output for foldback mode switch
- Hold output for load dump and temperature protection
- Reset (push-pull) and hold (open collector) outputs
- Adjustable reset delay time
- High ripple rejection
- Backup capacitor for regulator 2
- Two independent ignition buffers, one inverted and with open collector output.

Protection

- Reverse polarity safe, down to -18 V
- Able to withstand voltages up to 18 V at the outputs (supply line may be short-circuited)
- ESD protected on all pins
- Thermal protections with hysteresis
- Load dump protection
- Foldback current limit protection for regulators 1, 2 and 3
- Delayed second current limit protection for the power switch at short-circuit
- The regulator outputs and the power switch are DC short-circuit safe to ground and V_{P}.

GENERAL DESCRIPTION

The TDA3618AJR is a multiple output voltage regulator with a power switch and ignition buffers, intended for use in car radios with or without a microcontroller. It contains:

- Two fixed voltage regulators with foldback current protection (regulators 1 and 3) and one fixed voltage regulator (regulator 2) intended to supply a microcontroller, that also operates during load dump and thermal shutdown
- A power switch with protection, operated by an enable input
- Reset and hold outputs that can be used to interface with the microcontroller; the reset signal can be used to wake up the microcontroller
- A supply pin that can withstand load dump pulses and negative supply voltages
- Regulator 2, which is switched on at a backup voltage greater than 6.5 V and off when the output voltage of regulator 2 drops below 1.9 V
- A provision for the use of a reserve supply capacitor that will hold enough energy for regulator 2 (5 V continuous) to allow a microcontroller to prepare for loss of voltage
- An inverted ignition 1 input with open collector output stage
- An ignition 2 input Schmitt trigger with push-pull output stage.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE		
	NAME	DESCRIPTION	VERSION
TDA3618AJR	DBS17P	plastic DIL-bent-SIL (specially bent) power package; 17 leads (lead length 12 mm)	SOT475-1

Multiple voltage regulator with switch and ignition buffers

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{P}	supply voltage	operating	11	14.4	18	V
		reverse polarity; non-operating	-	-	-18	V
		regulator 2 on	2.4	14.4	50	V
		jump start; $\mathrm{t} \leq 10$ minutes	-	-	30	V
		load dump protection; t $\leq 50 \mathrm{~ms}$; $\mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	-	-	50	V
$\mathrm{I}_{\mathrm{q} \text { (tot) }}$	total quiescent supply current	standby mode	-	400	500	$\mu \mathrm{A}$
T_{j}	junction temperature		-	-	150	${ }^{\circ} \mathrm{C}$
Voltage regulators						
$\mathrm{V}_{\text {O(REG1) }}$	output voltage of regulator 1	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{REG} 1} \leq 600 \mathrm{~mA}$	8.5	9.0	9.5	V
$\mathrm{V}_{\text {O(REG2) }}$	output voltage of regulator 2	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 } 2} \leq 150 \mathrm{~mA} ; \mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V}$	4.75	5.0	5.25	V
$\mathrm{V}_{\text {O(REG3) }}$	output voltage of regulator 3	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 3} \leq 750 \mathrm{~mA}$	4.75	5.0	5.25	V
Power switch						
$\mathrm{V}_{\text {drop }}$	drop-out voltage	$\mathrm{I}_{\text {SW }}=1 \mathrm{~A}$	-	0.45	0.70	V
		$\mathrm{I}_{\text {SW }}=1.8 \mathrm{~A}$	-	1.0	1.8	V
I_{M}	peak current		3	-	-	A

Multiple voltage regulator with switch and ignition buffers

BLOCK DIAGRAM

Fig. 1 Block diagram.

Multiple voltage regulator with switch and ignition buffers

PINNING

SYMBOL	PIN	DESCRIPTION
V_{P}	1	supply voltage
REG1	2	regulator 1 output
REG3	3	regulator 3 output
EN3	4	enable input regulator 3
IGN2/N	5	ignition 2 input
IGN1 ${ }_{\text {IN }}$	6	ignition 1 input
$\overline{\text { IGN1 }}_{\text {OUT }}$	7	ignition 1 output (active LOW)
IGN2OUT	8	ignition 2 output
RES	9	reset output (push-pull)
EN1	10	enable input regulator 1
ENSW	11	enable input power switch
HOLD	12	hold output (active LOW)
CRES	13	reset delay capacitor
GND	14	ground
REG2	15	regulator 2 output
BU	16	backup
SW	17	power switch output

Fig. 2 Pin configuration.

