General Description

The MAX9611/MAX9612 are high-side current-sense amplifiers with an integrated 12-bit ADC and a gain block that can be configured either as an op amp or comparator, making these devices ideal for a number of industrial and automotive applications.

The high-side, current-sense amplifiers operate over a wide 0 V to 60 V input common-mode voltage range. The programmable full-scale voltage $(440 \mathrm{mV}, 110 \mathrm{mV}$, and 55 mV) of these amplifiers offers wide dynamic range, accurate current measurement, and application flexibility in choosing sense resistor values. A choice of either an internal op amp or a comparator is provided to the user. The internal amplifier can be used to limit the inrush current or to create a current source in a closed-loop system. The comparator can be used to monitor fault events for fast response.
An I2C controlled 12-bit, 500sps analog-to-digital converter (ADC) can be used to read the voltage across the sense resistor (VSENSE), the input common-mode voltage (VRSCM), op-amp/comparator output (VOUT), op-amp/ comparator reference voltage (VSET), and internal die temperature. The ${ }^{12} \mathrm{C}$ bus is compatible with 1.8 V and 3.3V logic, allowing modern microcontrollers to interface to it.

The MAX9611 features a noninverting input-to-output configuration while the MAX9612 features an inverting input-to-output configuration.
The MAX9611/MAX9612 operate with a 2.7 V to 5.5 V supply voltage range, are fully specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range, and are available in a $3 \mathrm{~mm} \times 5 \mathrm{~mm}, 10-$ pin $\mu \mathrm{MAX}{ }^{\circledR}$ package.

Applications

Hybrid Automotive Power Supplies
Server Backplanes
Base-Station PA Control
Base-Station Feeder Cable Bias-T
Telecom Cards
Battery-Operated Equipment

Features

- 0 V to +60 V Input Common-Mode Voltage Range
- 2.7V to 5.5V Power-Supply Range, Compatible with 1.8 V and 3.3 V Logic
- 5 A A Software Shutdown Current
- Integrated 12-Bit ADC
- $13 \mu \mathrm{~V}$ Current-Sense ADC Resolution
- $500 \mu \mathrm{~V}$ (max) Current-Sense ADC Input Offset Voltage
- 0.5\% (max) Current-Sense ADC Gain Error
- I2C Bus with 16 Addresses
- Small, 3mm x 5mm 10-Pin μ MAX Package
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range

Ordering Information/ Selector Guide

PART	OUTPUT	PIN-PACKAGE
MAX9611AUB +	Noninverting	$10 \mu \mathrm{MAX}$
MAX9612AUB +	Inverting	$10 \mu \mathrm{MAX}$

Note: All devices operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
Typical Application Circuit

Functional Diagrams appear at end of data sheet.

High-Side, Current-Sense Amplifiers with
 12-Bit ADC and Op Amp/Comparator

ABSOLUTE MAXIMUM RATINGS

$V_{C C}$ to GND. \qquad .. -0.3 V to +6 V RS+, RS-, OUT to GND \qquad $-0.3 V$ to +65 V
Differential Input Voltage, RS+ - RS- $\pm 65 \mathrm{~V}$
All Other Pins to GND \qquad -0.3 V to +6 V
OUT Short-Circuit to GND \qquad Continuous
Continuous Current into Any Pin \qquad $\pm 20 \mathrm{~mA}$
Continuous Power Dissipation ($\mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
10-Pin $\mu \mathrm{MAX}$ (derate $8.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). \qquad .707 mW
μ MAX Package Junction-to-Ambient
Thermal Resistance ($\theta \mathrm{JA}$) (Note 1) \qquad $. .113^{\circ} \mathrm{C} / \mathrm{W}$ Operating Temperature Range $\ldots . . \ldots \ldots ~-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature ... $+150^{\circ} \mathrm{C}$ Storage Temperature Range............................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$ Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal consideration, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CURRENT-SENSE AMPLIFIER DC CHARACTERISTICS						
Input Common-Mode Range		Guaranteed by CMRR	0		60	V
Input Offset Voltage ADC Path (Note 3)	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, gain $=8 \mathrm{x}$		0.045	0.5	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, gain $=8 \mathrm{x}$			2	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, gain $=4 \mathrm{x}$		0.045	0.5	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, gain $=4 \mathrm{x}$			2	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, gain $=1 \mathrm{x}$		0.1	0.8	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, gain $=1 \mathrm{x}$			2.6	
Gain Error (Note 3)	GE	$\mathrm{TA}^{\prime}=+25^{\circ} \mathrm{C}$, gain $=8 \mathrm{x}$		0.1	0.5	\%
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, gain $=8 \mathrm{x}$			1.8	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, gain $=8 \mathrm{x}$			2.5	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, gain $=4 \mathrm{x}$		0.4	1.7	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, gain $=4 \mathrm{x}$			3.1	
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, gain $=1 \mathrm{x}$		1	4	
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, gain $=1 \mathrm{x}$			4.7	
Differential Input Resistance	RINDM			300		$\mathrm{k} \Omega$
Common-Mode Input Resistance	Rincm			12		$\mathrm{M} \Omega$
Input Bias Current	IRS+, IRS-	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1	2	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			5	
Input Offset Current (Note 4)	(IRS+) - (IRS-)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	6	nA
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			6	

