

PRELIMINARY

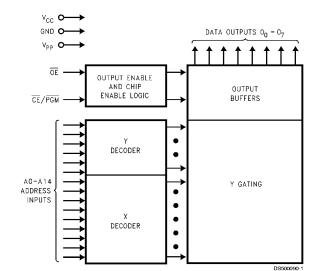
January 1998

FM27C256 262,144-Bit (32K x 8) High Speed CMOS EPROM

General Description

The FM27C256 is a High Performance 32K x 8 UV Erasable EPROM. It is manufactured using an advanced CMOS process technology enabling it to operate at speeds as fast as 35 ns Address Access Time (t_{ACC}) and 35 ns Chip Enable Time (t_{CE}). It was designed utilizing Fairchild's self-aligned split gate EPROM cell, resulting in a low power device with a very cost effective die size. The low standby power capability of this 256K product (200 µA in a CMOS interface environment) is especially attractive.

This product, with its high speed capability, is particularly appropriate for use with today's fast DSP processors and highclock-rate microprocessors. The FM27C256's 35 ns speed enables these advanced processors to operate without introducing any undesirable wait states. The FM27C256 is also ideal for use in modem applications, and is recommended for use in these applications by the leading modern chip set manufacturer.

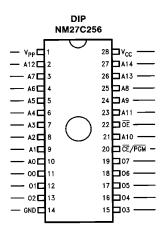

The FM27C256 is available in a variety of package types including the space saving 300 Mil DIP, the surface mount

PLCC, and other windowed and non-windowed options. And its standard JEDEC EPROM pinouts provide for automatic upgrade density paths for current 64K and 128K EPROM us-

Features

- Fast Access Time
 - $-t_{ACC} = 35 \text{ ns}$
 - t_{CE} = 35 ns
- Low Power Consumption -200 μA Standby I_{CC}
- Immune to Latch-Up
 - Up to 200 mA
- ESD Protection Exceeds 2000 Volts
- Available in 3090 Mil DIP and PLCC
- DESC SMD No. 5962-86063

Block Diagram


Product Selection Guide

Parameter	27C256-35	27C256-45	27C256-55	27C256-70
Address Access Time (Max)	35 ns	45 ns	55 ns	70 ns
NM27C256 Q, N, V 100	15 ns	20 ns	25 ns	30 ns

© 1998 Fairchild Semiconductor Corporation DS500090

Connection Diagram

27C080	27C040	27C020	27C010	27C512
A19	XX/V _{PP}	XX/V _{PP}	XX/V _{PP}	
A16	A16	A16	A16	
A15	A15	A15	A15	A15
A12	A12	A12	A12	A12
A7	A7	A7	A7	A7
A6	A6	A6	A6	A6
A5	A5	A5	A5	A5
A4	A4	A4	A4	A4
A3	A3	A3	А3	A3
A2	A2	A2	A2	A2
A1	A1	A1	A1	A1
A0	A0	A0	A0	A0
00	00	00	00	00
01	01	01	01	01
O2	02	02	02	O2
GND	GND	GND	GND	GND

27C512	27C010	27C020	27C040	27C080
	V _{CC}	Vcc	V _{CC}	Vcc
	XX/PGM	XX/PGM	A18	A18
Vcc	xx	A17	A17	A17
A14	A14	A14	A14	A14
A13	A13	A13	A13	A13
A8	A8	A8	A8	A8
A9	A9	A9	A9	A9
A11	A11	A11	A11	A11
OE/V _{PP}	ŌĒ	ŌĒ	ŌĒ	OE/V _{PP}
A10	A10	A10	A10	A10
CE/PGM	CE	CE	CE/PGM	CE/PGM
07	07	07	07	07
06	06	06	06	O6
O5	O5	O5	O5	O5
04	04	04	O4	04
О3	O3	О3	O3	O3

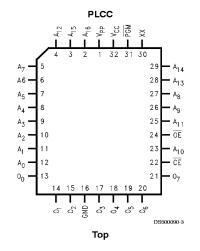
DS500090-2

Note: Compatible EPROM pin configurations are shown in the blocks adjacent to the FM27C256 pins.

