FEATURES

256 Position
AD5280: 1-Channel
AD5282: 2-Channel (Independently Programmable)
Potentiometer Replacement
20 k Ω, 50 k Ω, 200 k Ω
Low Temperature Coefficient 30 ppm/ ${ }^{\circ} \mathrm{C}$
Internal Power-On Midscale Preset
5 V to 15 V Single-Supply; ± 5.5 V Dual-Supply Operation $I^{2} \mathrm{C}$ Compatible Interface

APPLICATIONS

Multimedia, Video, and Audio
Communications
Mechanical Potentiometer Replacement
Instrumentation: Gain, Offset Adjustment
Programmable Voltage Source
Programmable Current Source
Line Impedance Matching

GENERAL DESCRIPTION

The AD5280/AD5282 provides a single-/dual-channel, 256 -position digitally controlled variable resistor (VR) device. ${ }^{1}$ These devices perform the same electronic adjustment function as a potentiometer, trimmer, or variable resistor. Each VR offers a completely programmable value of resistance between the A terminal and the wiper or the B terminal and the wiper. The fixed A-to-B terminal resistance of $20 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, or $200 \mathrm{k} \Omega$ has a 1% chan-nel-to-channel matching tolerance. Nominal temperature coefficient of both parts is $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Another key feature of these parts is that they can operate up to +15 V or $\pm 5 \mathrm{~V}$.
Wiper position programming defaults to midscale at system power-on. Once powered, the VR wiper position is programmed by an $\mathrm{I}^{2} \mathrm{C}$ compatible 2 -wire serial data interface. Both parts have additional programmable logic outputs that enable users to drive digital loads, logic gates, LED drivers, and analog switches in their system.

The AD5280/AD5282 are available in thin surface-mount 14-lead and 16-lead TSSOP packages. All parts are guaranteed to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. For 3-wire SPI compatible interface applications, see AD5260/AD5262 products.

[^0]REV. 0

FUNCTIONAL BLOCK DIAGRAMS

AD5280/AD5282-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS $20 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 200 \mathrm{k} \Omega$ VERSION
$\left(V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}\right.$ or $\mathrm{V}_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}$; $\mathrm{V}_{\text {LOGIC }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=+\mathrm{V}_{D D}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
DC CHARACTERISTICS-RHEOS Resistor Differential NL^{2} Resistor Nonlinearity ${ }^{2}$ Nominal Resistor Tolerance ${ }^{3}$ Resistance Temperature Coefficient Wiper Resistance	AT MODE S R-DNL R-INL $\Delta \mathrm{R}_{\mathrm{AB}}$ $\mathrm{R}_{\mathrm{AB}} / \Delta \mathrm{T}$ R_{W}	cifications apply to all VRs $\begin{aligned} & \mathrm{R}_{\mathrm{WB}}, \mathrm{~V}_{\mathrm{A}}=\mathrm{NC} \\ & \mathrm{R}_{\mathrm{WB}}, \mathrm{~V}_{\mathrm{A}}=\mathrm{NC} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}, \text { Wiper }=\text { No Connect } \\ & \mathrm{I}_{\mathrm{W}}=\mathrm{V}_{\mathrm{DD}} / \mathrm{R}, \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l} -1 \\ -1 \\ -30 \end{array}$	$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 4 \\ & \\ & 30 \\ & 60 \end{aligned}$	$\begin{aligned} & +1 \\ & +1 \\ & +30 \\ & \\ & 150 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \% \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \Omega \end{aligned}$
DC CHARACTERISTICS-POTEN Resolution Integral Nonlinearity ${ }^{4}$ Differential Nonlinearity ${ }^{4}$ Voltage Divider Temperature Coefficient Full-Scale Error Zero-Scale Error	IOMETER D N INL DNL $\Delta \mathrm{V}_{\mathrm{W}} / \Delta \mathrm{T}$ $\mathrm{V}_{\text {WFSE }}$ $\mathrm{V}_{\text {WZSE }}$	VIDER MODE Specifications apply $\begin{aligned} & \text { Code }=80_{\mathrm{H}} \\ & \text { Code }=\mathrm{FF}_{\mathrm{H}} \\ & \text { Code }=00_{\mathrm{H}} \end{aligned}$	$\begin{array}{\|l} \hline \text { all VR } \\ 8 \\ -1 \\ -1 \\ \\ -2 \\ 0 \end{array}$	$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 4 \\ & 5 \\ & -1 \\ & +1 \\ & \hline \end{aligned}$	$\begin{aligned} & +1 \\ & +1 \\ & 0 \\ & +2 \end{aligned}$	Bits LSB LSB $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ LSB LSB
RESISTOR TERMINALS Voltage Range ${ }^{5}$ Capacitance ${ }^{6}$ A, B Capacitance ${ }^{6}$ W Common-Mode Leakage Shutdown Current	$\begin{aligned} & \mathrm{V}_{\mathrm{A}, \mathrm{~B}, \mathrm{~W}} \\ & \mathrm{C}_{\mathrm{A}, \mathrm{~B}} \\ & \mathrm{C}_{\mathrm{W}} \\ & \mathrm{I}_{\mathrm{CM}} \\ & \mathrm{I}_{\mathrm{SHDN}} \end{aligned}$	$\mathrm{f}=5 \mathrm{MHz}$, measured to GND, Code $=80_{\mathrm{H}}$ $\mathrm{f}=1 \mathrm{MHz}$, measured to GND, Code $=80_{\mathrm{H}}$ $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{W}}$	$\mathrm{V}_{\text {SS }}$	25 55	V_{DD}	V pF pF nA $\mu \mathrm{A}$
DIGITAL INPUTS AND OUTPUT Input Logic High Input Logic Low Input Logic High Input Logic Low Output Logic High (SDO) Output Logic Low (SDO) Input Current Input Capacitance ${ }^{6}$	V_{IH} $\mathrm{V}_{\text {IL }}$ V_{IH} $\mathrm{V}_{\text {IL }}$ V_{IH} $\mathrm{V}_{\text {IL }}$ I_{IL} C_{IL}	$\begin{aligned} & \mathrm{V}_{\text {LOGIC }}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \\ & \mathrm{~V}_{\text {LOGIC }}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \end{aligned}$ $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}$	$\begin{aligned} & 2.4 \\ & 2.1 \\ & 4.9 \end{aligned}$	5	$\begin{aligned} & 0.8 \\ & 0.6 \\ & 0.4 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \\ & \hline \end{aligned}$
POWER SUPPLIES Logic Supply Power Single-Supply Range Power Dual-Supply Range Logic Supply Current Positive Supply Current Negative Supply Current Power Dissipation ${ }^{7}$ Power Supply Sensitivity	$\mathrm{V}_{\text {LOGIC }}$ VD RANGE $\mathrm{V}_{\mathrm{DD} / \mathrm{SS} \text { RANGE }}$ $\mathrm{I}_{\text {LOGIC }}$ I_{DD} I_{SS} $\mathrm{P}_{\text {DISS }}$ PSS	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LOGIC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 5 \\ & \pm 4.5 \end{aligned}$	0.1 0.1 0.2 0.002	$\begin{aligned} & 5.5 \\ & 15 \\ & \pm 5.5 \\ & 60 \\ & 1 \\ & 1 \\ & 0.3 \\ & \\ & 0.01 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{~mW} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{6,8,9}$						
Bandwidth -3 dB Total Harmonic Distortion	BW_20K BW_50K BW_200K $\mathrm{THD}_{\mathrm{w}}$	$\begin{aligned} & \mathrm{R}_{\mathrm{AB}}=20 \mathrm{k} \Omega, \text { Code }=80_{\mathrm{H}} \\ & \mathrm{R}_{\mathrm{AB}}=50 \mathrm{k} \Omega, \text { Code }=80_{\mathrm{H}} \\ & \mathrm{R}_{\mathrm{AB}}=200 \mathrm{k} \Omega, \text { Code }=80_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{R}_{\mathrm{AB}}=20 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} \mathrm{DC}, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 310 \\ & 150 \\ & 35 \\ & 0.014 \end{aligned}$		kHz kHz kHz \%
V_{W} Settling Time	t_{s}	$\mathrm{V}_{\mathrm{A}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=5 \mathrm{~V},$ $\pm 1 \text { LSB error band }$		5		$\mu \mathrm{s}$
Crosstalk	CT	$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$, Measure VW1 with Adjacent RDAC Making Full-Scale Code Change		15		nV -s
Analog Crosstalk	CTA	Measure $\mathrm{V}_{\mathrm{W} 1}$ with $\mathrm{V}_{\mathrm{W} 2}=5 \mathrm{~V} \mathrm{p}-\mathrm{p}$ @ $\mathrm{f}=10 \mathrm{kHz}$		-62		dB
Resistor Noise Voltage	$\mathrm{e}_{\text {N_WB }}$			18		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Parameter	Symbol	Conditions	Min	Typ ${ }^{1}$	Max	Unit
INTERFACE TIMING CHARACTERISTICS	Applies to	parts ${ }^{6,10}$				
SCL Clock Frequency	$\mathrm{f}_{\text {SCL }}$				400	kHz
$\mathrm{t}_{\text {BUF }}$ Bus Free Time between STOP and START	t_{1}		1.3			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD}: \text { STA }}$ Hold Time (Repeated START)	t_{2}	After this period, the first clock pulse is generated	0.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {Low }}$ Low Period of SCL Clock	t_{3}		1.3			$\mu \mathrm{s}$
$\mathrm{t}_{\text {High }}$ High Period of SCL Clock	t_{4}		0.6		50	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Su:Sta }}$ Setup Time for START Condition	t_{5}		0.6			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD}: \mathrm{DAT}}$ Data Hold Time	t_{6}				0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU:Dat }}$ Data Setup Time	t_{7}		100			ns
$t_{\text {F }}$ Fall Time of Both SDA and SCL Signals	t_{8}				300	ns
t_{R} Rise Time of Both SDA and SCL Signals	t_{9}				300	ns
$\mathrm{t}_{\text {su:Sto }}$ Setup Time for STOP Condition	t_{10}		0.6			$\mu \mathrm{s}$