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {RS }}=\mathrm{V}_{\text {RS- }}=+12 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=\left(\mathrm{V}_{\mathrm{RS}}+-\mathrm{V}_{\mathrm{RS}}\right)=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & \text { VRS- }=0 \mathrm{~V} \text { to } 60 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Gain }=8 x, \\ & \text { VSENSE }=50 \mathrm{mV} \end{aligned}$	106	120		dB
			$\begin{aligned} & \text { Gain }=4 x, \\ & \text { VSENSE }=100 \mathrm{mV} \end{aligned}$	106	120		
			$\begin{aligned} & \text { Gain }=1 \mathrm{x}, \\ & \text { VSENSE }=400 \mathrm{mV} \end{aligned}$	100	120		
		$\begin{aligned} & \text { VRS- }=0 \mathrm{~V} \text { to } 60 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Gain 8 x , VSENSE $=50 \mathrm{mV}$	94			
			Gain 4x, VSENSE $=100 \mathrm{mV}$	94			
			Gain 1x, VSENSE $=400 \mathrm{mV}$	84			
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 5.5 V	$\begin{aligned} & \text { Gain }=8 x, \\ & \text { VSENSE }=50 \mathrm{mV} \end{aligned}$	57	72		dB
			$\begin{aligned} & \text { Gain }=4 x, \\ & \text { VSENSE }=100 \mathrm{mV} \end{aligned}$	56	67		
			$\begin{aligned} & \text { Gain }=1 x, \\ & \text { VSENSE }=400 \mathrm{mV} \end{aligned}$	48	57		
Full-Scale Sense Voltage	FS	Used in gain error measurement	Gain $=8 \mathrm{x}$		55		mV
			Gain $=4 x$		110		
			Gain $=1 \mathrm{x}$		440		
LSB Step Size	LSB	Gain $=8 \mathrm{x}$			13.44		$\mu \mathrm{V}$
		Gain $=4 x$			26.88		
		Gain $=1 \mathrm{x}$			107.50		
ANALOG PATH, CSA + AMPLIFIER/COMPARATOR							
Input Offset Voltage	Vos	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			0.350	4	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				10	
SET Input Bias Current	IB				1	50	nA
Maximum SET Input Voltage Range					1.126		V
Signal Bandwidth	BW	Gain $=1 \mathrm{x}, \mathrm{RS}-=11.6 \mathrm{~V}$			4		MHz
Gain Bandwidth	GBW				2.5		MHz
Propagation Delay	tPD	In comparator mode, 1	mV overdrive		1.5		$\mu \mathrm{s}$
Internal Hysteresis	VHYS	In comparator mode, n	nlatching		8		mV
Output Sink Current		Vout $=4 \mathrm{~V}$			20		mA
Output Leakage Current		VOUT $=36 \mathrm{~V}$			1.7	3	$\mu \mathrm{A}$
Output Voltage Low	VoL	ISINK $=8 \mathrm{~mA}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				1	V
		ISINK $=8 \mathrm{~mA}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			0.5	1.5	

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {RS }}=\mathrm{V}_{\text {RS }}=+12 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=\left(\mathrm{V}_{\text {RS }}-\mathrm{V}_{\text {RS-}}\right)=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
OUT VOLTAGE MEASUREMENT (VOUT)						
Full-Scale Input Voltage				57.3		V
LSB Step Size	LSB			14		mV
Gain Error	GE	$\begin{aligned} & \text { VRSCM }= \\ & \left(\text { VRS }^{2}-\text { VRS- }^{2} / 2\right. \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.8	6	\%
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		7	
Input Offset Voltage	Vosout	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		14	110	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			160	
COMMON-MODE VOLTAGE MEASUREMENT (VRSCM)						
Full-Scale Input Voltage				57.3		V
LSB Step Size	LSB			14		mV
Gain Error	GE	$\begin{aligned} & V_{\text {RSCM }}= \\ & \left(\text { VRS }^{+}-\text {VRS- }_{\text {R }} / 2\right. \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.3	6	\%
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		7	
Input Offset Voltage	Vosout	$\mathrm{TA}^{\prime}=+25^{\circ} \mathrm{C}$		14	80	mV
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			160	

