
32-bit
EmbeddedASIC
Core Peripheral

Peripheral Data
Controller 2
(PDC2)

Rev. 1734B–CASIC–02/02
Features
• Compatible with an Embedded ARM7TDMI™ Processor
• Generates Transfers to/from Serial Peripherals Such as UART, USART, SSC and SPI
• Supports Up to 12 Peripherals – Parameterizable on Request
• One ARM® Cycle Needed for a Transfer from Memory to Peripheral
• Two ARM Cycles Needed for a Transfer from Peripheral to Memory
• Fully Scan Testable up to 98% Fault Coverage
• Can be Directly Connected to the Atmel Implementation of the AMBA™ Bridge
• Not Fully Compatible with AMBA: Retract Response not Supported

Description
The Peripheral Data Controller 2 (PDC2) transfers data between on-chip peripherals
such as the UART, USART, SSC and SPI and the on- and off-chip memories. This
transfer is achieved via the AMBA Bridge using a simple arbitration mechanism
between the AMBA System Bus (ASB) and the PDC2 to control Bridge access. This
avoids processor intervention and removes the processor interrupt handling overhead.
This significantly reduces the number of clock cycles required for a data transfer and,
as a result, improves the performance of the microcontroller and makes it more power-
efficient.

The PDC2 channels are implemented in pairs, each pair being dedicated to a particu-
lar peripheral. One PDC2 channel in the pair is dedicated to the receiving channel and
one to the transmitting channel of each UART, USART, SSC and SPI.

The user interface of a PDC2 channel is integrated in the memory space of each
peripheral. It contains a 32-bit memory pointer register and a 16-bit transfer count reg-
ister plus a 32-bit register for next memory pointer and a 16-bit register for next
transfer count. The peripheral triggers PDC2 transfers using transmit and receive sig-
nals. When the programmed data is transferred, an end of transfer interrupt is
generated by the corresponding peripheral.
1

Figure 1. PDC2 Symbol

Notes: 1. asb_n = Number of AMBA system buses
2. These inputs are used only when PDC2 is connected to two ASBs.
3. per_n = Number of peripherals

nreset_r

PDC2

nreset_f
clock

agnt[(asb_n(1) - 1):0]
bwait[(asb_n(1) - 1):0]

bridge_sel

periph_write
periph_stb

periph_add[13:0]
pwdata[31:0]

periph_clocks[(per_n(3)-1):0]
periph_rx_rdy[(per_n(3)-1):0]
periph_tx_rdy[(per_n(3)-1):0]

periph_select[(per_n(3)-1):0]

periph_rx_size[(2*per_n(3))-1:0]

scan_test_mode

test_si[(1+per_n(3)):1]
test_se

areq[(asb_n(1)-1):0]
oe_master_address
master_add[31:0]

bprot[1:0]
blok

prdata[31:0]

memory_write

-

btran[(2*asb_n(1))-1):0]

bwrite
bsize[1:0]

pdc_add[20:0]
pdc_sel
pdc_size[1:0]
pdc_write

periph_rx_end[(per_n(3)-1):0]

test_so[(1+per_n(3)):1]

AMBA
System

Bus (ASB)

AMBA
Peripheral

Bus (APB)

Test
Scan

Peripherals

Test Scan

Peripherals

Bridge
Interface

AMBA
Peripheral
Bus (APB)

AMBA
System
Bus (ASB)

Memory
Management
Unit/EBI

nclock

periph_tx_size[(2*per_n(3))-1:0]

periph_tx_end[(per_n(3)-1):0]
rx_buffer_full[(per_n(3)-1):0]
tx_buffer_empty[(per_n(3)-1):0]

remap(2)

where_to_boot(2)
Dual ASB

Mode
2 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
Table 1. PDC2 Pin Description

Name Definition Type
Active
Level Comments

Chip-wide

nreset_r System Reset Input Low Resets all counters and signals – clocked on
rising edge of clock

nreset_f System Reset Input Low Resets all counters and signals – clocked on
falling edge of clock

clock System Clock Input – System clock

nclock System Clock Input – Inverted system clock

AMBA System Bus (ASB)

agnt[(asb_n-1):0] Grant Signal(s) Input High When PDC2 is connected to one ASB, arbiter
grants the bus to the PDC2 when this input is
set to 1.

When PDC2 is connected to two ASBs, bit 0
comes from the arbiter of the ASB dedicated
to internal memories and peripherals; bit 1
comes from the arbiter of the ASB dedicated
to external memories.

bwait[(asb_n-1):0] Bus Wait(s) Input High When PDC2 is connected to one AST, one
wait cycle is required.