Commercial Temp. Range (0°C to +70°C) $V_{CC} = 5V \pm 10\%$

Parameter/Order Number	Access Time (ns)
FM27C256 Q, N, V 35	35
FM27C256 Q, N, V 45	45
FM27C256 Q, N, V 55	55
FM27C256 Q, N, V 70	70

Extended Temp. Range (-40° C to $+85^{\circ}$ C) $V_{CC} = 5V \pm 10\%$


Parameter/Order Number	Access Time (ns)
FM27C256 QE, NE, VE 45	45
FM27C256 QE, NE, VE 55	55
FM27C256 QE, NE, VE 70	70

Package Types: FM27C256 Q, N, V XXX

- Q = Quartz-Windowed Ceramic DIP package
- N = Plastic OTP DIP
- V = Surface-Mount PLCC
- All Packages conform to the JEDEC standard.
- \bullet All versions are guaranteed to function for slower speeds.

Pin Names

Symbol	Description
A0-A14	Addresses
CE	Chip Enable
ŌĒ	Output Enable
O0-O7	Outputs
PGM	Program
XX	Don't Care (during Read)

www.fairchildsemi.com

2

Absolute Maximum Ratings (Note 1)

Storage Temperature -65°C to $+150^{\circ}\text{C}$

All Input Voltages except A9 with

Respect to Ground -0.6V to +7V

V_{PP} and A₉ with Respect

to Ground -0.6V to +14V ESD Protection > 2000V

Operating Range

Range	Temperature	V _{cc}
Commercial	0°C to +70°C	+5V ±10%
Industrial	-40°C to +85°C	+5V ±10%

Read Operation

DC Electrical Characteristics

Over Operating Range with $V_{PP} = V_{CC}$

Symbol	Parameter	Test Conditio	ns	Min	Max	Units
V _{IL}	Input Low Voltage	(Note 6)		-0.1	0.8	V
V _{IH}	Input High Voltage	(Note 6)		2.0	V _{CC} + 0.3	V
V _{OL}	Output Low Voltage	I _{OL} = 16 mA			0.4	V
V _{OH}	Output High Voltage	$I_{OH} = -4 \text{ mA}$		2.4		V
I _{SB1}	V _{CC} Standby Current	CE = V _{CC} ±0.3V	Comm'l		200	μА
	(CMOS)	(Note 2)	Industrial		500	μА
I _{SB2}	V _{CC} Standby Current	CE = V _{IH}	Comm'l		3	mA
	(TTL)	(Note 3)	Industrial		5	mA
I _{CC1}	V _{CC} Active Current	(Note 2) and (Note 4)	Comm'l		25	mA
	(CMOS)	Outputs not loaded	Industrial		30	mA
I _{CC2}	V _{CC} Active Current	(Note 3) and (Note 4)	Comm'l		50	mA
	(TTL)	Outputs not loaded	Industrial		60	mA
I _{PP}	V _{PP} Supply Current	V _{PP} = V _{CC}			100	μА
V _{PP}	V _{PP} Read Voltage			V _{CC} - 0.4	V _{cc}	V
I _{LI}	Input Leakage Current	V _{IN} = 5.5V or GND		-10	10	μА
I _{LO}	Output Leakage Current	V _{OUT} = 5.5V or GND		-10	10	μА

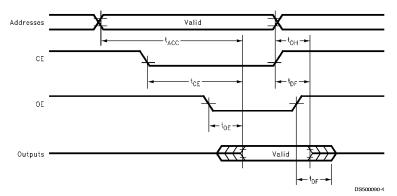
Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: CMOS inputs: GND \pm 0.3V or V_{CC} \pm 0.3V.