SET VOLTAGE MEASUREMENT (VSET)

Full-Scale Input Voltage				1.10		V
LSB Step Size				268		$\mu \mathrm{V}$
Gain Error	GE	VRSCM $=$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.2	5	\%
		(VRS+ - $\mathrm{V}_{\text {RS }}$)/2	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		6	
Input Offset Voltage	Vosout	$\begin{array}{\|l} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \hline \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{array}$		0.3	10	mV
					14	
Integral Nonlinearity	INL			1		LSB
Differential Nonlinearity	DNL			0.2		LSB
TEMPERATURE MEASUREMENT						
Accuracy				0.48		${ }^{\circ} \mathrm{C}$
Typical Measurement Range				-40	+125	${ }^{\circ} \mathrm{C}$
LSB Step Size	LSB			0.48		${ }^{\circ} \mathrm{C}$

ANALOG-TO-DIGITAL CONVERTER

Resolution			12	Bit
Conversion Time			2	ms

SCLISDA LOGIC LEVELS

Input Voltage Low	V_{IL}	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	V	
Input Voltage High	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V	1.45	V
Input Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$		$0.05 \times$	
Input Leakage Current			$V_{C C}$	V

A1/A0 LOGIC LEVELS

Logic State 00-01 Threshold			$1 / 4 \times$ VCC	V
Logic State 01-10 Threshold			$1 / 2 \times$ VCC	V
Logic State 10-11 Threshold			$3 / 4 \times$ VCC	V
Input Leakage Current			1	200

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {RS }}=\mathrm{V}_{\text {RS- }}=+12 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=\left(\mathrm{V}_{\mathrm{RS}}+-\mathrm{V}_{\mathrm{RS}}\right)=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
POWER-SUPPLY CHARACTERISTICS					
Power-Supply Input Range	VCC	Guaranteed by PSRR	2.7	5.5	V
Quiescent Current	ICC		1.6	2.6	mA
Shutdown Current	ISHDN	No activity on SCL	5	10	$\mu \mathrm{A}$
$1^{2} \mathrm{C}$ TIMING CHARACTERISTICS (COMPATIBLE WITH SMBus)					
Serial-Clock Frequency	fSCL		0	400	kHz
Bus Free Time Between a STOP and a START Condition	tBUF		1.3		$\mu \mathrm{s}$
Hold Time, (Repeated) START Condition	tDH,STA		0.6		$\mu \mathrm{S}$
SCL Clock Low Period	tLow		1.3		$\mu \mathrm{s}$
SCL Clock High Period	tHIGH		0.6		$\mu \mathrm{s}$
Setup Time for a Repeated START Condition	tSU,STA		0.6		$\mu \mathrm{s}$
Data Hold Time	tDH,DAT		0	900	$\mu \mathrm{s}$
Data Setup Time	tSU,DAT		100		ns
SDA/SCL Receiving Rise Time	tR	(Note 5)	$20+0.1 C_{B}$	300	
SDA/SCL Receiving Fall Time	tF	(Note 5)	$20+0.1 C_{B}$	300	ns
SDA Transmitting Fall Time	tF	(Note 5)	$20+0.1 C B$	250	
STOP Condition Setup Time	tSU, STO		0.6		$\mu \mathrm{s}$
Bus Capacitance	CB			400	pF
Pulse Width of Spike Suppressed	tSP		50		ns

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Temperature limits are guaranteed by design.
Note 3: VOS and gain error of current-sense amplifier extrapolated from from a two-point measurement made at $\mathrm{V}_{\text {SENSE }}=\left(\mathrm{V}_{\text {RS }}+\right.$ VRS-) $=5 \mathrm{mV}$ to 50 mV in gain of $8 x, 5 \mathrm{mV}$ to 100 mV in gain of 4 x , and 10 mV to 400 mV in gain of $1 x$.
Note 4: Guaranteed by design.
Note 5: CB is in pF .
$I^{2} C$ Timing Diagram

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

RS- BIAS CURRENT vs. COMMON-MODE VOLTAGE

MAX9611 CSA OFFSET VOLTAGE
vs. COMMON-MODE VOLTAGE

TOTAL OFFSET VOLTAGE vs. COMMON-MODE VOLTAGE

TOTAL OFFSET VOLTAGE vs. SUPPLY VOLTAGE

RS+, RS- OFFSET CURRENT vs. COMMON-MODE VOLTAGE

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

Typical Operating Characteristics (continued)
$\left(V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

OUTPUT LOW VOLTAGE vs. OUTPUT SINK CURRENT

TOTAL GAIN ERROR
vs. COMMON-MODE VOLTAGE

SDA/SCL VoL
vs. SINKING CURRENT

OP-AMP GAIN vs. FREQUENCY
(SET TO OUT)