Multiple voltage regulator with
switch and ignition buffers

FUNCTIONAL DESCRIPTION

The TDA3618AJR is a multiple output voltage regulator with a power switch, intended for use in car radios with or without a microcontroller. Because of the low-voltage operation of the car radio, low-voltage drop regulators are used in the TDA3618AJR.

Regulator 2 switches on when the backup voltage exceeds 6.5 V for the first time and switches off again when the output voltage of regulator 2 falls below 1.9 V (this is far below an engine start). When regulator 2 is switched on and its output voltage is within its voltage range, the reset output is enabled to generate a reset to the microcontroller. The reset cycle can be extended by an external capacitor at pin $\mathrm{C}_{\text {REs. }}$. This start-up feature is included to secure a smooth start-up of the microcontroller at first connection, without uncontrolled switching of regulator 2 during the start-up sequence.

The charge of the backup capacitor can be used to supply regulator 2 for a short period when the supply drops to 0 V (the time depends on the value of the storage capacitor).

The output stages of regulators 1 and 3 have an extremely low noise behaviour and good stability. These regulators are stabilized by using small output capacitors.

When both regulator 2 and the supply voltage ($\mathrm{V}_{\mathrm{P}}>4.5 \mathrm{~V}$) are available, regulators 1 and 3 can be operated by means of the enable inputs (pins EN1 and EN3 respectively).
Pin HOLD is normally HIGH and is active LOW. Pin HOLD is connected to an open collector NPN transistor and must have an external pull-up resistor to operate. The HOLD output is controlled by a LOW-voltage detection circuit which, when activated, pulls the warning output LOW (enabled). The detection outputs of the regulators are connected to an OR gate inside the IC such that the hold is activated (goes LOW) when the regulator voltages of regulator 1 and/or regulator 3 are out of regulation for any reason. Each regulator enable input controls its own detection circuit, such that if a regulator is disabled or switched off, the detection circuit for that regulator is disabled.

The hold circuit is also controlled by the temperature and load dump protection. Activating the temperature or load dump protection causes a hold (LOW) during the time the protection is activated. When all regulators are switched off, pin HOLD is controlled by the battery line (pin V_{P}), temperature protection and load dump protection.

The hold output is enabled (LOW) at low battery voltages. This indicates that it is not possible to get regulator 1 into regulation when switching it on. The hold function includes hysteresis to avoid oscillations when the regulator voltage crosses the hold threshold. Pin HOLD also becomes LOW when the switch is in foldback protection mode; see Fig. 4 for a timing diagram. The hold circuit block diagram is given in Fig. 3.

The power switch can also be controlled by means of a separate enable input (pin ENSW).
All output pins are fully protected. The regulators are protected against load dump (regulators 1 and 3 switch off at supply voltages $>18 \mathrm{~V}$) and short circuit (foldback current protection).
The switch contains a current protection. However, this protection is delayed at short-circuit by the reset delay capacitor. During this time, the output current is limited to a peak value of at least 3 and 2 A continuous ($\mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$).
In the normal situation, the voltage on the reset delay capacitor is approximately 3.5 V (depending on temperature). The switch output is approximately $\mathrm{V}_{\mathrm{P}}-0.4 \mathrm{~V}$. At operational temperature, the switch can deliver at least 3 A . At high temperature, the switch can deliver approximately 2 A . During an overload condition or short-circuit ($\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{P}}-3.7 \mathrm{~V}$), the voltage on the reset delay capacitor rises 0.6 V above the voltage of regulator 2 . This rise time depends on the capacitor connected to pin $\mathrm{C}_{\text {RES }}$. During this time, the switch can deliver more than 3 A . The charge current of the reset delay capacitor is typically $4 \mu \mathrm{~A}$ and the voltage swing approximately 1.5 V . When regulator 2 is out of regulation and generates a reset, the switch can only deliver 2 A and will go into foldback protection without delay. At supply voltages $>17 \mathrm{~V}$, the switch is clamped at 16 V maximum (to avoid externally connected circuits being damaged by an overvoltage) and the switch will switch off at load dump. Interfacing with the microcontroller (simple full/semi on/off logic applications) can be realized with two independent ignition Schmitt triggers and ignition output buffers (one open collector and one push-pull output). Ignition 1 output is inverted.

The total timing diagrams are shown in Figs 4 and 5.

Multiple voltage regulator with switch and ignition buffers

Fig. 3 Block diagram of the hold circuit.

Multiple voltage regulator with switch and ignition buffers

Fig. 4 Timing diagram of ignition Schmitt triggers and HOLD.

Multiple voltage regulator with switch and ignition buffers

V_{P} and enable Schmitt trigger

Fig. 5 Timing diagram of regulators and power switch.

