

HD74SSTV16859

1:2 13-bit SSTL_2 Registered Buffer

REJ03D0832-0900 (Previous: ADE-205-337H) Rev.9.00 Apr 07, 2006

Description

The HD74SSTV16859 is a 1:2 13-bit registered buffer designed for 2.3 V to 2.7 V Vcc operation and LVCMOS reset (RESET) input / SSTL_2 data (D) inputs and CLK input.

Data flow from D to QA, QB is controlled by differential clock pins (CLK, $\overline{\text{CLK}}$) and the $\overline{\text{RESET}}$. Data is triggered on the positive edge of the positive clock (CLK), and the negative clock ($\overline{\text{CLK}}$) must be used to maintain noise margins. When $\overline{\text{RESET}}$ is low, all registers are reset and all outputs are low.

To ensure defined outputs from the register before a stable clock has been supplied, **RESET** must be held in the low state during power up.

Features

- Supports LVCMOS reset (RESET) input / SSTL_2 data (D) inputs and CLK input
- Differential SSTL_2 (Stub series terminated logic) CLK signal
- Flow through architecture optimizes PCB layout
- Ordering Information

Part Name	Package Type	Package Code (Previous code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74SSTV16859TEL	TSSOP-64 pin	PTSP0064KA-A (TTP-64DV)	Т	EL (1,000 pcs / Reel)

Function Table

Inputs				Out	puts
RESET	CLK	CLK	D	QA	QB
L	X	X	Х	L	L
Н	\rightarrow	1	Н	Н	Н
Н	\downarrow	↑	L	L	L
Н	L or H	H or L	Х	Q_0^{*1}	Q_0^{*1}

H: High level

L: Low level

X: Immaterial

 \uparrow : Low to high transition

 \downarrow : High to low transition

Note: 1. Output level before the indicated steady state input conditions were established.

Pin Arrangement

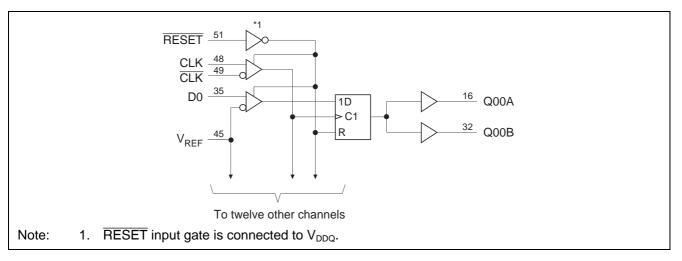
Q12A 1	64	V _{DDQ}
Q11A 2		GND
Q10A 3		D12
Q09A 4		D11
Q08A 5		Vcc
V _{DDQ} 6		VDDQ
GND 7		GND
Q07A 8	57	D10
Q06A 9	56	D9
Q05A 10	55	D8
Q04A 11	54	GND
Q03A 12	53	D7
Q02A 13	52	D6
Q01A 14		RESET
GND 15		GND
Q00A 16		CLK
Q12B 17		CLK
V _{DDQ} 18		VDDQ
Q11B 19		Vcc
Q10B 20		VREF
Q09B 21		D5
Q08B 22		GND
Q07B 23		D4
Q06B 24		D3
Q05B 25		D2
GND 26		GND
VDDQ 27	38	V _{DDQ}
Q04B 28		V _{CC}
Q03B 29 Q02B 30		D1 D0
Q01B 31		GND
Q00B 32		VDDQ
	33	VDDQ
	(Top view)	

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V_{CC} or V_{DDQ}	-0.5 to 3.6	V	
Input voltage ^{*1}	VI	–0.5 to V _{DDQ} +0.5	V	
Output voltage ^{*1}	Vo	–0.5 to V _{DDQ} +0.5	V	
Input clamp current	I _{IK}	±50	mA	$V_{I} < 0 \text{ or } V_{I} > V_{CC}$
Output clamp current	Ι _{ΟΚ}	±50	mA	$V_{\rm O}$ < 0 or $V_{\rm O}$ > $V_{\rm DDQ}$
Continuous output current	Ι _Ο	±50	mA	$V_0 = 0$ to V_{DDQ}
V_{CC} , V_{DDQ} or GND current / pin	I_{CC} , I_{DDQ} or I_{GND}	±100	mA	
Maximum power dissipation at Ta = 55°C (in still air)	P _T	1	W	TSSOP
Storage temperature	Tstg	-65 to +150	°C	

Notes: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.