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

_ Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

TIME ($100 \mu \mathrm{~s} / \mathrm{div}$)

WATCHDOG LATCH RETRY MODE 111

TIME (4ms/div)

WATCHDOG LATCH MODE 111

WATCHDOG LATCH RETRY MODE 111

WATCHDOG LATCH MODE 111

WATCHDOG LATCH RETRY MODE 111

High-Side, Current-Sense Amplifiers with
 12-Bit ADC and Op Amp/Comparator

\qquad Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	OUT	Internal Amplifier/Comparator Output
2	RS+	Positive Current-Sensing Input. Power side connects to external sense resistor.
3	RS-	Negative Current-Sensing Input. Load side connects to external sense resistor.
4	SET	External Set-Point Voltage
5	GND	Ground
6	SCL	I^{2} C Interface Clock Input
7	SDA	I 2 C Interface Data Input/Output
8	A1	Address Input 1
9	A0	Address Input 0
10	VCC	Supply Voltage Input. Bypass VCC to GND with a 0.1 $\mu \mathrm{F}$ and a 4.7 $\mu \mathrm{F}$ capacitor in parallel.

High－Side，Current－Sense Amplifiers with 12－Bit ADC and Op Amp／Comparator

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

Detailed Description

The MAX9611/MAX9612 are high-side, current-sense amplifiers with an integrated 12-bit ADC and an internal selectable op amp/comparator. These devices are ideal for a variety of industrial and automotive applications.
The MAX9611/MAX9612's high-side, current-sense amplifiers operate over a wide OV to 60 V input com-mon-mode voltage range. The programmable full-scale voltage ($440 \mathrm{mV}, 110 \mathrm{mV}$, and 55 mV) allows for a wide dynamic range current measurement and application flexibility in choosing sense resistor values.
The $I^{2} \mathrm{C}$ bus is 1.8 V and 3.3 V logic compatible and can interface with modern microcontrollers. An internal 12-bit, 500sps integrating analog-to-digital converter (ADC) allows the user to read analog signals such as die temperature, Vout, VSet, VRSCM, and VSENSE.
At power-up, the selectable op-amp/comparator block is configured in the op-amp mode. The op amp has an effective 60 V Class A-type output stage and can be used to limit inrush currents and create a current source when used in a closed-loop system. When the internal comparator is selected, the MAX9611/MAX9612 can be configured to have a latched and retry functionality, allowing a 60 V open-drain transistor output, ideal to operate high-side relay-disconnect FETs. The MAX9611 has a noninverting input-to-output configuration while the MAX9612 has an inverting input-to-output configuration.

Current-Sense Amplifier

The MAX9611/MAX9612 feature a precision current-sense amplifier with a 0 V to 60 V input common-mode voltage range. An internal negative charge pump eliminates input
stage crossover distortion, typical in most rail-to-rail input current-sense amplifiers. Low input bias currents and low input offset currents allow a wide selection of input filters to be designed without degrading the accuracy of the current-sense amplifier.
The current-sense amplifier inputs feature both a $-0.3 \mathrm{~V} /+65 \mathrm{~V}$ common-mode absolute maximum rating as well as a $\pm 65 \mathrm{~V}$ differential absolute maximum rating, allowing a wide variety of fault conditions to be withstood easily by the device without damage.
The current-sense amplifier has a gain of $2.5 \mathrm{~V} / \mathrm{V}$ and connects directly to the output op-amp/comparator inputs. The ADC path features a $1 \mathrm{x}, 4 \mathrm{x}$, and 8 x programmable gain providing for $440 \mathrm{mV}, 110 \mathrm{mV}$, and 55 mV fullscale sense voltage.

Analog-to-Digital Converter (ADC)

The MAX9611/MAX9612 feature an internal dual-slope integrating 12-bit ADC that has a 2 ms conversion time and a 1.8 V and 3.3 V logic-compatible ${ }^{2} \mathrm{C}$ bus. An internal mux allows the following on chip variables to be read: input sense voltage, input common-mode voltage, SET voltage, OUT voltage, and die temperature.

Temperature Measurement

Die temperature can be read by the ADC over the entire operating range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ with $0.5^{\circ} \mathrm{C}$ resolution. Die temperature can be used for application calibration and thermal monitoring and is available in a 9-bit, two's complement format. Readings outside of normal operating temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ are inaccurate and should be considered invalid. See Table 1 for binary and hex values.