Multiple voltage regulator with switch and ignition buffers

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{P}	supply voltage	operating	-	18	V
		reverse polarity; non-operating	-	-18	V
		jump start; $\mathrm{t} \leq 10$ minutes	-	30	V
		load dump protection; $\mathrm{t} \leq 50 \mathrm{~ms} ; \mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	-	50	V
$\mathrm{P}_{\text {tot }}$	total power dissipation		-	62	W
$\mathrm{~T}_{\text {stg }}$	storage temperature	non-operating	-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature	operating	-40	+85	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature	operating	-40	+150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}$	thermal resistance from junction to case		2	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$	thermal resistance from junction to ambient	in free air	50	$\mathrm{~K} / \mathrm{W}$

Multiple voltage regulator with switch and ignition buffers

CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; see Fig.8; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V_{P}	supply voltage	operating	11	14.4	18	V
		regulator 2 on; note 1	2.4	14.4	18	V
		jump start; $\mathrm{t} \leq 10$ minutes	-	-	30	V
		load dump protection; $\mathrm{t} \leq 50 \mathrm{~ms} ; \mathrm{t}_{\mathrm{r}} \geq 2.5 \mathrm{~ms}$	-	-	50	V
I_{q}	quiescent supply current	$\mathrm{V}_{\mathrm{P}}=12.4 \mathrm{~V}$; note 2	-	390	500	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V}$; note 2	-	400	-	$\mu \mathrm{A}$

Schmitt trigger for regulator 1, regulator 3 and the power switch

$\mathrm{V}_{\mathrm{th}(\mathrm{r})}$	rising threshold voltage		6.5	7.0	7.5	V
$\mathrm{~V}_{\mathrm{th}(\mathrm{f})}$	falling threshold voltage		4.0	4.5	5.0	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage		-	2.5	-	V

Schmitt trigger for regulator 2

$\mathrm{V}_{\text {th }(\mathrm{r})}$	rising threshold voltage		6.0	6.5	7.1	V
$\mathrm{~V}_{\text {th }(\mathrm{f})}$	falling threshold voltage		1.7	1.9	2.3	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage		-	4.6	-	V

Schmitt trigger for enable inputs (regulator 1, regulator 3 and the power switch)

$\mathrm{V}_{\mathrm{th}(\mathrm{r})}$	rising threshold voltage		1.4	1.8	2.4	V
$\mathrm{~V}_{\text {th(f) }}$	falling threshold voltage		0.9	1.3	1.9	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage	$\mathrm{I}_{\mathrm{REG}}=\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~mA}$	-	0.5	-	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$	1	5	10	$\mu \mathrm{~A}$

Schmitt triggers for HOLD output

$\mathrm{V}_{\text {th(r)(REG1) }}$	rising threshold voltage of regulator 1	V_{P} rising; note 3	-	$\mathrm{V}_{\mathrm{O}(\mathrm{REG} 1)}-0.15$	$\mathrm{~V}_{\mathrm{O}(\mathrm{REG} 1)}-0.075$	V
$\mathrm{~V}_{\text {th(f)(REG1) }}$	falling threshold voltage of regulator 1	V_{P} falling; note 3	8.1	$\mathrm{~V}_{\mathrm{O}(\mathrm{REG} 1)}-0.35$	-	V
$\mathrm{V}_{\text {hys(REG1) }}$	hysteresis voltage due to regulator 1		-	0.2	-	V
$\mathrm{V}_{\text {th(r)(REG3) }}$	rising threshold voltage of regulator 3	V_{P} rising; note 3	-	$\mathrm{V}_{\mathrm{O}(\mathrm{REG} 3)}-0.15$	$\mathrm{~V}_{\mathrm{O}(\mathrm{REG} 3)}-0.075$	V
$\mathrm{~V}_{\text {th(f)(REG3) }}$	falling threshold voltage of regulator 3	V_{P} falling; note 3	4.1	$\mathrm{~V}_{\mathrm{O(REG3)}}-0.35$	-	V
$\mathrm{V}_{\text {hys(REG3) }}$	hysteresis voltage due to regulator 3		-	0.2	-	V

Multiple voltage regulator with switch and ignition buffers

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\left.\mathrm{V}_{\mathrm{th}(r)(\mathrm{r})} \mathrm{VP}\right)$	rising threshold voltage of supply voltage	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	9.1	9.7	10.3	V
$\mathrm{~V}_{\text {th(}(\mathrm{f})(\mathrm{VP})}$	falling threshold voltage of supply voltage	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	9.0	9.4	9.8	V
$\mathrm{~V}_{\text {hys }(\mathrm{VP})}$	hysteresis voltage of supply voltage	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	-	0.3	-	V