When PDC2 is connected to two ASBs, bit 0
comes from the arbiter of the ASB dedicated
to internal memories and peripherals; bit 1
comes from the arbiter of the ASB dedicated
to external memories.

bridge_sel Bridge Select Input High From address decoder of system bus

areq[(asb_n-1):0] Request Signal(s) Output High When PDC2 is connected to one ASB, bus
request is sent to the arbiter.

When PDC2 is connected to two ASBs, bit 0
is sent to the arbiter of the ASB dedicated to
internal memories and peripherals; bit 1 is
sent to the arbiter of the ASB dedicated to
external memories.

oe_master_address Output Enable Output High Output address enable – this signal indicates
that master_add[31:0], blok, bprot[1:0],
bsize[1:0] and bwrite signals are currently
valid with PDC2 granted on the bus

master_add[31:0] Address System Bus Output – Address bus generated by master

blok Bus Locked Output High Indicates that the ongoing instruction must
not be interrupted

bprot[1:0] Bus Protection Output – Protection information

bsize[1:0] Size of Transfer Output – Bus size
3
1734B–CASIC–02/02

btran[(2*asb_n)-1:0] Type(s) of Transfer Output – Bus transfers.

When PDC2 is connected to two ASBs, LSBs
are reserved for ASB dedicated to internal
memories and peripherals; MSBs are
reserved for ASB dedicated to external
memories.

bwrite Bus Write Output High The PDC2 transfers data from the peripheral
to internal memory

Dual ASB Mode

remap Input High When high, remap is complete. All memories
are mapped according to the memory map
defined after remap (i.e., internal RAM is now
mapped at address 0x00000000).

When low, remap is not yet complete. The
memory map is as defined prior to remap.

Note: This input is used only when PDC2 is
connected to two AMBA system buses where
one of these is shared by all internal
memories and peripherals and the other
dedicated to external memories.

Any value may be assigned to this pin when
PDC2 is connected to only one ASB.

where_to_boot Input When low, indicates that during boot,
operations (before remap) are done on
internal ROM.

When high, indicates that boot memory is an
external memory.

Any value may be assigned to this pin when
PDC2 is connected to only one ASB.

AMBA Peripheral Bus (APB)

periph_write Peripheral Write Enable Input High From host (Bridge)

periph_stb Peripheral Strobe Input High From host (Bridge)

periph_add[13:0] Peripheral Address Bus Input – From host (Bridge)

pwdata[31:0] Peripheral Data Bus Input – From host (Bridge) – user interface data bus

prdata[31:0] Peripheral Data Bus output Output – User interface data bus

Peripherals

periph_clocks

[per_n-1:0]

Peripheral System Clocks
(UART/ USART/SSC/SPI)

Input – Per_n values range from 1 to 12. The number
of each type of peripheral connected to PDC2
is free. For example, the user can have 8
UARTS, 0 USARTS and 3 SPIs. LSBs are
reserved for USARTs. Remaining upper bits
are reserved for SPIs.

periph_rx_rdy

[(per_n-1):0]

Peripheral Receiver Ready Input High Once a character has been received by
peripheral, one of these bits is set to 1.

LSBs are reserved for USARTs. Remaining
upper bits are reserved for SPIs

Table 1. PDC2 Pin Description (Continued)

Name Definition Type
Active
Level Comments
4 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
periph_tx_rdy

[(per_n-1):0]

Peripheral Transmitter Ready Input High Once the holding transmit register is
available, one of these bits is set to 1

periph_rx_size

[(2*per_n)-1:0]

Peripheral Transfer Sizes for
Reception Side

Input – The per_n is the number of peripherals
connected to the PDC2. This value changes
the memory pointer. Two bits are reserved for
each peripheral, for example, with two
USARTs and one SPI, the size of transfer on
the receiver side for:

USART0 = periph_rx_size[1:0],

USART1 = periph_rx_size[3:2] and

SPI0 = periph_rx_size[5:4]

periph_tx_size

[(2*per_n)-1:0]

Peripheral Transfer Sizes for
Transmission Side

Input – The per_n is the number of peripherals
connected to the PDC2. This value changes
the memory pointer. Two bits are reserved for
each peripheral, for example, with two
USARTs and one SPI, the size of transfer on
the transmit side for:

USART0 = periph_tx_size[1:0],

USART1 = periph_tx_size[3:2] and

SPI0 = periph_tx_size[5:4]

periph_select

[(per_n-1):0]

Peripheral selects Input High From host (Bridge) – also input of each
peripheral connected

periph_rx_end

[(per_n-1):0]

