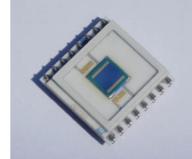
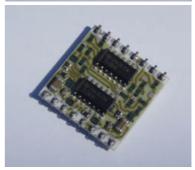
SPC - PSD

High Linearity Position Sensing Detector with Signal Processing Circuit


Partnumber: \$2 - 0209


Description: 2L4_SU66_SPC01

The SiTek 2L4_SU66_SPC01 is a 2L4 PSD with an attached signal processing circuit. The PSD currents are output as bipolar voltages representing the position and intensity of the centroid of a light spot on the PSD. The intensity signal can be used for external normalisation of the position (difference) signal in regard to light intensity dependence.

Inputs are available for external adjustment of offset voltages.

In order to obtain maximum precision, high reliability and small size the SPC01 is built using thick film technology and laser trimmed resistors on a 20,5 x 20,5 mm² ceramic substrate. The SPC01 is delivered with surface mount leads.

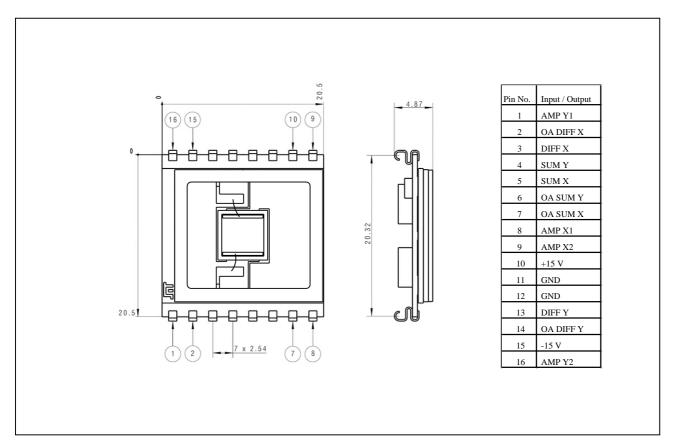
Electrical specification

Parameter	Symbol	Min.	Two	Max.	Unit
	Symbol	171111.	Тур.	ıvıax.	_
Active area			4 x 4		mm ²
Position non-linearity			0,3	0,8	% (±)
Reverse bias	V_{r}		15		V
Dark current of PSD @ V _r	I_d		50	200	nA
Responsivity	r		63		V/mW
Transimpedance	R_f	9,99*104	10,0*104	10,01*104	V/A
Amplification in sum and difference stages	$A_{\rm v}$	0,999	1	1,001	
Output voltage	$ m V_{out}$			± 12	V
Output noise	V_{noise}		3		mVp-p
Bandwidth	f_{3dB}		400		kHz
Slew rate	SR	8	13		V/µs
Supply current			12	23	mA

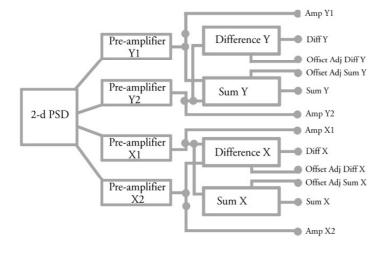
Absolute maximum ratings

Parameter	Symbol	Value	Unit
Power supply voltage	$ m \dot{V_s}$	± 18	V
Output short-circuit time		Continuos	
Operating temperature	$\mathrm{T}_{\mathrm{oper}}$	70	°C
Storage temperature	$T_{ m stg}$	100	°C

Test conditions: Room temperature 23 °C, Power supply voltage \pm 15 V, Light source wavelength

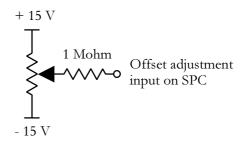

940 nm. Position non-linearity are valid within 80 % of the detector length.

Package: 16 pin ceramic substrate, 20,5 x 20,5 mm², with protective window.


For further information about PSD specific parameters see specification for S2-0024 2L4_CP5.

Block schematics

Features


- Analogue outputs of all sum and differential signals
- Laser trimmed resistors
- Inputs for external adjustment of offset voltages
- Good thermal tracking
- Small size

Applications

 Analogue PSD front-end in displacement measureing systems for OEM as well as evaluation purposes.

Application Information

Inputs 2, 6, 7 and 14 are used for external offset compensating voltages. Such a voltage can, as shown in the figure, be derived from a voltage divider and connected to the SPC input through a suitable series resistor.

Information in this data sheet is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subjected to changes without notice.