
1/8October 2001

ABSTRACT
This application note shows the results of porting the JPEG application for a SW implementation on
ST120DSP. JPEG standard is very generic and includes different techniques. The Baseline method is by
far the most widely implemented JPEG method and has thus been chosen for this study. Baseline JPEG
includes DCT, Quantization and Huffman encoding from the encoding side, IDCT, Inverse Quantization
and Huffman decoding from the decoding side.

CONCLUSION
The number of clock cycles required to encode one 8x8 block of pixels is 1895, while its decoding
requires 2467 cycles. It means that the encoding and the decoding of one QCIF image (176x144) takes
respectively 1.12 MCycles and 1.465 MCycles. This analysis is based on very good quality encoding/
decoding, so this number of MCycles can be reduced accordingly to the quality and compression ratio
required for the specific application.

AN1443
APPLICATION NOTE

ST100 VIDEO LIBRARY
Baseline JPEG Encoding and Decoding on the ST120DSP

By Maurizio Colombo

AN1443 - APPLICATION NOTE

2/8

1 - OVERVIEW ON JPEG ENCODING

The processing steps of a Baseline JPEG encoder and decoder are respectively shown in Figures 1 and
2. These are basically a subset of the MPEG functions.

The Discrete Cosine Transform (DCT) is the same algorithm as the one defined for MPEG. This is
followed by Quantization, where each coefficient is basically divided by a corresponding weight in a
matrix. Then, coefficients are ordered in zigzag scan and Run-length coding is applied (as for MPEG,
zero sequences are replaced with their length and the first non-zero coefficient). Finally, Huffman
encoding removes the statistical redundancy and the result is packed into a bitstream. The decoding
process is represented exactly by the same inverse sequential steps.
The quality of the compressed image is depending on the quantization matrix used. In this analysis a
quantization matrix for very good quality has been chosen.
The source C code used for this implementation has been downloaded from the site ftp.uu.net/graphics/
jpeg [1].
In the next paragraphs the performances of each one of the above functions are described.

Figure 1 : JPEG Encoder

Figure 2 : JPEG Decoder

DCT Quantization Huffman encoding

Huffman decoding Inverse Quantization IDCT

AN1443 - APPLICATION NOTE

3/8

2 - THE ENCODER

2.1 - Wang’s DCT

The DCT algorithm is the same as the one developed for MPEG. Visual quality tests show that there are
no visible differences between this algorithm and the one proposed in the source code (jfdctint.c).

Zigzag scan is directly performed in column DCT to allow run-length calculations into quantization (see
next paragraph).

The results of the profiling are shown in Table 1.

Regarding data memory usage, DCT needs 128 bytes for the block (however, to store intermediate
results, between row and column processing, 128 bytes of stack are needed). For constants 72 bytes are
needed.

2.2 - Quantization

Quantization consists in dividing each coefficient by the corresponding weight in the quantization table. In
this step another operation is performed, to prepare the information for run-length coding.

Table 2 shows the performances and code size. Quantization uses 136 bytes for the block (8 bytes are for
run-length information) and 256 bytes for the quantization matrices (one for luminance, one for
chrominance).

2.3 - Huffman Encoding

It consists in coding the run/length couples into Huffman variable length codes. The results, obtained from
a simulation on the test image provided with the sources are shown in Table 3. More intensive
simulations, executed on real high quality photos[2] are shown in Table 4.

About memory usage, VLC needs four look-up tables of 1280 bytes each (5120 bytes total) and a buffer
to store the output bitstream (in the implementation a size of 2 KBytes is used but it depends on the DMA
policy used).

Table 1 : Number of clock cycles and code size for one 8x8 block DCT

Function Cycles Code Size

DCT 314 2692

Table 2 : Number of clock cycles for Quantization+run-length of one 8x8 block

Function Cycles Code Size

Quantization 177 664

Table 3 : Number of cycles and code size for one 8x8 block encoding (test image)

Function Cycles Code Size

Huffman encoding 682 1452

AN1443 - APPLICATION NOTE

4/8

2.4 - The Complete Application
The blocks described in the previous paragraphs represent the core of the application. Another part that
is worth to be considered is the routine writing headers at the beginning of the image. This part takes
24401 cycles and is executed only once. The rest of the program contains some additional parts which
enable to read different image formats (in this case only ppm is considered, but this is not a constraint) to
convert chroma formats (RGB to YUV and vice versa...), to write the bitstream into a physical file, to set
up global configuration variables. All this has not been optimized for speed, but it has been compiled with
the"Optimization for size" option in GP16 (16-bit instruction set) mode to guarantee code density.
Depending on the embedded application targeted this can be customized: a MIPS-intensive application
like a Printer one takes care only of performances, whereas a Wireless application targets low power
consumption and small memory requirements without looking at speed (a typical application is encoding/
decoding of static images taken from the web on a 3G cellular phone).
The following Table 5 summarizes the program/data memory requirements for the whole application.