Reset and hold buffer

$\mathrm{I}_{\text {sink }(\mathrm{L})}$	LOW-level sink current	$\mathrm{V}_{\text {RES }} \leq 0.8 \mathrm{~V}$; $\mathrm{V}_{\text {HOLD }} \leq 0.8 \mathrm{~V}$; $V_{\text {CRES }}<1.0 \mathrm{~V}$	2	-	-	mA
ILO	HOLD output leakage current	$\mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{V}_{\text {HOLD }}=5 \mathrm{~V}$	-	0.1	5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {source(H) }}$	HIGH-level source current	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{RES}}=4.5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {CRES }}>3.5 \mathrm{~V} \end{aligned}$	240	400	900	$\mu \mathrm{A}$
tr_{r}	rise time	note 4	-	7	50	$\mu \mathrm{s}$
t_{f}	fall time	note 4	-	1	50	$\mu \mathrm{s}$

Reset delay

I_{ch}	charge current		2	4	8	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{dch}}$	discharge current		500	800	-	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{th}(\mathrm{r})(\text { RES })}$	rising voltage threshold reset signal		2.5	3.0	3.5	V
$\mathrm{t}_{\mathrm{d}(\mathrm{RES})}$	delay time reset signal	$\mathrm{C}=47 \mathrm{nF} ;$ note 5	20	35	70	ms
$\mathrm{~V}_{\mathrm{th}(\mathrm{r})(\mathrm{SW})}$	rising voltage threshold switch foldback protection		-	$\mathrm{V}_{\mathrm{O}(\mathrm{REG} 2)}$	-	V
$\mathrm{t}_{\mathrm{d}(\mathrm{SW})}$	delay time switch foldback protection	$\mathrm{C}=47 \mathrm{nF} ;$ note 6	8	17.6	40	ms

Regulator 1 ($\mathrm{I}_{\mathrm{REG} 1}=5 \mathrm{~mA}$ unless otherwise specified)

$\mathrm{V}_{\text {O(off) }}$	output voltage off		-	1	400	mV
$\mathrm{V}_{\text {O(REG1) }}$	output voltage	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 1} \leq 600 \mathrm{~mA}$	8.5	9.0	9.5	V
		$12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	8.5	9.0	9.5	V
$\Delta \mathrm{V}_{\text {line }}$	line regulation	$12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	-	2	75	mV
$\Delta \mathrm{V}_{\text {load }}$	load regulation	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{REG} 1} \leq 600 \mathrm{~mA}$	-	20	100	mV
I_{q}	quiescent current	$\mathrm{I}_{\text {REG } 1}=600 \mathrm{~mA}$	-	25	60	mA
SVRR	supply voltage ripple rejection	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=2 \mathrm{~V}$	60	70	-	dB
$\mathrm{V}_{\text {drop }}$	drop-out voltage	$\begin{aligned} & \hline \mathrm{I}_{\text {REG1 }}=550 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{P}}=9.5 \mathrm{~V} ; \text { note } 7 \end{aligned}$	-	0.4	0.7	V
$\mathrm{l}_{\text {lim }}$	current limit	$\mathrm{V}_{\mathrm{O}(\mathrm{REG} 1)}>8.5 \mathrm{~V}$; note 8	0.65	1.2	-	A
I_{sc}	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega$; note 9	250	800	-	mA

Multiple voltage regulator with switch and ignition buffers

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Regulator 2 ($\mathrm{I}_{\text {REG2 }}=5 \mathrm{~mA}$ unless otherwise specified)						
$\mathrm{V}_{\text {O(REG2) }}$	output voltage	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 }} \leq 300 \mathrm{~mA}$	4.75	5.0	5.25	V
		$8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	4.75	5.0	5.25	V
		$\begin{aligned} & 18 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 50 \mathrm{~V} ; \\ & \mathrm{I}_{\text {REG2 }} \leq 150 \mathrm{~mA} \end{aligned}$	4.75	5.0	5.25	V
$\Delta \mathrm{V}_{\text {line }}$	line regulation	$6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	-	2	50	mV
		$6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 50 \mathrm{~V}$	-	15	75	mV
$\Delta \mathrm{V}_{\text {load }}$	load regulation	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 }} \leq 150 \mathrm{~mA}$	-	20	50	mV
		$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG2 }} \leq 300 \mathrm{~mA}$	-	-	100	mV
SVRR	supply voltage ripple rejection	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=2 \mathrm{~V}$	60	70	-	dB
$\mathrm{V}_{\text {drop }}$	drop-out voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{REG} 2}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{P}}=4.75 \mathrm{~V} ; \text { note } 7 \end{aligned}$	-	0.4	0.6	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{REG} 2}=200 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{P}}=5.75 \mathrm{~V} ; \text { note } 7 \end{aligned}$	-	0.8	1.2	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{REG} 2}=100 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{BU}}=4.75 \mathrm{~V} \text {; note } 10 \end{aligned}$	-	0.2	0.5	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{REG} 2}=200 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{BU}}=5.75 \mathrm{~V} \text {; note } 10 \end{aligned}$	-	0.8	1.0	V
$\mathrm{l}_{\text {lim }}$	current limit	$\mathrm{V}_{\mathrm{O}(\mathrm{REG} 2)}>4.5 \mathrm{~V}$; note 8	0.32	0.37	-	A
I_{sc}	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega$; note 9	20	100	-	mA