NOTES

${ }^{1}$ Typicals represent average readings at $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}$.
${ }^{2}$ Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.
${ }^{3} \mathrm{~V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}$, Wiper $\left(\mathrm{V}_{\mathrm{W}}\right)=$ No connect.
${ }^{4} \mathrm{INL}$ and DNL are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output D / A converter. $\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$. DNL specification limits of ± 1 LSB maximum are guaranteed monotonic operating conditions.
${ }^{5}$ Resistor terminals A, B, W have no limitations on polarity with respect to each other.
${ }^{6}$ Guaranteed by design and not subject to production test.
${ }^{7} \mathrm{P}_{\text {DISS }}$ is calculated from ($\mathrm{I}_{\mathrm{DD}} \times \mathrm{V}_{\mathrm{DD}}$). CMOS logic level inputs result in minimum power dissipation.
${ }^{8}$ Bandwidth, noise, and settling time are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest bandwidth. The highest R value results in the minimum overall power consumption.
${ }^{9}$ All dynamic characteristics use $V_{D D}=5 \mathrm{~V}$.
${ }^{10}$ See timing diagram for location of measured values.
Specifications subject to change without notice.

AD5280/AD5282

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$		Maximum Junction Temperature ($\mathrm{T}_{\mathrm{J}} \mathrm{MAX}$) $150^{\circ} \mathrm{C}$
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)		Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V_{DD} to GND	-0.3 V, +15 V	Lead Temperature
$\mathrm{V}_{\text {SS }}$ to GND	$0 \mathrm{~V},-7 \mathrm{~V}$	RU-14, RU-16 (Vapor Phase, 60 sec) $215^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	15 V	RU-14, RU-16 (Infrared, 15 sec) $2200^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$ to GND	$\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}$	
$\mathrm{A}_{\mathrm{X}}-\mathrm{B}_{\mathrm{X}}, \mathrm{A}_{\mathrm{X}}-\mathrm{W}_{\mathrm{X}}, \mathrm{B}_{\mathrm{X}}-\mathrm{W}_{\mathrm{X}}$		NOTES
Intermittent ${ }^{2}$	$\pm 20 \mathrm{~mA}$	${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause
Continuous	$\pm 5 \mathrm{~mA}$	permanent damage to the device. This is a stress rating; functional operation of the device at these or any other conditions above those listed in the operational
$\mathrm{V}_{\text {LoGIc }}$ to GND	$0 \mathrm{~V}, 7 \mathrm{~V}$	sections of this specification is not implied. Exposure to absolute maximum
Output Voltage to GND	$0 \mathrm{~V}, 7 \mathrm{~V}$	rating conditions for extended periods may affect device reliability.
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	${ }^{2}$ Maximum terminal current is bound by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied
Thermal Resistance ${ }^{3} \theta_{\mathrm{JA}}$, TSSOP-14 TSSOP-16	$\begin{aligned} & 206^{\circ} \mathrm{C} / \mathrm{W} \\ & 150^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	voltage across any two of the A, B, and W terminals at a given resistance. ${ }^{3}$ Package Power Dissipation $\left(\mathrm{T}_{\mathrm{J}} \mathrm{MAX}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$