Table 1. Binary and Hex Digital Output Values for Temperature Measurements

TEMPERATURE $\left({ }^{\circ} \mathbf{C}\right)$	DIGITAL OUTPUT	
	BINARY	HEX
+122.4	$011111111 \times x x \times x x x$	$7 F 8 x$
+24	$000110010 x x x \times x x x$	$190 x$
+0.48	$000000001 \times x x \times x x x$	$008 x$
0	$000000000 x x x \times x x x$	$000 x$
-0.48	$111111111 x x x \times x x x$	FF8x
-24	$111001110 x x x \times x x x$	E70x
-40	$110110011 x x x \times x x x$	D98x

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

SET Voltage Measurement
The SET voltage serves as a reference voltage for the internal op amp or comparator around which a control loop can be designed. The low bias current for SET allows high-impedance resistor-dividers and currentoutput DACs to be used, making it easy to interface without introducing additional errors.
The SET input can also serve as an auxiliary input port to the ADC, if the op amp or comparator is not utilized in the application. Its full-scale input range extends from OV to 1.10 V .

OUT Voltage Measurement The internal amplifier/comparator output voltage can be monitored over the entire 0 V to 57.3 V range by the ADC. An internal high-value resistor divider on OUT reduces leakage current effects.

Common-Mode Voltage Measurement

The input common-mode voltage is defined as the average of the voltage at RS+ and RS-. A high value resistordivider allows measurement of the input common-mode voltage over the 0 V to 57.3 V range.

Sense Voltage Measurement

 Three programmable gains allow for a wide range of currents to be read by the ADC. The current-sense amplifier gain can be set to $1 \mathrm{x}, 4 \mathrm{x}$, or 8 x . The full-scale sense voltages are then $440 \mathrm{mV}, 110 \mathrm{mV}$, and 55 mV , respectively.
Output Amplifier/Comparator

The MAX9611/MAX9612 feature an internally selectable op amp and comparator where one of the inputs is connected to the $2.5 x$ current-sense amplifier, and the other input is connected to the SET input. The op amp or the comparator output can be selected and connected to OUT. The output stage is an open-drain 60 V nFET, that requires a suitable pullup resistor for proper operation. The op amp then behaves like a Class-A output stage. Select op amp or comparator function in Control Register 1 ($0 \times 0 \mathrm{~A}$) bit 7 (see Tables 4 and 5).

Watchdog/Latch/Retry Functionality

Internal digital circuitry is used to implement a watchdog feature that can be useful to handle normal application transients that are not true fault conditions. This feature applies both to the op amp and comparator modes of part operation. A watchdog delay time is internally set to 1 ms by default but can be changed to $100 \mu \mathrm{~s}$. The retry delay time is internally set to 50 ms by default, but can be changed to 10 ms (see Tables 6 and 7).
In normal operation mode, (Control Register 1 (0xOA) $000 x$ xxxx), the amplifier output responds to the difference between its inputs, i.e., the CSA output voltage and the SET voltage. In open-loop configuration, the op amp can be used as a comparator.
In a watchdog-latch-retry mode (Control Register 1 ($0 x 0 A$) $111 \times \mathrm{xxxx}$), the output of the comparator waits for a watchdog delay time (to ensure the CSA output continues to stay above the SET voltage for this duration) before responding, and then latches onto this state. After a retry delay time, it resets the comparator state and the cycle repeats.
Similar functionality is implemented for the op-amp mode as well (Control Register 1 (0x0A) 000x xxxx to 011x xxxx).
A RESET bit is defined in Control Register 1 (0xOA) to reset a latched state when commanded by the user.

I2C Interface

The MAX9611/MAX9612 ${ }^{2}$ ² C interface consists of a serial-data line (SDA) and serial-clock line (SCL). SDA and SCL facilitate bidirectional communication between the MAX9611/MAX9612 and the master at rates up to 400 kHz . The MAX9611/MAX9612 are slave devices that transfer and receive data. The master (typically a microcontroller) initiates data transfer on the bus and generates the SCL signal to permit that transfer.

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

Slave Address

A bus master initiates communication with a slave device by issuing a START (S) condition followed by a slave address. When idle, the MAX9611/MAX9612 continuously wait for a START condition followed by their slave address. When the MAX9611/MAX9612 recognize a slave address, it is ready to accept or send data. The MAX9611/MAX9612 offer 16 different slave addresses using two address inputs, A1 and A0. See Table 2 for different slave address options. The least significant bit (LSB) of the address byte (R/W) determines whether the master is writing to or reading from the MAX9611/ MAX9612 (R/W $=0$ selects a write condition, $\mathrm{R} / \mathrm{W}=1$ selects a read condition). After receiving the address, the MAX9611/MAX9612 (slave) issue an acknowledge by pulling SDA low for one clock cycle.