Regulator 3 ($\mathrm{I}_{\mathrm{REG} 3}=5 \mathrm{~mA}$ unless otherwise specified)

$\mathrm{V}_{\text {(off) }}$	output voltage off		-	1	400	mV
$\mathrm{V}_{\text {O(REG3) }}$	output voltage	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG3 }} \leq 750 \mathrm{~mA}$	4.75	5.0	5.25	V
		$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	4.75	5.0	5.25	V
$\Delta \mathrm{V}_{\text {line }}$	line regulation	$7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{P}} \leq 18 \mathrm{~V}$	-	2	50	mV
$\Delta \mathrm{V}_{\text {load }}$	load regulation	$1 \mathrm{~mA} \leq \mathrm{I}_{\text {REG } 3} \leq 750 \mathrm{~mA}$	-	20	100	mV
I_{q}	quiescent current	$\mathrm{I}_{\text {REG3 }}=750 \mathrm{~mA}$	-	19	45	mA
SVRR	supply voltage ripple rejection	$\mathrm{f}_{\mathrm{i}}=3 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=2 \mathrm{~V}$	60	70	-	dB
$\mathrm{V}_{\text {drop }}$	drop-out voltage	$\begin{aligned} & \mathrm{I}_{\text {REG3 }}=500 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{P}}=5.75 \mathrm{~V} ; \text { note } 7 \end{aligned}$	-	1	1.5	V
$\mathrm{l}_{\text {lim }}$	current limit	$\mathrm{V}_{\mathrm{O}(\mathrm{REG} 3)}>4.5 \mathrm{~V}$; note 8	0.80	0.90	-	A
I_{sc}	short-circuit current	$\mathrm{R}_{\mathrm{L}} \leq 0.5 \Omega$; note 9	100	400	-	mA

Power switch

drop	drop-out voltage	$\mathrm{I}_{\mathrm{SW}}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{P}}=13.5 \mathrm{~V} ;$ note 11	-	0.45	0.70	V
	$\mathrm{I}_{\mathrm{SW}}=1.8 \mathrm{~A} ; \mathrm{V}_{\mathrm{P}}=13.5 \mathrm{~V} ;$ note 11	-	1.0	1.8	V	
	continuous current	$\mathrm{V}_{\mathrm{P}}=16 \mathrm{~V} ; \mathrm{V}_{\mathrm{SW}}=13.5 \mathrm{~V}$	1.8	2.0	-	A
$\mathrm{V}_{\text {clamp }}$	clamping voltage	$\mathrm{V}_{\mathrm{P}} \geq 17 \mathrm{~V}$	13.5	15.0	16.0	V

Multiple voltage regulator with switch and ignition buffers

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I_{M}	peak current	$\begin{aligned} & \hline V_{P}=17 \mathrm{~V} ; \\ & \text { notes } 6,12,13 \end{aligned}$	3	-	-	A
V_{fb}	flyback voltage behaviour	$\mathrm{I}_{\text {SW }}=-100 \mathrm{~mA}$	-	$\mathrm{V}_{\mathrm{P}}+3$	22	V
I_{sc}	short-circuit current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{P}}=14.4 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{SW}}<1.2 \mathrm{~V} ; \text { note } 13 \end{aligned}$	-	0.8	-	A
Backup switch						
$\mathrm{I}_{\text {dc }}$	continuous current		0.3	0.35	-	A
$\mathrm{V}_{\text {clamp }}$	clamping voltage	$V_{P} \geq 16.7 \mathrm{~V}$	-	-	16	V
I_{r}	reverse current	$\mathrm{V}_{\mathrm{P}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{BU}}=12.4 \mathrm{~V}$	-	-	-900	$\mu \mathrm{A}$