ORDERING GUIDE

Model	Number of Channels	$\mathbf{R}_{\mathbf{A B}}$ $(\mathbf{k} \boldsymbol{\Omega})$	Temp	Package Description	Package Option	Parts Per Container	Branding Information*
AD5280BRU20	1	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-14	RU-14	96	AD5280B20
AD5280BRU20-REEL7	1	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-14	RU-14	1000	AD5280B20
AD5280BRU50	1	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-14	RU-14	96	AD5280B50
AD5280BRU50-REEL7	1	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-14	RU-14	1000	AD5280B50
AD5280BRU200	1	200	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-14	RU-14	96	AD5280B200
AD5280BRU200-REEL7	1	200	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-14	RU-14	1000	AD5280B200
AD5282BRU20	2	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	96	AD5282B20
AD5282BRU20-REEL7	2	20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	1000	AD5282B20
AD5282BRU50	2	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	96	AD5282B50
AD5282BRU50-REEL77	2	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	1000	AD5282B50
AD5282BRU200	2	200	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	96	AD5282B200
AD5282BRU200-REEL7	2	200	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16	1000	AD5282B200

The AD5280/AD5282 die size is $75 \mathrm{~mm} \times 120 \mathrm{~mm}, 9,000$ sq. mm. Contains 3077 transistors.
*Line 1 contains model number, Line 2 contains ADI logo followed by the end-to-end resistance value, and line 3 contains date code YYWW.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5280/AD5282 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

AD5280 PIN CONFIGURATION

AD5280 PIN FUNCTION DESCRIPTION

AD5280 PIN FUNCTION DESCRIPTION		
Pin	Mnemonic	Description
1	A	Resistor Terminal A
2	W	Wiper Terminal W
3	B	Resistor Terminal B
4	V_{DD}	Positive Power Supply. Specified for operation from 5 V to 15 V (Sum of $\left\|\mathrm{V}_{\mathrm{DD}}\right\|+\left\|\mathrm{V}_{\mathrm{SS}}\right\| \leq 15 \mathrm{~V}$).
5	$\overline{\text { SHDN }}$	Active Low, Asynchronous Connection of the Wiper W to Terminal B and Open Circuit of Terminal A. RDAC Register contents unchanged. $\overline{\text { SHDN }}$ should tie to V_{L} if not used.
6	SCL	Serial Clock Input
7	SDA	Serial Data Input/Output
8	AD0	Programmable Address Bit 0 for Multiple Package Decoding. Bits AD0 and AD1 provide four possible addresses.
9	AD1	Programmable Address Bit 1 for Multiple Package Decoding. Bits AD0 and AD1 provide four possible addresses.
10	GND	Common Ground
11	$\mathrm{V}_{\text {SS }}$	Negative Power Supply. Specified for operation from 0 V to -5 V (Sum of $\left.\left\|\mathrm{V}_{\mathrm{DD}}\right\|+\left\|\mathrm{V}_{\mathrm{SS}}\right\| \leq 15 \mathrm{~V}\right)$.
12	O_{2}	Logic Output Terminal O_{2}
13	V_{L}	Logic Supply Voltage. Needs to be the same voltage as the digital logic controlling the AD5280.
14	O_{1}	Logic Output Terminal O_{1}

AD5282 PIN CONFIGURATION

TPC 1. R-INL vs. Code vs. Supply Voltages

TPC 4. DNL vs. Code, $V_{D D} / V_{S S}= \pm 5 \mathrm{~V}$

TPC 7. INL Over Supply Voltage

TPC 2. R-DNL vs. Code vs. Supply Voltages

TPC 5. INL vs. Code vs. Supply Voltages

TPC 8. RINL Over Supply Voltage

$T P C$ 3. INL vs. Code, $V_{D D} / V_{S S}= \pm 5 \mathrm{~V}$

TPC 6. DNL vs. Code vs. Supply Voltages

TPC 9. Full-Scale Error

TPC 10. Zero-Scale Error

TPC 13. V ${ }_{\text {LOGIC }}$ Supply Current vs. Digital Input Voltage

TPC 16. Gain vs. Frequency vs. Code, $R_{A B}=20 \mathrm{k} \Omega$

TPC 11. Supply Current vs. Temperature

TPC 14. Rheostat Mode Tempco $\Delta R_{W B} / \Delta T$ vs. Code, $V_{D D} / V_{S S}= \pm 5 \mathrm{~V}$

TPC 17. Gain vs. Frequency
vs. Code, $R_{A B}=50 \mathrm{k} \Omega$

TPC 12. V ${ }_{\text {LOGIC }}$ Supply Current vs. Temperature

TPC 15. Potentiometer Mode Tempco $\Delta V_{W B} / \Delta T$ vs. Code, $V_{D D} / V_{S S}= \pm 5 \mathrm{~V}$

TPC 18. Gain vs. Frequency vs. Code, $R_{A B}=200 \mathrm{k} \Omega$

TPC 19. $-3 d B$ Bandwidth

TPC 22. PSRR vs. Frequency

TPC 25. Digital Feedthrough vs. Time

TPC 20. Normalized Gain Flatness vs. Frequency

TPC 23. Midscale Glitch Energy Code 80_{H} to $7 F_{H}$

TPC 26. I MAX vs. Code

TPC 21. V Logic Supply
Current vs. Frequency

TPC 24. Large Signal Settling Time

TPC 27. Channel-to-Channel Resistance Matching (AD5282)

TEST CIRCUITS

Test Circuits 1 to 11 define the test conditions used in the product specification table.

Test Circuit 1. Potentiometer Divider Nonlinearity Error (INL, DNL)

Test Circuit 2. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)

Test Circuit 3. Wiper Resistance

Test Circuit 4. Power Supply Sensitivity (PSS, PSSR)

Test Circuit 5. Inverting Gain

Test Circuit 6. Noninverting Gain

Figure 1. Detailed Timing Diagram

Data of AD5280/AD5282 is accepted from the $\mathrm{I}^{2} \mathrm{C}$ bus in the following serial format:

Where:
$\mathbf{S}=$ Start Condition
$\mathbf{P}=$ Stop Condition
$\underline{\mathbf{A}}=$ Acknowledge
$\overline{\mathbf{A}}=$ No Acknowledge
X = Don't Care
AD1, AD0 = Package Pin Programmable Address Bits
$\overline{\mathbf{A}} / \mathbf{B}=$ RDAC Subaddress Select. "Zero" for RDAC1 and "One" for RDAC2
RS = Midscale Reset, Active High (only affects selected channel)
$\mathbf{S D}=$ Shutdown. Same as $\overline{\text { SHDN }}$ pin operation except inverse logic (only affects selected channel)
$\mathbf{O}_{2}, \mathbf{O}_{1}=$ Output Logic Pin Latched Values, Default Logic 0
D7, D6, D5, D4, D3, D2, D1, D0 = Data Bits

Figure 2. Writing to the RDAC Register

Figure 3. Reading Data from a Previously Selected RDAC Register in Write Mode

OPERATION

The AD5280/AD5282 provides a single-/dual-channel, 256position, digitally controlled variable resistor (VR) device.
To program the VR settings, refer to the Digital Interface section. Both parts have an internal power-on preset that places the wiper at midscale during power-on, which simplifies the fault condition recovery at power-up. Operation of the power-on preset function also depends on the state of the V_{L} pin. In addition, the shutdown SHDN pin of the AD5280/AD5282 places the RDAC in an almost zero power consumption state where terminal A is open circuited and the wiper W is connected to terminal B , resulting in only leakage currents being consumed in the VR structure. During shutdown, the VR latch settings are maintained or new settings can be programmed. When the part is returned from shutdown, the corresponding VR setting will be applied to the RDAC.