Recommended Operating Conditions

	Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage		V _{cc}	V _{DDQ}	2.5	2.7	v	
Output supply	/ voltage	V _{DDQ}	2.3	2.5	2.7	V	
Reference vo	Itage	V _{REF}	1.15	1.25	1.35	V	$V_{REF} = 0.5 \times V_{DDQ}$
Termination v	voltage	V _{TT}	V _{REF} –40 mV	V _{REF}	V _{REF} +40 mV	V	
Input voltage		VI	0		V _{cc}	V	
AC high level	input voltage	V _{IH}	V _{REF} +310 mV	- P		V	D
AC low level	input voltage	VIL			V _{REF} -310 mV	V	D
DC high level	input voltage	V _{IH}	V _{REF} +150 mV	-	—	V	D
DC low level	input voltage	VIL		- N	V _{REF} -150 mV	V	D
High level inp	out voltage	VIH	1.7	_	V _{DDQ} +0.3	V	RESET
Low level inp	ut voltage	VIL	-0.3	_	0.7	V	RESET
Differential	(Common mode range)	V _{CMR}	0.97	_	1.53	V	CLK, CLK
input voltage	(Minimum peak to peak input)	V _{PP}	360	_	—	mV	CLK, CLK
High level ou	tput current	ЮН	—		-20	mA	
Low level output current		l _{ol} r	—	—	20	mA	
Operating ten	nperature	Та	0		70	°C	

Note: The RESET input of the device must be held at V_{DDQ} or GND to ensure proper device operation. The differential inputs must not be floating, unless RESET is low.

Logic Diagram

Electrical Characteristics

		r					
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	Test Conditions
Input diode voltage	VIK	2.3	—		-1.2	V	I _{IN} = -18 mA
Output voltage	V _{OH}	2.3 to 2.7	V _{CC} -0.2			V	I _{он} = –100 µА
		2.3	1.95		VDDQ		I _{он} = –16 mA
	V _{OL}	2.3 to 2.7			0.2		I _{OL} = 100 μA
		2.3	0	Y	0.35		I _{OL} = 16 mA
Input current (All inputs		2.7			±5	μA	V _{IN} = 2.7 V or 0
Quiescent supply current	I _{CC} ^{*2}	2.7	G		45	mA	$V_{IN} = V_{IH(AC)} \text{ or } V_{IL(AC)}, \ I_O = 0$
Standby current	I _{CC (stdy)}	2.7		9	10	μΑ	RESET = GND
Dynamic operating clock o	nly I _{CCD} ^{*2}	2.7		I	90	μA/	$\overline{\text{RESET}} = V_{CC},$
		15				clock	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$,
						MHz	CLK and CLK switching 50%
			25				duty cycle
Dynamic operating per eac	h I _{CCD} ^{*2}	2.7		_	20	μA/	$\overline{\text{RESET}} = V_{CC},$
data input						clock	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$,
						MHz/	CLK and $\overline{\text{CLK}}$ switching 50%
						data	duty cycle. One data input
						input	switching at half clock
							frequency, 50% duty cycle.
Output high ^{*3}	гон	2.3 to 2.7	7	—	22 *4	Ω	I _{OH} = -20 mA
Output low *3	r _{oL} ▼	2.3 to 2.7	7		22 *4	Ω	I _{OL} = 20 mA
∣r _{OH} – r _{OL} ∣ each	r _{O(Δ)}	2.5			4	Ω	I _O = 20 mA, Ta = 25°C
separate bit *3							
Input Data inpu	ts C _{IN}	2.5 ^{*1}	2.5	-	3.5	pF	$V_I = V_{REF} \pm 310 \text{ mV}$
capacitance CLK and C	ĪK		2.5	_	3.5		V_{CMR} = 1.25 V, V_{PP} = 360 mV
RESET			_	3.0		1	$V_I = V_{CC}$ or GND

Notes: 1. All typical values are at V_{CC} = 2.5 V, Ta = 25°C.

2. Total I_{CC} (max) = I_{CC} + {I_{CCD} (clock)×f(clock)} + {I_{CCD} (Data)×1/2f(clock)×13}

3. This is effective in the case that it did terminate by resistance.

4. See figure. 1, 2

Switching Characteristics

	ltem	Symbol	V _{CC} = 2.	5 ± 0.2 V	Unit	Test Condition
	item	Symbol	Min	Max	Unit	Test condition
Clock frequenc	y ^{*1}	f _{clock}	—	200	MHz	
Setup time	Fast slew rate *4, 6	t _{su}	0.75		ns	Data before CLK↑, CLK↓
	Slow slew rate *5, 6		0.9	_		
Hold time	Fast slew rate *4, 6	t _h	0.75	_	ns	Data after CLK↑, CLK↓
	Slow slew rate *5, 6		0.9	_		
Differential inpu	uts active time	t _{act}	22	—	ns	Data inputs must be low after RESET
						high.
Differential inpu	uts inactive time	t _{inact}	22		ns	Data and clock inputs must be held at
						valid levels (not floating) after RESET
						low.
Pulse width		t _w	2.5	_	ns	CLK, CLK "H" or "L"
Output slew *3		t _{SL}	1	4	volt/ns	

