

Features

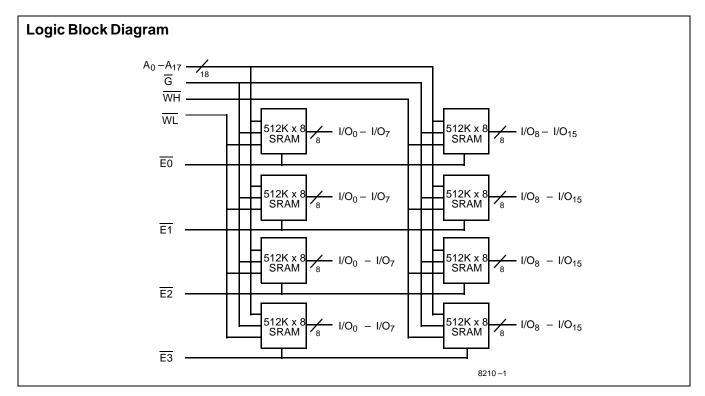
- High-density 32-megabit SRAM module
- · Low active power
 - -5.3W (max.) at 25 ns
- SMD technology
- · TTL-compatible inputs and outputs
- Low profile
 - Max. height of 0.725 in.
- Available in 80 pin SIMM Package

Functional Description

The CYM8210 is a high-performance 8-megabit static RAM module organized as 2M words by 16 bits. This module is con-

2M x 16 Static RAM Module

structed using eight 512K x 8 SRAMs (CY62148) in SOJ packages mounted on an epoxy laminate board with pins.

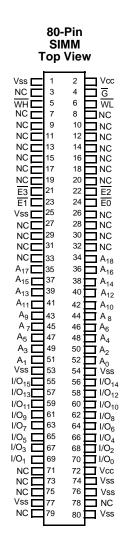

Writing to each byte is accomplished by enabling the appropriate Chip Select (E0, E1, E2, E3) and write enable (WH or WL).

Data on the input/output pins (I/O) is written into the memory location specified on the address pins (A_0 through A_{17}).

Reading the device is accomplished by taking the appropriate chip select (E0, E1, E2, E3) LOW while write enable (WE) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins (I/O).

The data input/output pins stay at the high-impedance state when write enable is LOW or the appropriate chip selects are HIGH.

The CYM8210 module is shipped as a 80 pin SIMM.



Selection Guide

	8210-70
Maximum Access Time (ns)	70
Maximum Operating Current (mA)	158
Maximum Standby Current (μA)	150

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -55°C to +125°C

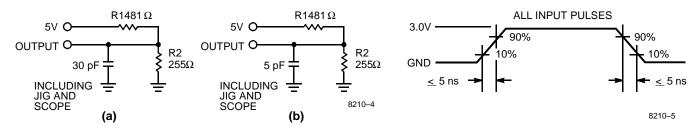
Ambient Temperature with Power Applied-10°C to +85°C

Supply Voltage to Ground Potential-0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State-0.5V to +7.0V DC Input Voltage-0.5V to +7.0V

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	5V ± 10%


Electrical Characteristics Over the Operating Range

			CYM8	210-70	
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1.0 \text{ mA}$	2.4		V
V_{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 2.1 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC}	V
V _{IL}	Input LOW Voltage		-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-10	+10	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$	-10	+10	μА
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA,$ $CS \le V_{IL}$		158	mA
I _{SB1}	Automatic CS Power- Down Current ^[1]	Max. V _{CC} , CS ≥ V _{IH} , Min. Duty Cycle = 100%		120	mA
I _{SB2}	Automatic CS Power- Down Current ^[1]	$\begin{array}{l} \text{Max. V}_{\text{CC}}, \overline{\text{CS}} \geq \text{V}_{\text{CC}} \text{ - 0.2V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - \text{0.2V}, \\ \text{or V}_{\text{IN}} \leq \text{0.2V} \end{array}$		150	μА

Capacitance^[2]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	60	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	50	pF

AC Test Loads and Waveforms

THÉVENIN EQUIVALENT Equivalent to:

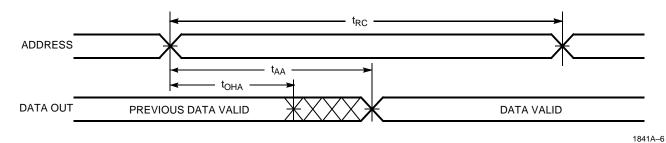
OUTPUT O
$$\frac{167\Omega}{}$$
 O $\frac{1.73\sqrt{}}{}$

Notes:

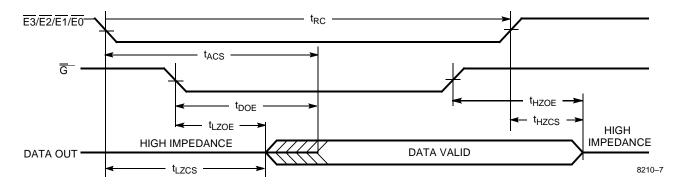
- A pull-up resistor to V_{CC} on the $\overline{E3/E2/E1/E0}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given. Tested on a sample basis.