Figure 4. AD5280/AD5282 Equivalent RDAC Circuit

PROGRAMMING THE VARIABLE RESISTOR

Rheostat Operation

The nominal resistance of the RDAC between terminals A and B is available in $20 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $200 \mathrm{k} \Omega$. The final two or three digits of the part number determine the nominal resistance value, e.g., $20 \mathrm{k} \Omega=20 ; 50 \mathrm{k} \Omega=50 ; 200 \mathrm{k} \Omega=200$. The nominal resistance $\left(\mathrm{R}_{A B}\right)$ of the VR has 256 contact points accessed by the wiper terminal, plus the B terminal contact. The 8 -bit data in the RDAC latch is decoded to select one of the 256 possible settings. Assuming a $20 \mathrm{k} \Omega$ part is used, the wiper's first connection starts at the B terminal for data 00_{H}. Since there is a 60Ω wiper contact resistance, such a connection yields a minimum of 60Ω resistance between terminals W and B. The second connection is the first tap point that corresponds to 138Ω $\left(\mathrm{R}_{\mathrm{WB}}=\mathrm{R}_{\mathrm{AB}} / 256+\mathrm{R}_{\mathrm{W}}=78 \Omega+60 \Omega\right)$ for data 01_{H}. The third connection is the next tap point representing $216 \Omega(78 \times 2+60)$ for data 02_{H}, and so on. Each LSB data value increase moves the wiper up the resistor ladder until the last tap point is reached at $19982 \Omega\left[\mathrm{R}_{\mathrm{AB}}-1 \mathrm{LSB}+\mathrm{R}_{\mathrm{W}}\right]$. Figure 4 shows a simplified diagram of the equivalent RDAC circuit where the last resistor
string will not be accessed; therefore, there is 1 LSB less of the nominal resistance at full scale in addition to the wiper resistance.
The general equation determining the digitally programmed output resistance between W and B is:

$$
\begin{equation*}
R_{W B}(D)=\frac{D}{256} \times R_{A B}+R_{W} \tag{1}
\end{equation*}
$$

where:
D is the decimal equivalent of the binary code loaded in the 8-bit RDAC Register.
$R_{A B}$ is the nominal end-to-end resistance.
R_{W} is the wiper resistance contributed by the on resistance of the internal switch.
Again, if $R_{A B}=20 \mathrm{k} \Omega$ and the A terminal is open circuited, the following output resistance values, R_{WB}, will be set for the following RDAC latch codes.

Table I. Codes and Corresponding Resistances

$\mathbf{D}(\mathbf{D E C})$	$\mathbf{R}_{\mathbf{W B}}(\boldsymbol{\Omega})$	Output State
255	19982	Full Scale $\left(\mathrm{R}_{\mathrm{AB}}-1 \mathrm{LSB}+\mathrm{R}_{\mathrm{W}}\right)$
128	10060	Midscale
1	138	1 LSB
0	60	Zero-Scale (Wiper Contact Resistance)

Note that in the zero-scale condition, a finite wiper resistance of 60Ω is present. Care should be taken to limit the current flow between W and B in this state to a maximum pulse current of no more than 20 mA . Otherwise, degradation or possible destruction of the internal switch contact can occur.

Similar to the mechanical potentiometer, the resistance of the RDAC between the wiper W and terminal A also produces a digitally controlled complementary resistance, R_{WA}. When these terminals are used, the B terminal can be opened. Setting the resistance value for R_{WA} starts at a maximum value of resistance and decreases as the data loaded in the latch increases in value. The general equation for this operation is:

$$
\begin{equation*}
R_{W A}(D)=\frac{256-D}{256} \times R_{A B}+R_{W} \tag{2}
\end{equation*}
$$

For $R_{A B}=20 \mathrm{k} \Omega$ and B terminal open circuited, the following output resistance, $R_{W A}$, will be set for the following RDAC latch codes.

Table II. Codes and Corresponding Resistances

\mathbf{D} (DEC)	$\mathbf{R}_{\mathrm{WA}}(\boldsymbol{\Omega})$	Output State
255	138	Full Scale
128	10060	Midscale
1	19982	1 LSB
0	20060	Zero Scale

The typical distribution of the nominal resistance, R_{AB}, from channel-to-channel matches within $\pm 1 \%$. Device-to-device matching is process lot dependent and is possible to have $\pm 30 \%$ variation. Since the resistance element is processed in thin film technology, the change in R_{AB} with temperature has a very low $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient.

AD5280/AD5282

PROGRAMMING THE POTENTIOMETER DIVIDER Voltage Output Operation

The digital potentiometer easily generates a voltage divider at wiper-to-B and wiper-to-A to be proportional to the input voltage at A-to-B. Unlike the polarity of $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$, which must be positive, voltage across $\mathrm{A}-\mathrm{B}, \mathrm{W}-\mathrm{A}$, and $\mathrm{W}-\mathrm{B}$ can be at either polarity provided that V_{SS} is powered by a negative supply.
If ignoring the effect of the wiper resistance for approximation, connecting A terminal to 5 V and B terminal to ground produces an output voltage at the wiper-to-B starting at 0 V up to 1 LSB less than 5 V . Each LSB of voltage is equal to the voltage applied across A-B divided by the 256 positions of the potentiometer divider. Since AD5280/AD5282 can be supplied by dual supplies, the general equation defining the output voltage at V_{W} with respect to ground for any valid input voltage applied to terminals A and B is:

$$
\begin{equation*}
V_{W}(D)=\frac{D}{256} V_{A}+\frac{256-D}{256} V_{B} \tag{3}
\end{equation*}
$$

For a more accurate calculation, which includes the effect of wiper resistance, V_{W} can be found as:

$$
\begin{equation*}
V_{W}(D)=\frac{R_{W B}(D)}{R_{A B}} V_{A}+\frac{R_{W A}(D)}{R_{A B}} V_{B} \tag{4}
\end{equation*}
$$

Operation of the digital potentiometer in the Divider Mode results in a more accurate operation overtemperature. Unlike the Rheostat Mode, the output voltage is dependent mainly on the ratio of the internal resistors $R_{W A}$ and $R_{W B}$ and not on the absolute values; therefore, the temperature drift reduces to $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