Table 4 : Number of cycles for one 8x8 block encoding (simulations)

Image Cycles

Cfive 886

Cucorn 1226

Icestorm 2031

Seagull 992

Palm 1331

Duneprint 1847

Glasses 1043

Flags 992

Average 1404

Table 5 : Memory requirements for the whole application

Section Size

Startup 256

Code 31234

Libraries 32450

Read-only data 8880

Data 412

Zero init data 9100

Stack 3072

Heap application-dependent

AN1443 - APPLICATION NOTE

5/8

3 - THE DECODER

3.1 - Huffman Decoding

This function reads data from the input bitstream and decodes the DCT quantized coefficients (they are
written in raster order). Table 7 represents the results obtained by a simulation on the test image provided
with the sources. The results of intensive simulations made on real photos[2] are shown in Table 6.

About data memory requirements, 4KB are needed for the internal buffer (It is customizable) and four
look-up tables of 1564 bytes each. It means 10352 bytes. 128 bytes are needed to write the output block
to be de quantized.

3.2 - Inverse Quantization

This consists simply in multiplying each coefficient by its corresponding weight in the quantization matrix.
Each coefficient is represented with 12-bit precision, while the weights are represented by 8 bits. So, all
multiplications are 16x16. The results are shown in Table 8.

As data memory128 bytes are needed for the block and 128 bytes for the two quantization tables.

3.3 - Wang’s Inverse DCT

The same algorithm used for MPEG2 has been implemented here. This includes IDCT, clipping and
add128. The input data are read in raster order, because zigzag is performed directly into Huffman
decoding. The results are reported in Table 9. The required data memory is 128 bytes for the block and 30
bytes for the constants.

Table 6 : Cycles for one 8x8 block (real photos simulations)

Image Cycles

Cfive 1375

Cucorn 1902

Icestorm 3086

Seagull 438

Palm 2121

Duneprint 2806

Glasses 1619

Flags 1565

Average 1864

Table 7 : Cycles and code size for one 8x8 block (test image)

Function Cycles Code SIze

Huffman decoding 1073 2412

Table 8 : Cycles for one 8x8 block inverse quantization

Function Cycles Code Size

Inverse Quant 71 148

Table 9 : Clock cycles and code size for one 8x8 block IDCT

Function Cycles Code Size

IDCT 532 1108

AN1443 - APPLICATION NOTE

6/8

3.4 - The Complete Application
As for the encoder, the complete application includes other sections which are tools around the
application core, represented by IDCT, IQ and Huffman decoding. Again, these modules have been
compiled with the "Optimization for size" (-OS) option in GP16 mode and thus do not represent the
maximum performance achievable by the ST120 DSP. A summary of memory requirements for the whole
application is reported in the following Table 10.

Table 10 : Memory requirements for the whole application

Section Size

Startup 256

Code 31234

Libraries 31890

Read-only data 7552

Data 328

Zero init data 12236

Stack 3072

Heap application-dependent

AN1443 - APPLICATION NOTE

7/8

4 - CONCLUSIONS

In the following Table 11 is reported a summary of the results presented in this document. For each
function are shown the number of clock cycles for one 8x8 block, the code size and the data memory
usage.

REFERENCES
[1] Thomas G. Lane, Independent JPEG Group’s Software, ftp.uu.net/graphics/jpeg
[2] Kodak Digital Images Offering, www.kodak.com/digitalImaging/samples/

Table 11 : Summary

Function Cycles Code size Data Memory

DCT 314 2692 200

Quantization 177 664 392

Huffman encoding 1404 1452 7168

IDCT 532 1108 158

Inv quant 71 148 256

Huffman decoding 1864 2412 10352

AN1443 - APPLICATION NOTE

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

http://www.st.com

8/8