Switching Characteristics Over the Operating Range^[3]

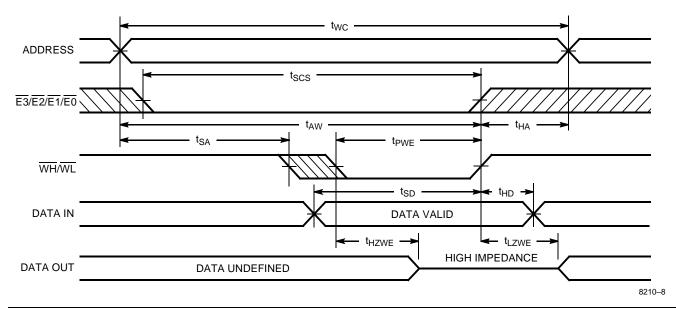
		70	ns	
Parameter	Description	Min.	Max.	Unit
READ CYCLE			'	
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Output Hold from Address Change	10		ns
t _{ACS}	E3/E2/E1/E0 LOW to Data Valid		70	ns
t _{DOE}	G LOW to Data Valid		35	ns
t _{LZOE}	G LOW to Low Z	5		ns
t _{HZOE}	G HIGH to High Z		25	ns
t _{LZCS}	E3/E2/E1/E0 LOW to Low Z ^[4]	10		ns
t _{HZCS}	E3/E2/E1/E0 HIGH to High Z ^[4, 5]		25	ns
t _{PD}	E3/E2/E1/E0 HIGH to Power-Down		70	
WRITE CYCLE ^[6]			'	
t_{WC}	Write Cycle Time	70		ns
t _{SCS}	E3/E2/E1/E0 LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA} Address Hold from Write End		0		ns
t _{SA} Address Set-Up to Write Start		0		ns
t _{PWE} WH/WL Pulse Width		55		ns
t _{SD} Data Set-Up to Write End		25		ns
t _{HD}	Data Hold from Write End	0		ns
t _{LZWE}	WH/WL HIGH to Low Z	5		ns
t _{HZWE}	WH/WL LOW to High Z ^[5]		25	ns


Notes:

- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- At any given temperature and voltage condition, t_{HZCS} is less than t_{LZCS} for any given device. These parameters are guaranteed by design and not 100% tested. t_{HZCS} and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of E3/E2/E1/E0 LOW and WH/WL LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

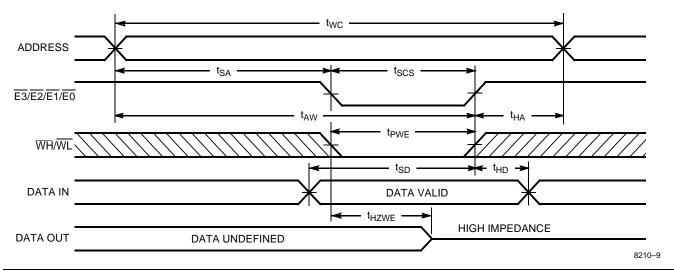


Switching Waveforms


Read Cycle No. 1^[7, 8]

Read Cycle No. 2^[7, 9]

Write Cycle No. 1 (WE Controlled)[6]


Notes:

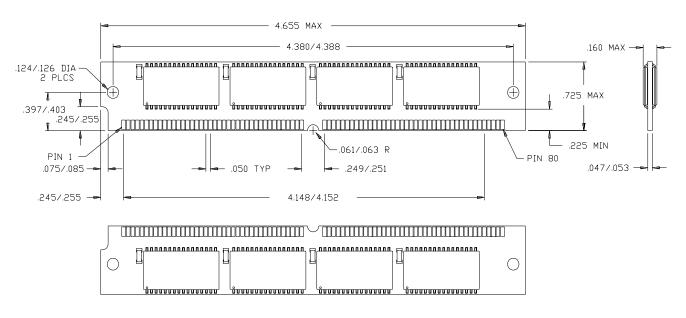
- WH/WL is HIGH for read cycle.
 Device is continuously selected, E3/E2/E1/E0 = V_{IL} and G = V_{IL}.
 Address valid prior to or coincident with E3/E2/E1/E0 transition LOW.

Switching Waveforms (continued)

Write Cycle No. 2 (E3/E2/E1/E0 Controlled)[6, 10]

Note:

10. If E3/E2/E1/E0 goes HIGH simultaneously with WH/WL HIGH, the output remains in a high-impedance state.



Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CYM8210BPM-70C	PM49	80-Pin Plastic SIMM Module	Commercial

Package Diagrams

80-Pin Plastic SIMM Module PM49

Document Title: CYM8210BPM 2M X 16 SRAM Module Datasheet Document Number: 38-05008				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	106011	05/07/01	MEG	New Data Sheet