Schmitt trigger for enable input of ignition 1

$\mathrm{V}_{\mathrm{th}(r)}$	rising threshold voltage of ignition 1 input	2.75	3.25	3.75	V	
$\mathrm{~V}_{\text {th(f) }}$	falling threshold voltage of ignition 1 input		0.8	-	1.3	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage		1.5	-	-	V
I_{LI}	input leakage current	$\mathrm{V}_{\text {IGN1IN }}=5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{I} \text { (clamp) }}$	input clamping current	$\mathrm{V}_{\text {IGN1IN }}>50 \mathrm{~V}$	-	-	50	mA
$\mathrm{~V}_{\mathrm{IH} \text { (clamp) }}$	HIGH-level input clamping voltage		V_{P}	-	50	V
$\mathrm{~V}_{\mathrm{IL}(\text { clamp })}$	LOW-level input clamping voltage		-0.6	-	0	V

Schmitt trigger for power supply of ignition 1

$\mathrm{V}_{\text {th(r) }}$	rising threshold voltage		6.5	7.0	7.5	V
$\mathrm{~V}_{\text {th(f) }}$	falling threshold voltage	note 14	4.0	4.5	5.0	V

Ignition 1 buffer						
V_{OL}	LOW-level output voltage	$\mathrm{I}_{\text {IGN1OUT }}=0 \mathrm{~mA}$	0	0.2	0.8	V
V_{OH}	HIGH-level output voltage	$\mathrm{I}_{\text {IGN1OUT }}=0 \mathrm{~mA}$	4.5	5.0	5.25	V
$\mathrm{IOL}^{\text {l }}$	LOW-level output current	$\mathrm{V}_{\text {IGN1OUT }} \leq 0.8 \mathrm{~V}$	0.45	0.8	-	mA
Lo	output leakage current	$\begin{aligned} & \mathrm{V}_{\text {IGN1OUT }}=5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IGN1IN }}=0 \mathrm{~V} \\ & \hline \end{aligned}$	-	-	1.0	$\mu \mathrm{A}$
tpLH	LOW-to-HIGH propagation time	$V_{\text {IGNiIN }}$ falling from 3.75 to 0.8 V	-	-	500	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PHL }}$	HIGH-to-LOW propagation time	$\mathrm{V}_{\text {IGN1IN }}$ rising from 0.8 to 3.75 V	-	-	500	$\mu \mathrm{S}$

Schmitt trigger for enable input of ignition 2

$\mathrm{V}_{\text {th(r) }}$	rising threshold voltage of ignition 2 input	$\mathrm{V}_{\mathrm{P}}>3.5 \mathrm{~V}$	1.9	2.2	2.5	V
$\mathrm{~V}_{\text {th(f) }}$	falling threshold voltage of ignition 2 input	$\mathrm{V}_{\mathrm{P}}>3.5 \mathrm{~V}$	1.7	2.0	2.3	V
$\mathrm{~V}_{\text {hys }}$	hysteresis voltage	$\mathrm{V}_{\mathrm{P}}>3.5 \mathrm{~V}$	0.1	0.2	0.5	V
I_{LI}	input leakage current	$\mathrm{V}_{\text {IGN2IN }}=5 \mathrm{~V}$	-	-	1.0	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {(clamp) }}$	input clamp current	$\mathrm{V}_{\text {IGN2IN }}>50 \mathrm{~V}$	-	-	50	mA

Multiple voltage regulator with switch and ignition buffers

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\mathrm{IH} \text { (clamp) }}$	HIGH-level input clamping voltage		V_{P}	-	50	V
$\mathrm{V}_{\text {IL(clamp }}$	LOW-level input clamping voltage		-0.6	-	0	V
Ignition 2 buffer						
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage	$\mathrm{I}_{\text {IGN2OUT }}=0 \mathrm{~mA}$	0	0.2	0.8	V
V_{OH}	HIGH-level output voltage	$\mathrm{I}_{\text {IGN2OUT }}=0 \mathrm{~mA}$	4.5	5.0	5.25	V
l_{OL}	LOW-level output current	$\mathrm{V}_{\text {IGN2OUT }} \leq 0.8 \mathrm{~V}$	0.45	0.8	-	mA
IOH	HIGH-level output current	$\mathrm{V}_{\text {IGN2OUT }} \geq 4.5 \mathrm{~V}$	-0.45	-2.0	-	mA
ILO	output leakage current (source)	$\begin{aligned} & \mathrm{V}_{\text {IGN2OUT }}=5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {IGN2IN }}=5 \mathrm{~V} \end{aligned}$	-	-	1.0	$\mu \mathrm{A}$
$\mathrm{t}_{\text {PLH }}$	LOW-to-HIGH propagation time	$\mathrm{V}_{\text {IGN2IN }}$ rising from 1.7 to 2.5 V	-	-	500	$\mu \mathrm{S}$
$\mathrm{t}_{\text {PHL }}$	HIGH-to-LOW propagation time	$\mathrm{V}_{\text {IGN2IN }}$ falling from 2.5 to 1.7 V	-	-	500	$\mu \mathrm{S}$