I2C Write Operation

A write operation (Figure 1) begins with the bus master issuing a START condition followed by seven address bits and a write bit $(R / W=0)$. If the address byte is successfully received, the MAX9611/MAX9612 (slave) issue an acknowledge (A). The master then writes to the slave and the sequence is terminated by a STOP (P) condition for a single write operation.
For a burst write operation, more data bytes are sent after the register address before the transaction is terminated.

Table 2. MAX9611/MAX9612 Address Description

A1	A0	DEVICE WRITE ADDRESS (hex)	DEVICE READ ADDRESS (hex)
0	0	0xE0	0xE1
0	$1 / 3 \times \mathrm{VCC}$	0xE2	0xE3
0	$2 / 3 \times V C C$	0xE4	0xE5
0	VCC	0xE6	0xE7
$1 / 3 \times \mathrm{VCC}$	0	0xE8	0xE9
$1 / 3 \times \mathrm{VCC}$	$1 / 3 \times \mathrm{VCC}$	0xEA	0xEB
$1 / 3 \times$ VCC	$2 / 3 \times V C C$	0xEC	0xED
$1 / 3 \times \mathrm{VCC}$	VCC	0xEE	0xEF
$2 / 3 \times \mathrm{VCC}$	0	0xF0	0xF1
$2 / 3 \times \mathrm{VCC}$	$1 / 3 \times \mathrm{VCC}$	0xF2	0xF3
$2 / 3 \times \mathrm{VCC}$	$2 / 3 \times V C C$	0xF4	0xF5
$2 / 3 \times \mathrm{VCC}$	VCC	0xF6	0xF7
VCC	0	0xF8	0xF9
VCC	$1 / 3 \times \mathrm{VCC}$	0xFA	0xFB
VCC	$2 / 3 \times V_{C C}$	0xFC	0xFD
VCC	VCC	0xFE	0xFF

I2C Read Operation

In an ${ }^{12}$ C read operation (Figure 2), the bus master issues a write command first by initiating a START condition followed by seven address bits, a write bit $(\mathrm{R} / \mathrm{W}=0)$ and the 8 -bit register address. The master then issues a Repeated START (Sr) condition, followed by seven address bits, a read bit $(R / W=1)$. If the address byte is successfully received, the MAX9611/MAX9612 (slave) issue an acknowledge (A). The master then reads from the slave. For continuous read, the master issues an acknowledge bit (AM) after each received byte. The master terminates the read operation by sending a not acknowledge (NA) bit. The MAX9611/MAX9612 then release the data line SDA allowing the master to generate a STOP condition.

Figure 1. ${ }^{12}$ C Write Operation

Figure 2. ${ }^{12}$ C Read Operation

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

Registers
The MAX9611/MAX9612 include five 12-bit data register banks and two 8-bit control registers.
The two control registers are read/write registers used to configure the ADC for different modes of operation.

Table 3 lists all the registers, their corresponding POR values and their addresses.

Table 3. Internal Register/Addresses

REGISTERS	POR VALUES (hex)	REGISTER ADDRESS (hex)
CSA DATA BYTE 1 (MSBs)	0×000	0×00
CSA DATA BYTE 1 (LSBs)	0×000	0×01
RS+ DATA BYTE 1 (MSBs)	0×000	0×02
RS+ DATA BYTE 1 (LSBs)	0×000	0×03
OUT DATA BYTE 1 (MSBs)	0×000	0×04
OUT DATA BYTE 1 (LSBs)	0×000	0×05
SET DATA BYTE 1 (MSBs)	0×000	0×06
SET DATA BYTE 1 (LSBs)	0×000	0×07
TEMP DATA BYTE 1 (MSBs)	0×800	0×08
TEMP DATA BYTE 1 (LSBs)	0×000	0×09
CONTROL REGISTER 1	0×000	$0 \times 0 A$
CONTROL REGISTER 2	0×000	$0 \times 0 B$

Data Registers
The five 12-bit data registers banks comprise two 8-bit registers for 8 MSBs and 4 LSBs. The 12-bit data is split between the two 8-bit data bytes as seen in Figure 1. They are read-only registers that hold the converted data. Do not issue a STOP command until both bytes are read. Instead use a Repeated START command to read the second byte.