DIGITAL INTERFACE

2-Wire Serial Bus

The AD5280/AD5282 are controlled via an $\mathrm{I}^{2} \mathrm{C}$ compatible serial bus. The RDACs are connected to this bus as slave devices.
Referring to Figures 2 and 3, the first byte of AD5280/AD5282 is a Slave Address Byte. It has a 7-bit slave address and an R/W bit. The 5 MSBs are 01011 and the following two bits are determined by the state of the AD 0 and AD 1 pins of the device. AD 0 and AD1 allow the user to place up to four of the $\mathrm{I}^{2} \mathrm{C}$ compatible devices on one bus.
The 2 -wire $\mathrm{I}^{2} \mathrm{C}$ serial bus protocol operates as follows:

1. The master initiates data transfer by establishing a START condition, which is when a high-to-low transition on the SDA line occurs while SCL is high (see Figure 2). The following byte is the Slave Address Byte which consists of the 7 -bit slave address followed by an $\mathrm{R} / \overline{\mathrm{W}}$ bit (this bit determines whether data will be read from or written to the slave device).
The slave whose address corresponds to the transmitted address responds by pulling the SDA line low during the ninth clock pulse (this is termed the Acknowledge bit). At this stage, all other devices on the bus remain idle while the selected device waits for data to be written to or read from its serial register. If the $\mathrm{R} / \overline{\mathrm{W}}$ bit is high, the master will read from the slave device. On the other hand, if the $\mathrm{R} \overline{\mathrm{W}}$ bit is low, the master will write to the slave device.
2. A write operation contains an extra Instruction Byte more than a read operation. Such an Instruction Byte in Write Mode follows the Slave Address Byte. The MSB of the Instruction

Byte labeled $\overline{\mathrm{A}} / \mathrm{B}$ is the RDAC subaddress select. A "low" selects RDAC1 and a "high" selects RDAC2 for the dualchannel AD5282. Set \bar{A} / B to low for the AD5280.
The second MSB, RS, is the midscale reset. A logic high on this bit moves the wiper of a selected channel to the center tap where $\mathrm{R}_{\mathrm{WA}}=\mathrm{R}_{\mathrm{WB}}$. This feature effectively writes over the contents of the register, and thus when taken out of reset mode, the RDAC will remain at midscale.
The third MSB SD is a shutdown bit. A logic high causes the selected channel to open circuit at terminal A while shorting the wiper to terminal B . This operation yields almost 0Ω in Rheostat Mode or 0 V in Potentiometer Mode. This SD bit serves the same function as the SHDN pin except that the $\overline{\text { SHDN }}$ pin reacts to active low. Also, the $\overline{\text { SHDN }}$ pin affects both channels (AD5282) as opposed to the SD bit, which only affects the channel that is being written to. It is important to note that the shutdown operation does not disturb the contents of the register. When brought out of shutdown, the previous setting will be applied to the RDAC.

The following two bits are O 1 and O 2 . They are extra programmable logic outputs that can be used to drive other digital loads, logic gates, LED drivers, analog switches, and so on. The three LSBs are Don't Care (see Figure 2).
3. After acknowledging the Instruction Byte, the last byte in Write Mode is the Data Byte. Data is transmitted over the serial bus in sequences of nine clock pulses (eight data bits followed by an Acknowledge bit). The transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL (see Figure 2).
4. In the Read Mode, the Data Byte follows immediately after the acknowledgment of the Slave Address Byte. Data is transmitted over the serial bus in sequences of nine clock pulses (a slight difference with the Write Mode, where there are eight data bits followed by an Acknowledge bit). Similarly, the transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL (see Figure 3).
5. When all data bits have been read or written, a Stop condition is established by the master. A Stop condition is defined as a low-to-high transition on the SDA line while SCL is high. In Write Mode, the master will pull the SDA line high during the tenth clock pulse to establish a Stop condition, (see Figure 2). In Read Mode, the master will issue a No Acknowledge for the ninth clock pulse (i.e., the SDA line remains high). The master will then bring the SDA line low before the tenth clock pulse, which goes high to establish a Stop condition (see Figure 3).
A repeated write function gives the user flexibility to update the RDAC output a number of times after addressing and instructing the part only once. During the write cycle, each data byte will update the RDAC output. For example, after the RDAC has acknowledged its slave address and instruction bytes, the RDAC output will update after these two bytes. If another byte is written to the RDAC while it is still addressed to a specific slave device with the same instruction, this byte will update the output of the selected slave device. If different instructions are needed, the Write Mode has to start with a new Slave Address, Instruction, and Data Byte again. Similarly, a repeated read function of the RDAC is also allowed.

READBACK RDAC VALUE

AD5280/AD5282 allows the user to read back the RDAC values in the Read Mode. However, for the AD5282 dual-channel device, the channel of interest is the one that is previously selected in the Write Mode. In the case where users need to read the RDAC values of both channels in AD5282, they can program the first subaddress in Write Mode and then change to Read Mode to read the first channel value. After that, they can change back to Write Mode with the second subaddress and finally read the second channel value in Read Mode again. Note that it is not necessary for users to issue the Frame 3 data byte in Write Mode for subsequent readback operation. Users should refer to Figures 2 and 3 for the programming format.

ADDITIONAL PROGRAMMABLE LOGIC OUTPUT

AD5280/AD5282 features additional programmable logic outputs, O_{1} and O_{2}, which can be used to drive a digital load, analog switches, and logic gates. O_{1} and O_{2} default to Logic 0 . The logic states of O_{1} and O_{2} can be programmed in Frame 2 under the Write Mode (see Figure 2). These logic outputs have adequate current driving capability to sink/source milliamperes of load.
Users can also activate O_{1} and O_{2} in three different ways without affecting the wiper settings. They may do the following:

1. Start, Slave Address Byte, Acknowledge, Instruction Byte with O_{1} and O_{2} specified, Acknowledge, Stop.
2. Complete the write cycle with Stop, then Start, Slave Address Byte, Acknowledge, Instruction Byte with O_{1} and O_{2} specified, Acknowledge, Stop.
3. Do not complete the write cycle by not issuing the Stop, then Start, Slave Address Byte, Acknowledge, Instruction Byte with O_{1} and O_{2} specified, Acknowledge, Stop.

SELF-CONTAINED SHUTDOWN FUNCTION

Shutdown can be activated by strobing the SHDN pin or programming the SD bit in the Write Mode Instruction Byte. In addition, shutdown can even be implemented with the device digital output as shown in Figure 5. In this configuration, the device will be shut down during power-up, but users are allowed to program the device. Thus when O_{1} is programmed high, the device will exit from Shutdown Mode and respond to the new setting. This self-contained shutdown function allows absolute shutdown during power-up, which is crucial in hazardous environments, without adding extra components.