Notes

1. Minimum operating voltage, only if V_{P} has exceeded 6.5 V .
2. The quiescent current is measured in the standby mode with pins EN1, EN2 and ENSW connected to ground and $R_{\text {L(REG2) }}=\infty$ (see Fig.8).
3. The voltage of the regulator drops as a result of a V_{P} drop.
4. The rise and fall times are measured with a $10 \mathrm{k} \Omega$ pull-up resistor and a 50 pF load capacitor.
5. The delay time depends on the value of the capacitor connected to pin $\mathrm{C}_{\text {REs }}$:
$\mathrm{t}_{\mathrm{d}(\text { RES })}=\frac{\mathrm{C}}{\mathrm{I}_{\mathrm{ch}}} \times \mathrm{V}_{\mathrm{th}(\mathrm{r})(\text { RES })}=\mathrm{C} \times\left(750 \times 10^{3}\right)$
6. The delay time depends on the value of the capacitor connected to pin $\mathrm{C}_{\text {REs }}$:
$\mathrm{t}_{\mathrm{d}(\mathrm{RES})}=\frac{\mathrm{C}}{\mathrm{I}_{\mathrm{ch}}} \times\left(\mathrm{V}_{\mathrm{O}(\text { REG2 })}-3.5\right)=\mathrm{C} \times\left(375 \times 10^{3}\right)[\mathrm{s}]$
7. The drop-out voltage of regulators 1,2 and 3 is measured between pins V_{P} and REGn.
8. At current limit, $\mathrm{l}_{\text {lim }}$ is held constant (see Fig. 6 for the behaviour of $\mathrm{I}_{\text {lim }}$).
9. The foldback current protection limits the dissipated power at short-circuit (see Fig.6).
10. The drop-out voltage is measured between pins BU and REG2.
11. The drop-out voltage of the power switch is measured between pins V_{P} and SW .
12. The maximum output current of the switch is limited to 1.8 A when the supply voltage exceeds 18 V . A test mode is built in. The delay time of the switch is disabled when a voltage of $\mathrm{V}_{\mathrm{P}}+1 \mathrm{~V}$ is applied to the switch-enable input.
13. At short-circuit, I_{sc} of the power switch is held constant to a lower value than the continuous current after a delay of at least 10 ms . A test-mode is built in. The delay time of the switch is disabled when a voltage of $\mathrm{V}_{\mathrm{P}}+1 \mathrm{~V}$ is applied to the switch-enable input.
14. $\mathrm{V}_{\text {IGN1OUT }}=\mathrm{LOW}$ for $\mathrm{V}_{\text {IGN1IN }}>1.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{EN} 1}>1.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{EN} 3}>1.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{ENSW}}>1.3 \mathrm{~V}$.

Multiple voltage regulator with switch and ignition buffers

a. Regulator 1.

b. Regulator 2.

c. Regulator 3 .

Fig. 6 Foldback current protection of the regulators.

Fig. 7 Current protection of the power switch.

Multiple voltage regulator with switch and ignition buffers

TEST AND APPLICATION INFORMATION
Test information

Fig. 8 Test circuit.

Multiple voltage regulator with switch and ignition buffers

Application information

Noise

Table 1 Noise figures

REGULATOR	NOISE FIGURE $(\mu \mathbf{V})^{(1)}$		
	$\mathbf{C}_{\mathbf{o}}=\mathbf{1 0} \boldsymbol{\mu} \mathbf{F}$	$\mathbf{C}_{\mathbf{o}}=\mathbf{4 7} \boldsymbol{\mu \mathbf { F }}$	$\mathbf{C}_{\mathbf{o}}=\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{F}$
1	170	130	110
2	180	120	100
3	100	70	65

Note

1. Measured at a bandwidth of 200 kHz .

The noise on the supply line depends on the value of the supply capacitor and is caused by a current noise (the output noise of the regulators is translated to a current noise by the output capacitors). When a high frequency capacitor of 220 nF in parallel with an electrolytic capacitor of $100 \mu \mathrm{~F}$ is connected directly to pins 1 and 14 (supply and ground), the noise is minimal.

Stability

The regulators are stabilized with the externally connected output capacitors.

Fig. 9 Curve for selecting the value of output capacitor for regulators 1 and 3 .