$(C_L = 30 \text{ pF}, R_L = 50 \Omega, V_{REF} = V_{TT} = V_{DDQ} \times 0.5)$

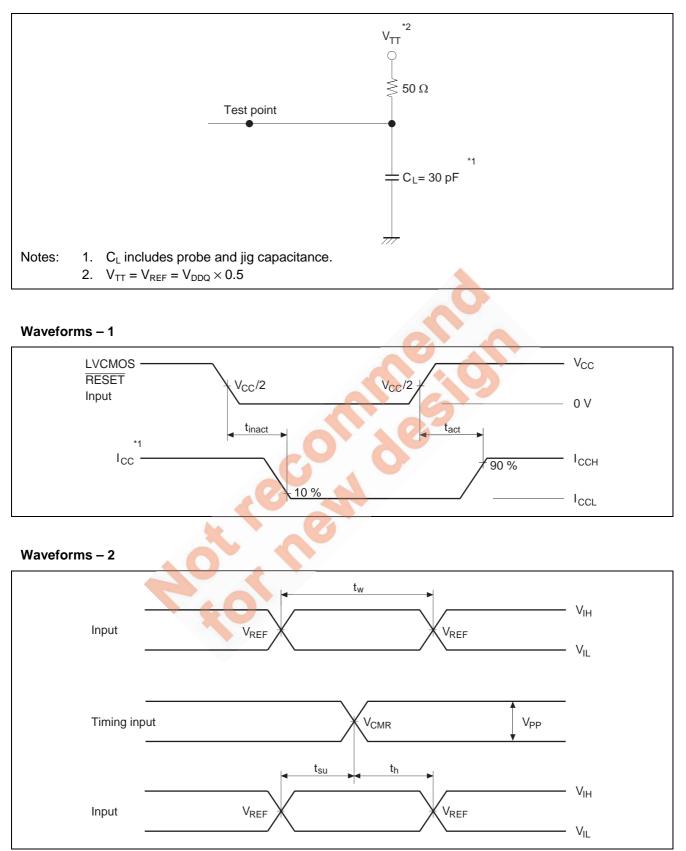
Item	Symbol	Vc	_c = 2.5 ± 0.2	2 V	Unit	FROM	то
Item	Symbol	Min	Тур	Max 🧹		(Input)	(Output)
Maximum clock frequency	f _{max}	200			MHz		
Propagation delay time ^{*2}	t _{PLH,} t _{PHL}	1.1	_	2.8	ns	CLK, CLK	QA, QB
	t _{PHL}	_		5.0		RESET	QA, QB

Notes: 1. Although the clock is differential, all timing is relative to CLK going high and CLK going low.

2. This timing relationship is specified into test load (see waveforms -3, 4) with all of the outputs switching.

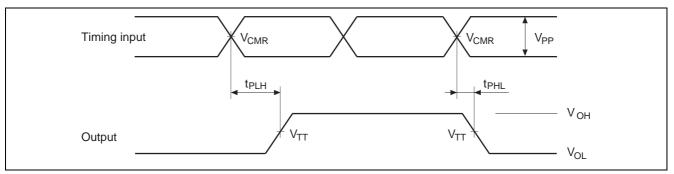
3. Assumes into an equivalent, distributed load to the address net structure defined in the application information provided in this specification.