Note 3: TTL inputs: $V_{IL} \le 0.8V$, $V_{IH} \ge 2.0V$.

Note 4: Add 3 mA/MHz for AC power component.

Note 5: These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.


Low to TRI-STATE, the measured V_{OL1} (DC) + 0.10V.

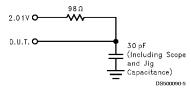
AC Read Characteristics

Over Operating Range with $V_{PP} = V_{CC}$

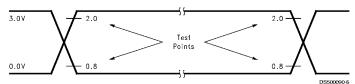
Symbol	Parameter	-:	35	-4	15	-5	55	-7	70	Units
		Min	Max	Min	Max	Min	Max	Min	Max]
tacc	Address to Output Delay		35		45		55		70	ns
t _{CE}	CE to Output Delay		35		45		55		70	
toE	OE to Output Delay		15		20		25		30	
t _{DF}	Output Disable to		20		20		25		30	
(Note 6)	Output Float									
t _{OH}	Address to Output Hold	0		0		0		0		

AC Waveforms

Capacitance (Note 6)


 $T_A = +25^{\circ}C$, f = 1 MHz

Symbol	Parameter	Conditions	Typ (Note 7)	Max	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	6	12	рF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	9	12	рF


Note 6: This parameter is only sampled and is not 100% tested.

Note 7: Typical values are for $T_A = 25$ °C and nominal supply voltages.

Test Load (High Impedance Test Systems)

AC Testing Input/Output Waveform

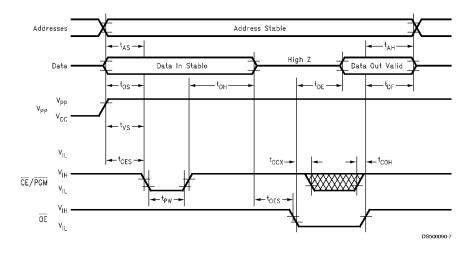
AC testing inputs are driven at 3.0 V for a logic "1" and 0.0 V for a logic "0." Timing measurements are made at 2.0 V for a logic "1" and 0.8 V for a logic "0."

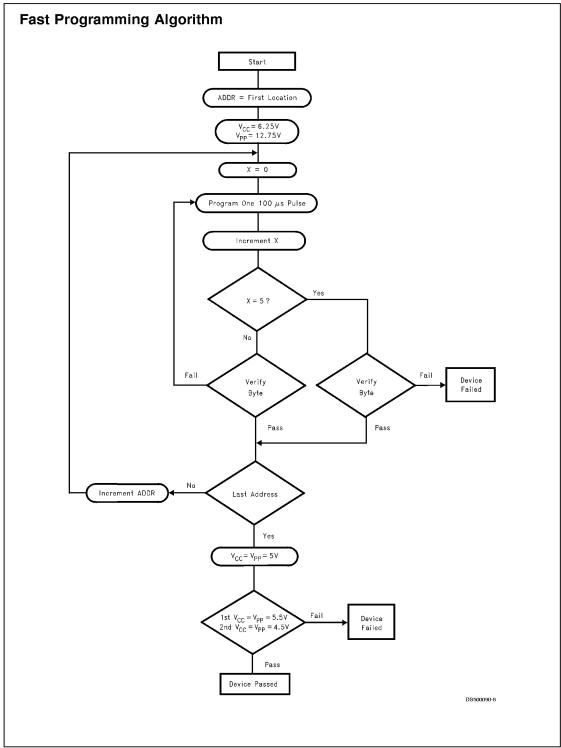
Note 8: Provide adequate decoupling capacitance as close as possible to this device to achieve the published AC and DC parameters. A 0.1 microfarad capacitor in parallel with a 0.01 microfarad capacitor connected between V_{CC} and ground is recommended. Inadequate decoupling may result in access time degradation or other transient performance failures.