The output capacitors can be selected by using the graphs of Figs 9 and 10. When an electrolytic capacitor is used, the temperature behaviour of this output capacitor can cause oscillations at a low temperature. The two examples below show how an output capacitor value is selected.

Example 1

Regulators 1 and 3 are stabilized with an electrolytic output capacitor of $220 \mu \mathrm{~F}(\mathrm{ESR}=0.15 \Omega)$. At
$\mathrm{T}_{\text {amb }}=-30^{\circ} \mathrm{C}$, the capacitor value is decreased to $73 \mu \mathrm{~F}$ and the ESR is increased to 1.1Ω. The regulator remains stable at $\mathrm{T}_{\mathrm{amb}}=-30^{\circ} \mathrm{C}$.

Example 2

Regulator 2 is stabilized with a $10 \mu \mathrm{~F}$ electrolytic capacitor (ESR = 3Ω). At $\mathrm{T}_{\mathrm{amb}}=-30^{\circ} \mathrm{C}$, the capacitor value is decreased to $3 \mu \mathrm{~F}$ and the ESR is increased to 23.1Ω. Using Fig.10, the regulator will be unstable at $\mathrm{T}_{\mathrm{amb}}=-30^{\circ} \mathrm{C}$.

Solution

To avoid problems with stability at low temperatures, the use of tantalum capacitors is recommended. Use a tantalum capacitor of $10 \mu \mathrm{~F}$ or a larger electrolytic capacitor.

Fig. 10 Curve for selecting the value of output capacitor for regulator 2.

Multiple voltage regulator with switch and ignition buffers

PACKAGE OUTLINE

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	\mathbf{d}	$\mathbf{D}_{\mathbf{h}}$	$\mathbf{E}^{\mathbf{1})}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{e}_{\mathbf{2}}$	$\mathbf{E}_{\mathbf{h}}$	\mathbf{j}	\mathbf{L}	$\mathbf{L}_{\mathbf{3}}$	\mathbf{m}	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{x}	$\mathbf{Z}^{(\mathbf{1})}$
mm	17.0	4.6	0.75	0.48	24.0	20.0	10	12.2	2.54	1.27	5.08	6	3.4	12.4	2.4	4.3	2.1	0.8	0.4	0.03	2.00
	15.5	4.4	0.60	0.38	23.6	19.6	10	11.8	1.45												

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT475-1					$-97-05-20$	

Multiple voltage regulator with switch and ignition buffers

SOLDERING

Introduction to soldering through-hole mount packages

This text gives a brief insight to wave, dip and manual soldering. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

Wave soldering is the preferred method for mounting of through-hole mount IC packages on a printed-circuit board.

Soldering by dipping or by solder wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joints for more than 5 seconds.

The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\text {stg(max) }}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

Suitability of through-hole mount IC packages for dipping and wave soldering methods

PACKAGE	SOLDERING METHOD	
	DIPPING	WAVE
DBS, DIP, HDIP, SDIP, SIL	suitable	suitable $^{(1)}$

Note

1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.

Multiple voltage regulator with switch and ignition buffers

DATA SHEET STATUS

DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS	
Objective data	Development	DEFINITIONS
Preliminary data	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.	
Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without	
notice, in order to improve the design and supply the best possible		
product.		

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Multiple voltage regulator with switch and ignition buffers

NOTES

Multiple voltage regulator with switch and ignition buffers

NOTES

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 29704 8141, Fax. +61 297048139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160101 1248, Fax. +431601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 17220 0733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359268 9211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800234 7381, Fax. +1 8009430087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +453329 3333, Fax. +4533293905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615 800, Fax. +35896158 0920
France: 7-9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex, Tel. +33 14728 6600, Fax. +33147286638
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A,
Tel: +36 1382 1700, Fax: +36 13821800
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, J. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 217940040 ext. 2501, Fax. +62 217940080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23-20052 MONZA (MI), Tel. +39 039203 6838, Fax +39 0392036800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 33740 5130, Fax. +81 337405057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800234 7381, Fax +9-5 8009430087
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +47 22748341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: AI.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 225710 000, Fax. +48 225710001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11471 5401, Fax. +27 114715398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93301 6312, Fax. +34 933014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 85985 2000, Fax. +46 859852745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +4114882741 Fax. +4114883263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2451, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2361 7910, Fax. +66 23983447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 2881260 Umraniye, ISTANBUL, Tel. +90 216522 1500, Fax. +90 2165221813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208730 5000, Fax. +44 2087548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800234 7381, Fax. +18009430087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 113341 299, Fax.+381 113342553

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,
The Netherlands, Fax. +31 402724825

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