Figure 5. Shutdown by Internal Logic Output

MULTIPLE DEVICES ON ONE BUS

Figure 6 shows four AD5282 devices on the same serial bus. Each has a different slave address since the states of their AD0 and AD1 pins are different. This allows each RDAC within each device to be written to or read from independently. The master device output bus line drivers are open-drain pull-downs in a fully $\mathrm{I}^{2} \mathrm{C}$ compatible interface.

Figure 6. Multiple AD5282 Devices on One Bus

LEVEL SHIFT FOR BIDIRECTIONAL INTERFACE

While most old systems may be operated at one voltage, a new component may be optimized at another. When two systems operate the same signal at two different voltages, proper level shifting is needed. For instance, one can use a $3.3 \mathrm{~V} \mathrm{E}^{2} \mathrm{PROM}$ to interface with a 5 V digital potentiometer. A level shift scheme is needed to enable a bidirectional communication so that the setting of the digital potentiometer can be stored to and retrieved from the E^{2} PROM. Figure 7 shows one of the implementations. M1 and M2 can be any N-Ch signal FETs or low threshold FDV301N if V_{DD} falls below 2.5 V .

Figure 7. Level Shift for Different Potential Operation

LEVEL SHIFT FOR NEGATIVE VOLTAGE OPERATION

The digital potentiometer is popular in laser diode driver and certain telecommunications equipment level-setting applications. These applications are sometimes operated between ground and some negative supply voltage such that the systems can be biased at ground to avoid large bypass capacitors that may significantly impede the ac performance. Like most digital potentiometers, AD5280/AD5282 can be configured with a negative supply (see Figure 8).

Figure 8. Biased at Negative Voltage

AD5280/AD5282

However, the digital inputs must also be level shifted to allow proper operation since the ground is now referenced to the negative potential. As a result, Figure 9 shows one implementation with a few transistors and a few resistors. When $\mathrm{V}_{\text {IN }}$ is below Q3's threshold value, Q3 is off, Q1 is off, and Q2 is on. In this state, $\mathrm{V}_{\text {OUT }}$ approaches 0 V . When $\mathrm{V}_{\text {IN }}$ is above $2 \mathrm{~V}, \mathrm{Q} 3$ is on, Q1 is on, and Q2 is turned off. In this state, $\mathrm{V}_{\text {OUT }}$ is pulled down to V_{SS}. Beware that proper time shifting is also needed for successful communication with the device.

Figure 9. Level Shift for Bipolar Potential Operation

ESD PROTECTION

All digital inputs are protected with a series input resistor and parallel Zener ESD structures shown in Figure 10; applies to digital input pins, SDA, SCL, and SHDN.

Figure 10a. ESD Protection of Digital Pins

Figure 10b. ESD Protection of Resistor Terminals

TERMINAL VOLTAGE OPERATING RANGE

The AD5280/AD5282 positive $V_{D D}$ and negative $V_{\text {SS }}$ power supply defines the boundary conditions for proper 3-terminal digital potentiometer operation. Supply signals present on terminals A, B, and W that exceed V_{DD} or V_{SS} will be clamped by the internal forward biased diodes (see Figure 11).

Figure 11. Maximum Terminal Voltages Set by $V_{D D}$ and $V_{S S}$

POWER-UP SEQUENCE

Since there are ESD protection diodes that limit the voltage compliance at terminals A, B, and W (see Figure 11), it is important to power $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ before applying any voltage to terminals A, B, and W . Otherwise, the diode will be forward biased such that $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$ will be powered unintentionally and may affect the rest of the user's circuit. The ideal power-up sequence is in the following order: $\mathrm{GND}, \mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, digital inputs, and $\mathrm{V}_{\mathrm{A} / \mathrm{B} / \mathrm{W}}$. The order of powering $\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{W}}$, and digital inputs is not important as long as they are powered after $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$.

LAYOUT AND POWER SUPPLY BYPASSING

It is a good practice to employ compact, minimum lead length layout design. The leads to the input should be as direct as possible with a minimum conductor length. Ground paths should have low resistance and low inductance.

Similarly, it is also a good practice to bypass the power supplies with quality capacitors for optimum stability. Supply leads to the device should be bypassed with $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ disc or chip ceramics capacitors. Low ESR $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum or electrolytic capacitors should also be applied at the supplies to minimize any transient disturbance and filter low frequency ripple (see Figure 12). Notice the digital ground should also be joined remotely to the analog ground at one point to minimize the digital ground bounce.

Figure 12. Power Supply Bypassing

APPLICATIONS

Bipolar DC or AC Operation from Dual Supplies

The AD5280/AD5282 can be operated from dual supplies enabling control of ground referenced ac signals or bipolar operation. The ac signal, as high as $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$, can be applied directly across terminals $\mathrm{A}-\mathrm{B}$ with the output taken from terminal W. See Figure 13 for a typical circuit connection.

Figure 13. Bipolar Operation from Dual Supplies

Gain Control Compensation

The digital potentiometer is commonly used in gain control such as the noninverting gain amplifier shown in Figure 14.

Figure 14. Typical Noninverting Gain Amplifier
Notice the RDAC B terminal parasitic capacitance is connected to the op amp noninverting node. It introduces a zero for the $1 / \beta_{0}$ term with $20 \mathrm{~dB} / \mathrm{dec}$, whereas a typical op amp GBP has $-20 \mathrm{~dB} / \mathrm{dec}$ characteristics. A large R2 and finite C1 can cause this zero's frequency to fall well below the crossover frequency. Thus the rate of closure becomes $40 \mathrm{~dB} / \mathrm{dec}$ and the system has 0° phase margin at the crossover frequency. The output may ring or oscillate if the input is a rectangular pulse or step function. Similarly, it is also likely to ring when switching between two gain values because this is equivalent to a step change at the input.
Depending on the op amp GBP, reducing the feedback resistor may extend the zero's frequency far enough to overcome the problem. A better approach is to include a compensation capacitor C 2 to cancel the effect caused by C 1 . Optimum compensation occurs when $\mathrm{R} 1 \times \mathrm{C} 1=\mathrm{R} 2 \times \mathrm{C} 2$. This is not an option because of the variation of R 2 . As a result, one may use the relationship above and scale C 2 as if R 2 is at its maximum value. Doing so may overcompensate and compromise the performance slightly when R2 is set at low values. However, it will avoid the gain peaking, ringing, or oscillation at the worst case. For critical applications, C 2 should be found empirically to suit the need. In general, C 2 in the range of a few pF to no more than a few tenths of pF is usually adequate for the compensation.
Similarly, there are W and A terminal capacitances connected to the output (not shown); fortunately their effect at this node is less significant and the compensation can be avoided in most cases.