DC Programming Characteristics (T_A = 25°C \pm 5°C, V_{CC} = 6.25 \pm 0.25 V, V_{PP} = 12.75 \pm 0.25V)

Symbol	Parameter	Min	Max	Units
ILI	Input leakage Current (V _{IN} = V _{CC} or GND	-10	10	μΑ
I _{PP}	V_{PP} Supply Current During Programming Pulse ($\overline{CE}/\overline{OE} = V_{IL}$)		60	mA
Icc	V _{PP} Supply Current (Note 9)		35	mA
V _{OL}	Output Low Voltage During Verify (I _{OL} = 16 mA)		0.4	V
V _{OH}	Output High Voltage During Verify (I _{OH} = -4 mA)	2.4		V

Note 9: V_{CC} must be applied coincidentally or before V_{PP} and removed coincidentally or after V_{PP} .


Note 10: Vpp must not be greater than 13 volts including overshoot. During $\overline{CE} = \overline{PGM} = V_{IL}$, V_{PP} must not be switched from 5 volts to 12.75 volts or vice-versa.


Note 11: During power up the \overline{PGM} pin must be brought high ($\geq V_{|H}$) either coincident with or before power is applied to V_{PP} .

AC Programming Characteristics (T_A = 25°C \pm 5°C, V_{CC} = 6.25 \pm 0.25 V, V_{PP} = 12.75 \pm 0.25V)

Symbol	Parameter	Min	Тур	Max	Units
t _{AS}	Address Setup Time	2			μs
t _{сон}	CE High to OE High	2			μs
toes	Output Enable Setup Time	2			μs
tos	Data Setup Time	2			μs
t _{AH}	Address Hold Time	0			μs
t _{он}	Data Hold Time	2			μs
t _{DF}	Chip Disable to Output Float Delay	0		130	ns
toE	Data Valid from Output Enable			130	ns
tvs/tces	V _{PP} Setup Time/CE Setup Time	2			μs
t _{PW}	PGM Pulse Width	100		200	μs
tocx	OE Low to CE "Don't Care"	2			μs

Programming Waveform

Mode Selection

The modes of operation of FM27C256 listed below. A single 5V power supply is required in the read mode. All inputs are TTL levels except for V_{PP}and A₉ for device signature.

TABLE 1. Modes Selection

	Pins	CE /PGM	ŌĒ	A ₉	Ao	V _{PP}	v _{cc}	Outputs
Mode								
Read		V _{IL}	V _{IL}	X	Х	V _{cc}	V _{cc}	D _{out}
Output Disable		×	V _{IH}	×	Х	V _{cc}	V _{cc}	High Z
Standby		V _{IH}	Х	Х	Х	V _{cc}	V _{cc}	High Z
Program		V _{IL}	V _{IH}	X	Х	V _{PP} (Note 13)	V _{cc}	D _{IN}
Program Verify		Х	V _{IL}	Х	Х	V _{PP} (Note 13)	V _{cc}	D _{OUT}
Program Inhibit		V _{IH}	V _{IH}	X	Х	V _{PP} (Note 13)	V _{cc}	High Z
Signature (Note 14)		V _{IL}	V _{IL}	V _{IH} (Note 13)	V _{IL}	V _{cc}	V _{cc}	23 H (Note 15)
		V_{IL}	V _{IL}	V _{IH} (Note 13)	V _{IL}	V _{cc}	V _{cc}	EO H (Note 16)

Note 12: X can be VIL or VIH Note 13: $V_{IH} = V_{PP} = 12.75 \pm 0.25 V$. Note 14: A1 - A8, A10 - A14 = V_{IL}. Note 15: Manufacturer Signature. Note 16: Device Signature.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation
Americas
Customer Response Center

Tel: 1-888-522-5372

www.fairchildsemi.com

Fairchild Semiconductor

Europe Fax: +49 (0) 1 80-530 85 86

Fairchild Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications