Table 1: General Features

TYPE	V $_{\text {DSS }}$	$\mathbf{R}_{\text {DS(on) }}$	$\mathbf{I}_{\mathbf{D}}$	Pw
STP8NK85Z	850 V	$<1.4 \Omega$	6.7 A	150 W
STF8NK85Z	850 V	$<1.4 \Omega$	6.7 A	35 W

- TYPICAL R $\mathrm{Rs}^{(o n)}=1.1 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- IMPROVED ESD CAPABILITY
- 100% AVALANCHE RATED
- GATE CHARGE MINIMIZED
- VERY LOW INTRINSIC CAPACITANCES
- VERY GOOD MANUFACTURING

REPEATIBILITY

DESCRIPTION

The SuperMESH ${ }^{\text {TM }}$ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH ${ }^{\text {TM }}$ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding applications. Such series complements ST full range of high voltage MOSFETs including revolutionary MDmesh ${ }^{\text {TM }}$ products.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING - IDEAL FOR OFF-LINE POWER SUPPLIES, ADAPTORS AND PFC

Figure 1: Package

TO-220

TO-220FP

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STP8NK85Z	P8NK85Z	TO-220	TUBE
STF8NK85Z	F8NK85Z	TO-220FP	TUBE

Rev. 2

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value		Unit
		TO-220	TO-220FP	
$\mathrm{V}_{\text {DS }}$	Drain-source Voltage ($\mathrm{V}_{\mathrm{GS}}=0$)	850		V
$V_{\text {DGR }}$	Drain-gate Voltage ($\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega$)	850		V
V_{GS}	Gate- source Voltage	± 30		V
ID	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	6.7	6.7 (*)	A
ID	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	4.3	4.3 (*)	A
IDM (•)	Drain Current (pulsed)	26.7	26.7 (*)	A
Ртот	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	150	35	W
	Derating Factor	1.20	0.28	W/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}(\mathrm{G}-\mathrm{S})$	Gate source ESD (HBM-C=100pF, R=1.5K 2)	4000		KV
dv/dt (1)	Peak Diode Recovery voltage slope	4.5		V/ns
VISO	Insulation Withstand Voltage (DC)	-	2500	V
$\begin{gathered} \hline \mathrm{T}_{\mathrm{j}} \\ \mathrm{~T}_{\mathrm{stg}} \\ \hline \end{gathered}$	Operating Junction Temperature Storage Temperature	$\begin{aligned} & -55 \text { to } 150 \\ & -55 \text { to } 150 \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

(•) Pulse width limited by safe operating area

(*) Limited only by maximum temperature allowed
Table 4: Thermal Data

		TO-220	TO-220FP	
Rthj-case	Thermal Resistance Junction-case Max	0.83	3.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb T_{1}	Thermal Resistance Junction-ambient Max Maximum Lead Temperature For Soldering Purpose	$\begin{aligned} & 62.5 \\ & 300 \end{aligned}$		$\begin{gathered} \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} \end{gathered}$

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
$I_{A R}$	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by $\left.T_{j} m a x\right)$	6.7	A
$\mathrm{E}_{A S}$	Single Pulse Avalanche Energy $\left(\right.$ starting $\left.\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{AR}}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}\right)$	TBD	mJ

Table 6: Gate-Source Zener Diode

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
BV $_{\text {GSO }}$	Gate-Source Breakdown Voltage	Igs $= \pm 1 \mathrm{~mA}$ (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

ELECTRICAL CHARACTERISTICS (TCASE $=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE SPECIFIED)
Table 7: On/Off

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	850			V
$\mathrm{I}_{\mathrm{DSS}}$	Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{Max}$ Rating $\mathrm{V}_{\mathrm{DS}}=\mathrm{Max}$ Rating, $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			1 50	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{GSS}}$	Gate-body Leakage Current (VS $=0)$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$		± 10	$\mu \mathrm{~A}$	
$\mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$	3	3.75	4.5	V
$\mathrm{R}_{\mathrm{DS}(\text { on })}$	Static Drain-source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.35 \mathrm{~A}$		1.1	1.4	Ω

Table 8: DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{gfs}_{\text {f }}(1)$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.35 \mathrm{~A}$		TBD		S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\text {rss }} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0$		$\begin{gathered} 1800 \\ 160 \\ 27 \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Coss eq. (3)	Equivalent Output Capacitance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ to 560 V		TBD		pF
$\begin{gathered} \mathrm{t}_{\mathrm{d}(0 n)} \\ \mathrm{t}_{\mathrm{r}} \\ \mathrm{t}_{\mathrm{d}(\mathrm{ff})} \\ \mathrm{t}_{\mathrm{f}} \end{gathered}$	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.35 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 4) } \end{aligned}$		$\begin{aligned} & \hline \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{gathered} \hline \mathrm{t}_{\mathrm{r}(\mathrm{Voff})} \mathrm{t}_{\mathrm{tf}} \\ \mathrm{t}_{\mathrm{c}} \end{gathered}$	Off-voltage Rise Time Fall Time Cross-over Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=680 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.7 \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{G}}=4.7 \Omega, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 5) } \end{aligned}$		$\begin{aligned} & \hline \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{Q}_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=680 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.7 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ & \text { (see Figure 7) } \end{aligned}$		$\begin{gathered} \hline 60 \\ \text { TBD } \\ \text { TBD } \end{gathered}$	TBD	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\begin{gathered} I_{S D} \\ I_{S D M}(2) \end{gathered}$	Source-drain Current Source-drain Current (pulsed)				$\begin{gathered} \hline 6.7 \\ 26.7 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {SD }}$ (1)	Forward On Voltage	$\mathrm{I}_{\mathrm{SD}}=6.7 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			1.6	V
$\begin{gathered} \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{array}{\|l} \hline \mathrm{I} \mathrm{SD}=6.7 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ \mathrm{~V}_{\mathrm{DD}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ \text { (see Figure 5) } \\ \hline \end{array}$		$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$
$\begin{gathered} \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{array}{\|l} \hline \mathrm{ISD}=6.7 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \\ \mathrm{~V}_{\mathrm{DD}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ \text { (see Figure 5) } \end{array}$		$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		$\begin{gathered} \mathrm{ns} \\ \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$

Note: 1. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.
2. Pulse width limited by safe operating area.
3. $C_{\text {oss eq. }}$ is defined as a constant equivalent capacitance giving the same charging time as $C_{o s s}$ when $V_{D s}$ increases from 0 to 80% VDSS.

Figure 3: Unclamped Inductive Load Test Circuit

Figure 4: Switching Times Test Circuit For Resistive Load

Figure 5: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 6: Unclamped Inductive Wafeform

Figure 7: Gate Charge Test Circuit

TO-220 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
c	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
e	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
øP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

TO-220FP MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
H	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
\varnothing	3		3.2	0.118		0.126

Table 10: Revision History

Date	Revision	Description of Changes
02-Mar-2005	1	First Release.
03-Mar-2005	2	Modified value in table 7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2005 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