Byte 1

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
MSB12	MSB11	MSB10	MSB09	MSB08	MSB07	MSB06	MSB05

Byte 2

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
LSB05	LSB03	LSB02	LSB01	0	0	0	0

Control Register 1
Control Register 1 is an 8-bit write/read register that configures the MAX9611/MAX9612 for different modes of operation. Tables 4 and 5 show the bit location and function for Control Register 1.
Table 4. Control Register 1 Bit Location

BIT NUMBER	7	6	5	4	3	2	1	0
BIT NAME	MODE2	MODE1	MODE0	LR	SHDN	MUX2	MUX1	MUX0
POR VALUE	0	0	0	0	0	0	0	0

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

Table 5. Control Register 1 Bit Description

BIT	BIT NAME	FUNCTION
2, 1, 0	MUX2, MUX1, MUXO	000 Channel A: Read current-sense amplifier output from ADC, gain $=1 x$ 001 Channel A: Read current-sense amplifier output from ADC, gain $=4 x$ 010 Channel A: Read current-sense amplifier output from ADC, gain $=8 x$ 011 Channel B: Read average voltage of RS+ (input common-mode voltage) from ADC 100 Channel C: Read voltage of OUT from ADC 101 Channel D: Read voltage of SET from ADC 110 Channel E: Read internal die temperature from ADC 111 Read all channels in fast-read mode, sequentially every 2 ms . Uses last gain setting.
3	SHDN	Power-on state $=0$ $0=$ Normal operation 1 = Shutdown mode
4	LR	```0 = Normal operation 1 = Reset if comparator is latched due to MODE = 111. This bit is automatically reset after a 1 is written.```
7,6,5	MODE2, MODE1, MODEO	$000=$ Normal operation for op amp/comparator 111 = Comparator mode. OUT remains low until CSA output > VSET for 1ms, OUT latches high for 50 ms , then OUT autoretries by going low. The comparator has an internal $\pm 10 \mathrm{mV}$ hysteresis voltage to help with noise immunity. For MAX9612, the polarity is reversed. 011 = Op-amp mode. OUT regulates pFET for 1 ms at $\mathrm{V}_{\text {SET }}$, OUT latches high for 50 ms , then OUT autoretries by going low. For MAX9612, the polarity is reversed.

Control Register 2
Control Register 2 is an 8-bit write/read register that provides the different time delay options for asserting the comparator output when monitoring fault events. Tables 6 and 7 show the bit location and function for Control Register 2.
Table 6. Control Register 2

BIT NUMBER	7	6	5	4	3	2	1	0
BIT NAME	X	X	X	X	DTIM	$R T I M$	X	X
POR VALUE	0	0	0	0	0	0	0	0

Table 7. Control Register 2 Bit Descriptions

BIT	BIT NAME	
$7,6,5,4$	X	Set to 0
3	DTIM	Watchdog delay time $0=1 \mathrm{~ms}$ $1=100 \mu \mathrm{~s}$
2	RTIM	Watchdog retry delay time $0=50 \mathrm{~ms}$ $1=10 \mathrm{~ms}$
1,0	X	Set to 0

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

Power-On Reset The MAX9611/MAX9612 include power-on reset circuitry that ensures all registers reset to a known state on power-up. Once Vcc goes above 2.4V, the POR circuit releases the registers for normal operation.

Applications Information

Inrush Current Limiter

The MAX9611 can be used as an inrush current limiter for a number of applications as shown in Figure 3. Note that the sense resistor can be placed on either side of the pFET. Since the input common-mode voltage of the MAX9611 extends to ground, the sense resistor can be placed at the load side as well, allowing current to be sensed even when there is a dead-short on the load.
The inrush current limiting circuit reads and measures the load-current during normal operation and can limit the load current to a user-set value. In normal operation, the load current is below the set threshold. The pFET is fully turned on because the op-amp output is at OV . In the event of an overcurrent situation at the load, the op-amp controls the PFET 's gate-voltage so it transitions to a linear region, thus limiting the load current. In this case, the op-amp output voltage is between OV and VBAT, as required for current-limiting.

Choose a suitable sense resistor and a low RDS-on pFET to ensure the best efficiency during normal operation. Choose a pFET with large power dissipation to ensure compliance with safe operating area of the pFET. The MAX9611 comes equipped with a variety of watchdog options to help with this design (see Control Register 2, Table 7).
Choose resistor values R1 and R2 to ensure that the PFET is fully on in normal operating conditions and to ensure that the VGS maximum rating is not exceeded. Also, R1 and R2 help limit the current in the open-drain output stage of the internal op amp. RCOMP and CCOMP help roll-off high-frequency gain of the feedback control system. R2 and CCOMP set a pole, for which 10 kHz is a good choice. RCOMP and CCOMP set a zero, for which 100 kHz is a good choice.
With the internal gain of the current-sense amplifier $(2.5 \mathrm{~V} / \mathrm{V})$, the inrush current-limit threshold can be set using resistor-divider R3 and R4 as follows:

$$
\frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{R} 3}{(\mathrm{R} 2+\mathrm{R})\left(2.5 \times \mathrm{R}_{\mathrm{SENSE}}\right)}=\mathrm{I}_{\mathrm{LIMIT}}
$$

Note: The inrush current limiter can be changed to a high-side relay-disconnect circuit by using the MAX9611 set to comparator mode (MODE 111).

