

FEATURES

- 0...4 "H₂O
- Accurate low pressure readings
- Low cost
- · High impedance bridge
- · Low noise
- Low power consumption
 for battery operation

APPLICATIONS

- Medical instrumentation
- Portable and battery powered equipment
- Air flow monitoring
- · HVAC
- Industrial controls

EQUIVALENT CIRCUIT

GENERAL DESCRIPTION

The SLP series of pressure sensors provides low cost measuring for very low pressures. These devices were specifically designed to accurately measure differential and gage pressures of 0 to 4 "H₂O. They are compatible for use with non-corrosive and non-ionic media, such as air and dry gases.

The devices allow application of pressure to either side of the diaphragm and can be used for gage or differential pressure measurements.

Scale:	1 cm ½ inch
	/2

ELECTRICAL CONNECTION

July 2005 / 046

SENSOR ECHNICS

1/4

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V_s Temperature range Operating Storage Common-mode pressure Lead temperature (soldering 4 sec.) Proof pressure Burst pressure¹

0 to 50°C 0 to 70°C 150 "H₂O 250°C 10 "H₂O 5 psi or 150 "H₂O

 $7.5 V_{DC}$

SLP004D PERFORMANCE CHARACTERISTICS¹

Characteristics	Min.	Тур.	Max.	Unit
Operating pressure			4	"H,O
Sensitivity $T_{a} = 25^{\circ}C$	+1700	+2500	+5500	μV/V/̈̈́́́Ψ,O
Full-scale span 4 "H ₂ O ²	+34	+50	+110	mV
Temperature coefficient of span ^{5,8}	-2850	-2400	-1950	ppm/°C
Zero pressure offset $T_{a} = 25^{\circ}C$	-40	0	+40	mV
Temperature coefficient of offset ⁵		±4		µV/V°C
Combined linearity and hysteresis ³		0.5	1.0	%FS
Long term stability of offset and sensitivity ⁷		0.5		%FS
Response time (10 % to 90 %) ⁶		0.5		ms
Input resistance $T_{A} = 25^{\circ}C$		4.65		kΩ
Temperature coefficient of resistance ^{5,8}	+2100	+2300	+2500	ppm/°C
Output impedance		4.70		kΩ
Repeatability ⁴		0.2		%FS
Position sensitivity		50		μV/V/g

WARNING:

Due to the delicate nature of these very sensitive devices, some special handling is required . Parts are sensitive to shock and vibration and must be handled with care. Dropping on any hard surface (bench top etc.) can destroy the device. Note 10 $"H_2O$ overpressure.

Specification notes:

- 1. Reference conditions: supply voltage, $V_s = 5 V_{DC}$, $T_A = 25^{\circ}$ C, common-mode line pressure = 0 psig, pressure applied to P2. 2. Span is the algebraic difference between the output voltage at full scale pressure and the output at zero pressure.
- Span is the algebraic difference between the output voltage at full scale pressure and the output at zero pressure.
 See Definition of Terms: Hysteresis the maximum output difference at any point within the operating pressure range for increasing and decreasing pressure.
- 4. Maximum difference in output at any pressure with the operating pressure range an temperature within 0°C to +50°C after:
 a) 1,000 temperature cycles, 0°C to 50°C
 - b) 1.5 million pressure cycles, 0 psi to full-scale span
- 5. Slope of the best straight line from 0°C to 50°C. For operation outside this temperature, contact factory for more specific applications information.
- 6. Response time for a 0 psi to full-scale span pressure step change. 10 % to 90 % rise time.
- 7. Long term stability over a one year period.
- 8. This parameter is is not 100 % tested. It is guaranteed by process design and tested on a sample basis only.
- 9. If the maximum burst pressure is exceeded, even momentarily, the package may leak or burst, or the pressure sensing die may fracture.

July 2005 / 046

SENSOR IECHNICS

www.sensortechnics.com

TYPICAL PERFORMANCE CHARACTERISTICS

0.1 Hz to 10 Hz Noise

APPLICATION INFORMATION

General Information

The SLP family of pressure sensors function as a wheatstone bridge. When pressure applied to the device the resistors in the arms of the bridge change as shown in Figure 1.

The resulting differential output voltage, V_o, is easily shown to by V_o = V_B x ΔR . Since the change in resistance is directly proportional to pressure, V_o can be written as: V_o = S x P x V_B + V_{os}

where:

- V_0 is the output voltage in mV
- S is the sensitivity in mV/V psi
- P is the pressure in psi
- $V_{\rm B}$ is the bridge voltage in volts
- V_{os} is the offset error
 - (the differential output voltage when the applied pressure is zero).

For a complete application discussion see SenSym's SCC series datasheet.

July 2005 / 046

SENSOR IECHNICS

3/4

PHYSICAL DIMENSIONS

dimensions in inches (mm)

ORDERING INFORMATION

4/4

	Order part number		
Pressure range	Button package	DIP package	
0 to 4 "H ₂ O	SLP004D	SLP004DD4	

SenSym and Sensortechnics reserve the right to make changes to any products herein. SenSym and Sensortechnics do not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

July 2005 / 046

SENSOR IECHNICS

www.sensortechnics.com