Peripheral receive end Output High End of receive transfer (each bit corresponds
to a peripheral) – the associated buffer for the
channel is full

periph_tx_end

[(per_n-1):0]

Peripheral Transmit End Output High End of transmit transfer (each bit
corresponds to a peripheral) – the associated
buffer for the channel is empty

rx_buffer_full

[(per_n-1):0]

Peripheral Receive Buffer Full Output High End of receive transfer (each bit corresponds
to a peripheral) – the associated buffers for
the channel are full

tx_buffer_empty
[(per_n-1):0]

Peripheral Transmit Buffer
Empty

Output High End of transmit transfer (each bit
corresponds to a peripheral) – the associated
buffers for the channel are empty

Bridge Interface

pdc_add[20:0] PDC2 Address Bus Output – Used by the Bridge to access the peripherals

pdc_sel PDC2 Select Output High Used by the Bridge to access the peripherals

pdc_size[1:0] PDC2 Size of Transfer Output – Multiplex the spi_size inputs – used by the
Bridge to determine the size of the transfer
between memories and the SPI

pdc_write PDC2 Write Output High Used by the Bridge to access the peripherals

Memory Management Unit/EBI

Table 1. PDC2 Pin Description (Continued)

Name Definition Type
Active
Level Comments
5
1734B–CASIC–02/02

Scan Test
Configuration

The fault coverage is maximum if all non-scan inputs can be controlled and all non-scan out-
puts can be observed. In order to achieve this, the ATPG vectors must be generated on the
entire circuit (top-level) which includes the PDC2, or all PDC2 I/Os must have a top level
access and ATPG vectors must be applied to these pins.

Configuration The PDC2 has a standard Atmel Bridge interface that enables the user to configure and con-
trol the data transfers for each channel. The user interface of a PDC2 channel is integrated
into the user interface of the peripheral which it is related to. Per peripheral, it contains four 32-
bit Pointer Registers (RPR, RNPR, TPR, TNPR) and four 16-bit Counter Registers (RCR,
RNCR, TCR, TNCR).

The size of the transfer (number of transfers) is configured in an internal 16-bit transfer
counter register, and it is possible, at any moment, to read the number of transfers left for each
channel.

The base memory address is configured in a 32-bit memory pointer, by defining the location of
the first access point in the memory. It is possible, at any moment, to read the location in mem-
ory of the next transfer.

The PDC2 has dedicated status registers which indicate if transfer is enabled or disabled for
each channel — the remaining status for each channel is located in the peripheral. Transfers
can be enabled and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in PDC2
Transfer Control Registers. The PDC2 sends status flags (periph_rx_end, periph_tx_end,
rx_buffer_full, tx_buffer_empty) to the peripheral, which can latch the flags in its status
register.

System Bus
Interface

The PDC2 interfaces with the AMBA System Bus (ASB) and generates all the control signals
for interfacing with a Memory Management Unit or EBI for memory read and write.

Memory
Pointers

Each peripheral is connected to the PDC2 by a receive data channel and a transmit data
channel. Each channel has an internal 32-bit memory pointer. Each memory pointer points to
a location in the system bus memory space (on-chip memory or external bus interface
memory).

Depending on the type of transfer (byte, half-word or word), the memory pointer is incre-
mented by 1, 2 or 4, respectively for peripheral transfers.

memory_write Memory Write from Peripheral Output High Used by Memory Management Unit or EBI to
select data coming from masters or
peripherals (Bridge)

Test Scan

scan_test_mode Clock Selection for Test
Purposes

Input High Tied to 1 during scan test – tied to 0 when in
function mode

test_se Scan Test Enable Input High

/Low

Scan shift/scan capture

test_si [(1+per_n):1] Scan Test Input Input – Entry of scan chain

test_so [(1+per_n):1] Scan Test Output Output – Ouput of scan chain

Table 1. PDC2 Pin Description (Continued)

Name Definition Type
Active
Level Comments
6 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
If a memory pointer is reprogrammed while the PDC2 is in operation, the transfer addresses
are changed, and the PDC2 performs transfers using the new address.

Transfer
Counters

There is one internal 16-bit transfer counter for each channel. Each counter is used to count
the size of the block already transferred by its associated channel. These counters are decre-
mented after each data transfer. When the counter reaches zero, the transfer is complete and
the PDC2 stops transferring data and disables the trigger while activating the related
periph_end flag if the Next Counter Register is equal to zero.

If the counter is reprogrammed while the PDC2 is operating then the number of transfers is
changed and the PDC2 counts transfers from the new value.