4. For data signal input slew rate \geq 1 V/ns.

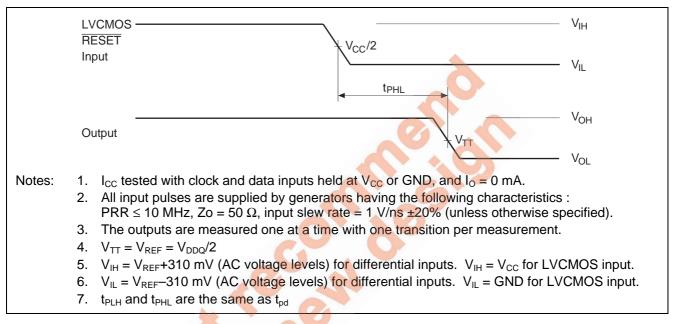

5. For data signal input slew rate ≥ 0.5 V/ns and < 1 V/ns.

Yor U

6. CLK, $\overline{\text{CLK}}$ signals input slew rates are ≥ 1 V/ns.



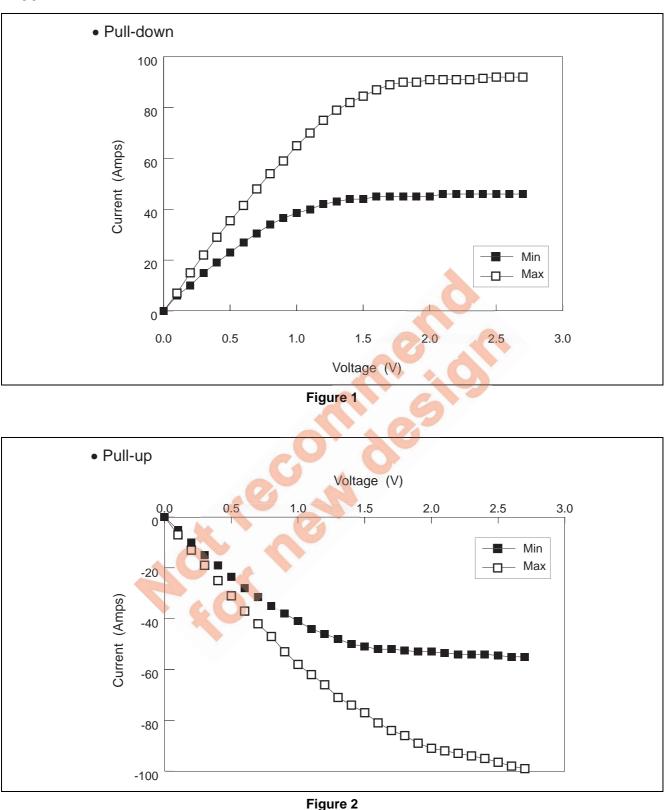
Test Circuit

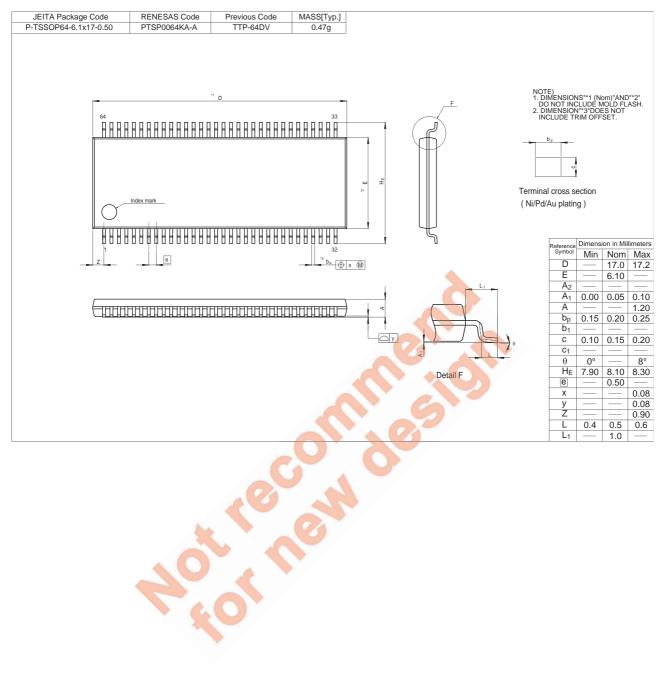


Waveforms - 3

Waveforms – 4

Application Data




Figure 2

Curve Data

		ll-down	Pull-up		
Voltage (V)	l (mA)	l (mA)	l (mA)	l (mA)	
	Min	Max	Min	Max	
0.0	0	0	0	0	
0.1	6	7	-5	-7	
0.2	10	15	-10	-13	
0.3	15	22	-15	-19	
0.4	19	29	-19	-25	
0.5	23	35.5	-23.5	-31	
0.6	27	41.5	-28	-37	
0.7	30.5	48	-31.5	-42	
0.8	34	54	-35	-47	
0.9	36.5	59	-38	-53	
1.0	38.5	65	-41	-58	
1.1	40	70	<u>4</u> 4	-62	
1.2	42	75	-46	-66	
1.3	43	79	-48	-71	
1.4	44	82	-50	-74	
1.5	44	84.5	-51	-77	
1.6	45	87	-52	-81	
1.7	45	89	-52	-84	
1.8	45	90	-52.5	-86	
1.9	45	90	-53	-89	
2.0	45	91	-53	-91	
2.1	46	91	-53.5	-92	
2.2	46	91	-54	-93	
2.3	46	91	-54	-94	
2.4	46	91.5	-54	-95	
2.5	46	92	-54.5	-96.5	
2.6	46	92	-55	-98	
2.7	46	92	-55	-99	
	200				

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonne page (http://www.renessas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510