Programmable Voltage Reference

For Voltage Divider Mode operation, Figure 15, it is common to buffer the output of the digital potentiometer unless the load is much larger than R_{WB}. Not only does the buffer serve the purpose of impedance conversion, it also allows a heavier load to be driven.

Figure 15. Programmable Voltage Reference

8-Bit Bipolar DAC

Figure 16 shows a low cost, 8 -bit, bipolar DAC. It offers the same number of adjustable steps but not the precision as compared to the conventional DACs. The linearity and temperature coefficients, especially at low value codes, are skewed by the effects of the digital potentiometer wiper resistance. The output of this circuit is:

$$
\begin{equation*}
V_{O}=\left(\frac{2 D}{256}-1\right) \times V_{R E F} \tag{5}
\end{equation*}
$$

Figure 16. 8-Bit Bipolar DAC

Bipolar Programmable Gain Amplifier

For applications that require bipolar gain, Figure 17 shows one implementation similar to the previous circuit. The digital potentiometer, U_{1}, sets the adjustment range. The wiper voltage at W_{2} can therefore be programmed between V_{i} and $-\mathrm{KV}_{\mathrm{i}}$ at a given U_{2} setting. Configuring A_{2} in the Noninverting Mode allows linear gain and attentuation. The transfer function is:

$$
\begin{equation*}
\frac{V_{O}}{V_{i}}=\left(1+\frac{R 2}{R 1}\right) \times\left(\frac{D 2}{256} \times(1+K)-K\right) \tag{6}
\end{equation*}
$$

where K is the ratio of $\mathrm{R}_{\mathrm{WB} 1} / \mathrm{R}_{\mathrm{WA} 1}$ set by U_{1}.

Figure 17. Bipolar Programmable Gain Amplifier
Similar to the previous example, in the simpler (and much more usual) case, where $K=1$, a single digital potentiometer AD5280 is used and U_{1} is replaced by a matched pair of resistors to apply V_{i} and $-V_{i}$ at the ends of the digital potentiometer. The relationship becomes:

$$
\begin{equation*}
V_{O}=\left(1+\frac{R 2}{R 1}\right)\left(\frac{2 D 2}{256}-1\right) \times V_{i} \tag{7}
\end{equation*}
$$

If R2 is large, a few pF compensation capacitor may be needed to avoid any gain peaking.

Table III shows the result of adjusting D , with A 2 configured as a unity gain, a gain of 2 , and a gain of 10 . The result is a bipolar amplifier with linearly programmable gain and 256 -step resolution.

Table III. Result of Bipolar Gain Amplifier

\mathbf{D}	$\mathbf{R} 1=\infty, \mathbf{R 2}=\mathbf{0}$	$\mathbf{R} 1=\mathbf{R} 2$	$\mathbf{R 2}=\mathbf{9 R} 1$
0	-1	-2	-10
64	-0.5	-1	-5
128	0	0	0
192	0.5	1	5
255	0.968	1.937	9.680

Programmable Voltage Source with Boosted Output
For applications that require high current adjustments such as a laser diode driver or tunable laser, a boosted voltage source can be considered (see Figure 18).

Figure 18. Programmable Booster Voltage Source In this circuit, the inverting input of the op amp forces the $V_{\text {BIAS }}$ to be equal to the wiper voltage set by the digital potentiometer. The load current is then delivered by the supply via the N -Ch FET N1. N1's power handling must be adequate to dissipate $\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{O}}\right) \times \mathrm{I}_{\mathrm{L}}$ power. This circuit can source a maximum of 100 mA with a 5 V supply. A1 needs to be a rail-to-rail input type. Fore precision applications, a voltage reference such as ADR423, ADR292, or AD1584 can be applied at the input of the digital potentiometer.

Programmable 4 to 20 mA Current Source

A programmable 4 to 20 mA current source can be implemented with the circuit shown in Figure 19. REF191 is a unique, low supply headroom and high current handling precision reference that can deliver 20 mA at 2.048 V . The load current is simply the voltage across terminals B to W of the digital potentiometer divided by R_{S} :

$$
\begin{equation*}
I_{L}=\frac{V_{R E F} \times D}{R_{S} \times 2^{N}} \tag{8}
\end{equation*}
$$

Figure 19. Programmable 4 to 20 mA Current Source
The circuit is simple, but beware of two things. First, dual supply op amps are ideal because the ground potential of REF191 can swing from -2.048 V at zero scale to V_{L} at full scale of the potentiometer setting. Although the circuit works under single supply, the programmable resolution of the system will be reduced.
For applications that demand higher current capabilities, a few changes to the circuit in Figure 19 will produce an adjustable current in the range of hundreds of mA . First, the voltage reference needs to be replaced with a high current, low dropout regulator, such as the ADP3333, and the op amp needs to be swapped with a high current dual-supply model, such as the AD8532. Depending on the desired range of current, an appropriate value for R_{S} must be calculated. Because of the high current flowing to the load, the user must pay attention to the load impedance so as not to drive the op amp beyond the positive rail.

Programmable Bidirectional Current Source

For applications that require bidirectional current control or higher voltage compliance, a Howland current pump can be a solution (see Figure 20). If the resistors are matched, the load current is:

$$
\begin{equation*}
I_{L}=\frac{\frac{\left(R 2_{A}+R 2_{B}\right)}{R 1}}{R 2_{B}} \times V_{W} \tag{9}
\end{equation*}
$$

Figure 20. Programmable Bidirectional Current Source
$R 2_{B}$ in theory can be made as small as needed to achieve the current needed within A_{2} 's output current driving capability. In this circuit, OP2177 can deliver $\pm 5 \mathrm{~mA}$ in either direction, and the voltage compliance approaches 15 V . It can be shown that the output impedance is:

$$
\begin{equation*}
Z_{O}=\frac{R 1^{\prime} \times R 2_{B}\left(R 1+R 2_{A}\right)}{R 1 \times R 2^{\prime}-R 1^{\prime}\left(R 2_{A}+R 2_{B}\right)} \tag{10}
\end{equation*}
$$

This output impedance can be infinite if resistors $R 1^{\prime}$ and $R 2^{\prime}$ match precisely with $R 1$ and $R 2_{A}+R 2_{B}$, respectively. On the other hand, it can be negative if the resistors are not matched. As a result, $C 1$ in the range of 1 pF to 10 pF , is needed to prevent the oscillation.

Programmable Low-Pass Filter

In A/D conversion applications, it is common to include an antialiasing filter to band-limit the sampling signal. Dual-channel digital potentiometers can be used to construct a second order Sallen Key low-pass filter (see Figure 21). The design equations are:

$$
\begin{align*}
& \frac{V_{O}}{V_{i}}=\frac{\omega_{o}{ }^{2}}{S^{2}+\frac{\omega_{o}}{Q} S+\omega_{o}{ }^{2}} \tag{11}\\
& \omega_{O}=\sqrt{\frac{1}{R 1 R 2 C 1 C 2}} \tag{12}\\
& Q=\frac{1}{R 1 C 1}+\frac{1}{R 2 C 2} \tag{13}
\end{align*}
$$

Users can first select some convenient values for the capacitors. To achieve maximally flat bandwidth where $Q=0.707$, let $C 1$ be twice the size of $C 2$ and let $R 1=R 2$. As a result, the user can adjust R1 and R2 to the same settings to achieve the desirable bandwidth.