Figure 3. Inrush Current Limiter

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

Base-Station PA Gain Control

While the MAX9611 is designed to control high-side pFETs, the MAX9612 can be similarly used to control low-side nFETs. For example the MAX9612 can be used to control the DC bias point of power amplifier LDMOS or GaN nFETs in base-station applications. The circuit shown in Figure 4 also allows the option to apply negative bias voltages to the PA FET, which is required for certain types of transistors for proper operation.
In the circuit shown, the nFET is in a linear mode of operation to allow it to amplify high-frequency RF signals, while the MAX9612 sets the DC operating point. The gain of the FET can be varied by changing its drain current. This operating point can be varied by an external DAC voltage that feeds the SET pin.
VNEG and VCLAMP together with R1, R2, and R3 set the DC bias point limits for the PA transistor. VCLAMP is a suitable positive voltage and $\mathrm{V}_{\mathrm{NEG}}$ is a suitable negative voltage. When Vout $=0 \mathrm{~V}$, the gate voltage of the PA FET is:

$$
\frac{\mathrm{V}_{\mathrm{NEG}} \times R 2}{(\mathrm{R} 1+\mathrm{R} 2)}=\mathrm{V}_{\mathrm{OUT}}
$$

When the OUT open-dran transistor is off, the gate voltage of the PA FET is:

$$
V_{\mathrm{GATE}}=\frac{\mathrm{V}_{\mathrm{CLAMPR}} 1}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3}+\frac{\mathrm{V}_{\mathrm{NEG}}(\mathrm{R} 2+\mathrm{R} 3)}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3}
$$

RCOMP and CCOMP connected to the OUT pin compensate the internal amplifier. Choose a corner frequency of 100 kHz .
Choose suitable RSENSE as required for the application. The inductor isolates the DC measuring point of current from the high-frequency AC signals through the PA FET, as well as helping with the high-frequency gain.

Power-Supply Bypassing and Grounding

The MAX9611/MAX9612 share a common ground pin for both the analog and digital on-chip circuitry. It is therefore very important to properly bypass the VCC to GND, and to have a solid low-noise ground plane on the circuit board so as to minimize ground bounce. Bypass VCC to GND with low ESR $0.1 \mu \mathrm{~F}$ in parallel with a $4.7 \mu \mathrm{~F}$ ceramic capacitors to GND placed as close as possible to the device.

Chip Information
PROCESS: BiCMOS

Figure 4. Base-Station PA Gain Control

High-Side, Current-Sense Amplifiers with 12-Bit ADC and Op Amp/Comparator

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
$10 \mu \mathrm{MAX}$	$\mathrm{U} 10+2$	$\underline{21-0061}$	$\underline{90-0330}$

BOTTOM VIEW

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	-	0.043	-	1.10
A1	0.002	0.006	0.05	0.15
A2	0.030	0.037	0.75	0.95
D1	0.116	0.120	2.95	3.05
D2	0.114	0.118	2.89	3.00
E1	0.116	0.120	2.95	3.05
E2	0.114	0.118	2.89	3.00
H	0.187	0.199	4.75	5.05
L	0.0157	0.0275	0.40	0.70
L1	0.037 REF		0.940 REF	
b	0.007	0.0106	0.177	0.270
e	0.0197 BSC		0.500 BSC	
C	0.0035	0.0078	0.090	0.200
S	0.0196 REF		0.498 REF	
α	$0 \cdot$	6°	$0 \cdot$	6°
Pkg Codes: U10-2; U10CN-1				

FRONT VIEW

NDTES:

1. D\&E DD NDT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PRDTRUSIDNS NDT TD EXCEED 0.15 mm (.006")
3. CONTRZLLING DIMENSIDN: MILLIMETERS.
4. COMPLIES TO JEDEC MO-187, LATEST REVISION, VARIATION BA.
5. MARKING SHIWN IS FUR PKG. ORIENTATIDN UNLY
6. ALL DIMENSIUNS APPLY TV BOTH LEADED (-) AND PbFREE (+) PKG. CDDES.

SIDE VIEW

High-Side, Current-Sense Amplifiers with
 12-Bit ADC and Op Amp/Comparator

Revision History

| REVISION
 NUMBER | REVISION
 DATE | DESCRIPTION | PAGES
 CHANGED |
| :---: | :---: | :--- | :---: | :---: |
| 0 | $9 / 10$ | Initial release | - |
| 1 | $11 / 10$ | Updated text in Table 5 to add "comparator" to mode 000 for bits 7, 6,5 | 16 |
| 2 | $1 / 11$ | Relaxed room temperature limits for $4 x$ and 8 x gains from 0.3 mV to 0.5 mv | 1,2 |