Figure 21. Sallen Key Low-Pass Filter

PROGRAMMABLE OSCILLATOR

In a classic Wien-bridge oscillator (Figure 22), the Wien network (R, R', C, C') provides positive feedback, while R1 and R2 provide negative feedback. At the resonant frequency, $f o$, the overall phase shift is zero, and the positive feedback causes the circuit to oscillate. With $\mathrm{R}=\mathrm{R}^{\prime}, \mathrm{C}=\mathrm{C}^{\prime}$, and $\mathrm{R} 2=\mathrm{R} 2_{\mathrm{A}} / /\left(\mathrm{R} 2_{\mathrm{B}}+\right.$ $\mathrm{R}_{\text {diode }}$), the oscillation frequency is:

$$
\begin{equation*}
\omega_{O}=\frac{1}{R C} \text { or } f_{O}=\frac{1}{2 \pi R C} \tag{14}
\end{equation*}
$$

where R is equal R_{WA} such that:

$$
\begin{equation*}
R=\frac{256-D}{256} R_{A B} \tag{15}
\end{equation*}
$$

At resonance, setting:

$$
\begin{equation*}
\frac{R 2}{R 1}=2 \tag{16}
\end{equation*}
$$

balances the bridge. In practice, $R 2 / R 1$ should be set slightly larger than 2 to ensure the oscillation can start. On the other hand, the alternate turn-on of the diodes $D 1$ and $D 2$ ensures that $R 2 / R 1$ are smaller than 2 momentarily, and therefore stabilizes the oscillation.
Once the frequency is set, the oscillation amplitude can be tuned by $R 2_{B}$ since:

$$
\begin{equation*}
\frac{2}{3} V_{O}=I_{D} R 2_{B}+V_{D} \tag{17}
\end{equation*}
$$

V_{0}, I_{D}, and V_{D} are interdependent variables. With proper selection of $R 2_{\mathrm{B}}$, an equilibrium will be reached such that V_{O} converges. $R 2_{\mathrm{B}}$ can be in series with a discrete resistor to increase the amplitude, but the total resistance cannot be too large to prevent saturation of the output.

Figure 22. Programmable Oscillator with Amplitude Control

AD5280/AD5282

Resistance Scaling

AD5280/AD5282 offers $20 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $200 \mathrm{k} \Omega$ nominal resistance. Users who need a lower resistance and the same number of step adjustments can place multiple devices in parallel. For example, Figure 23 shows a simple scheme of paralleling both channels of the AD5282. To adjust half of the resistance linearly per step, users need to program both channels to the same settings.

Figure 23. Reduce Resistance by Half with Linear Adjustment Characteristics
Applicable only to the Voltage Divider Mode, by paralleling a discrete resistor as shown in Figure 24, a proportionately lower voltage appears at terminal A. This translates into a finer degree of precision because the step size at terminal W will be smaller. The voltage can be found as:

$$
\begin{equation*}
V_{W}(D)=\frac{D}{256} \times\left(\frac{V_{D D}}{R 3+R_{A B} / / R 2}\right) \times\left(R_{A B} / / R 2\right) \tag{18}
\end{equation*}
$$

Figure 24. Lowering the Nominal Resistance
Figures 23 and 24 show that the digital potentiometers change steps linearly. On the other hand, log taper adjustment is usually preferred in applications like volume control. Figure 25 shows another way of resistance scaling. In this circuit, the smaller the R 2 with respect to R_{AB}, the more the pseudo \log taper characteristic behaves.

Figure 25. Resistor Scaling with Log Adjustment Characteristics

RDAC CIRCUIT SIMULATION MODEL

Figure 26. RDAC Circuit Simulation Model for $R D A C=20 \mathrm{k} \Omega$
The internal parasitic capacitances and the external capacitive loads dominate the ac characteristics of the RDACs. Configured as a potentiometer divider, the -3 dB bandwidth of the AD5280 ($20 \mathrm{k} \Omega$ resistor) measures 310 kHz at half scale. TPC 19 provides the large signal BODE plot characteristics of the three available resistor versions- $20 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $200 \mathrm{k} \Omega$. A parasitic simulation model is shown in Figure 26. A macro model net list for the $20 \mathrm{k} \Omega$ RDAC is provided.

Macro Model Net List for RDAC
 .PARAM D=256, RDAC=20E3
 *

.SUBCKT DPOT (A,W,B)
*

CA	A	0	$25 \mathrm{E}-12$
RWA	A	W	$\left\{(1-\mathrm{D} / 256)^{*} \mathrm{RDAC}+60\right\}$
CW	W	0	$55 \mathrm{E}-12$
RWB	W	B	$\left\{\mathrm{D} / 256^{*} \mathrm{RDAC}+60\right\}$
CB	B	0	$25 \mathrm{E}-12$

.ENDS DPOT

Resistance Tolerance, Drift, and Temperature Coefficient Mismatch Considerations

In a Rheostat Mode operation such as gain control, Figure 27, the tolerance mismatch between the digital potentiometer and the discrete resistor can cause repeatability issues among various systems. Because of the inherent matching of the silicon process, it is practical to apply the dual-channel device in this type of application. As such, R1 should be replaced by one of the channels of the digital potentiometer. R1 should be programmed to a specific value while R2 can be used for the adjustable gain. Although it adds cost, this approach minimizes the tolerance and temperature coefficient mismatch between R1 and R2. In addition, this approach also tracks the resistance drift over time. As a result, these nonideal parameters become less sensitive to the system variations.

*REPLACED WITH ANOTHER CHANNEL OF RDAC
Figure 27. Linear Gain Control with Tracking Resistance Tolerance and Drift

Notice the circuit in Figure 28 can also be used to track the tolerance, temperature coefficient, and drift in this particular application. However, the characteristics of the transfer function change from a linear to pseudo-logarithmic gain function.

Figure 28. Nonlinear Gain Control with Tracking Resistance Tolerance and Drift

OUTLINE DIMENSIONS

14-Lead Thin Shrink Small Outline Package (TSSOP) (RU-14)
 Dimensions shown in millimeters

16-Lead Thin Shrink Small Outline Package (TSSOP)
(RU-16)
Dimensions shown in millimeters

[^0]: *Patent Pending.
 NOTE
 ${ }^{1}$ The terms digital potentiometer, VR, and RDAC are used interchangeably.