When the Next Counter Register is not equal to zero, for example, the values have been pro-
grammed into Next Pointer/Counter Registers, the behavior is the same, except that, after
activating the flag periph_end when the transfer counter reaches zero, the values of the Next
Pointer/Counter Registers are loaded into the Pointer/Counter Registers in order to re-enable
triggers. The flag periph_end is automatically cleared when one of the counter registers
(Counter or Next Counter Register) is written.
Note: When the Next Counter Register is loaded into the Counter Register, it is set to zero.

Data Transfers The peripheral triggers PDC2 transfers using transmit (periph_tx_rdy) and receive
(periph_rx_rdy) signals.

When the peripheral receives an external character, it sends a Receive Ready signal to the
PDC2, which then requests access to the system bus (ASB) from the Bus Arbiter.

When access is granted, the PDC2 starts a read of the peripheral Receive Holding Register,
via the dedicated pdc_add, pdc_sel, pdc_write and pdc_size signals to the Bridge.

Next, the PDC2 triggers a write in the memory by setting the ASB control signals and, at the
same time, the Bridge provides the data that is to be written to the memory.

After each transfer, the relevant PDC2 memory pointer is incremented and the numbers of
transfers left is decremented. When the memory block size is reached, a signal is sent to the
peripheral and the transfer stops.

The same procedure is followed, in reverse, for transmit transfers. These timing exchanges
are shown in the following figures.
7
1734B–CASIC–02/02

Figure 2. Example of PDC2 Connection with Bridge and SPI

Notes: 1. i = index of peripheral, ranges from 0 to 11, if the SPI is the third peripheral, i = 2.
2. N = the total number of peripherals connected to PDC2. Ns= the total number of peripherals connected to PDC2 (N) – the

number of SPI peripherals. iS = index of SPI peripheral, ranges from 0 to (N - NS - 1).
3. periph_rx_size = periph_rx_size [(2*is) - 1 + (2Ns):2*(is-1) + 2*Ns]
4. periph_tx_size = periph_tx_size [(2*is) - 1 + (2Ns):2*(is-1) + 2*Ns]

ba[31:0]

bwrite_from_masters

bwdata[31:0]

master-add[31:0]
bsize[1:0]

bwrite
blok

bprot[1:0]
btran[1:0]

pdc_sel

pdc_size[1:0]

pdc_add[20:0]

pdc_write

periph_rx_rdy[i](1)

 periph_tx_rdy[i](1)

periph_rx_end[i](1)

periph_tx_end[i](1)

 spi_size[1:0]
spi_tx_end
spi_rx_end
spi_tx_rdy
spi_rx_rdy

pdc_data[31:0]

add_master[20:0]

write_master
data_from_master[31:0]

pdc_sel

pdc_size[1:0]

pdc_add[20:0]

pdc_write

periph_stb
periph_add[13:0]

periph_write

 p_sel_spi[is](2)

data_from_periph[31:0]

data_to_periph[31:0]

p_stb_rising

SPI
(spi[is])(2)

Data from
Memories

PDC2

BRIDGE

Master Signals Manager

periph_select[i](2)

periph_write

periph_add[13:0]

periph_stb

pwdata[31:0]

prdata[31:0]

p_d_in[31:0]
p_d_out[31:0]

p_write
p_sel_spi

p_stb_rising

periph_add[13:0]
periph_stb

MUX

ba_from_masters[31:0]
bsize[1:0]

bwrite_from_masters
blok_from_masters

bprot_from_masters[1:0]
btran_from_masters[1:0]

data_to_master[31:0] bwdata_from_masters[31:0]

periph_rx_size(3)

periph_tx_size(4)
8 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
Figure 3. oe_master_address Signal for Atmel AMBA Bus

This output is generated to simplify the multiplexing of the control signals generated by the
PDC2. It indicates that the PDC2 is “really granted” on the bus (ASB) and that its control sig-
nals must be sent to the slaves.

Thus, oe_master_address is asserted when the PDC2 is granted via agnt and there is no
transfer being done by another master, i.e. bwait is inactive. oe_master_address is de-
asserted when the core has finished its last transfer, i.e. bwait is inactive.

agnt

clock

bwait

tOVMABE tOVMABE

master_add[31:0]

oe_master_address
9
1734B–CASIC–02/02

Figure 4. ASB to APB Transfer with Zero Wait States Memory Followed by an APB Access Made by Another Master

clock

areq (PDC2)

agnt (PDC2)

bridge_sel

agnt (other master)

bwait

bwrite (PDC2)

master_add[31:0]

PDC2status

bwrite (ASB)

ba[31:0] (ASB)

memory_write

pdc_size[1:0]

pdc_write

pdc_add[20:0]

Data from Memories
(pdc_data[31:0] on Bridge)

pdc_sel

bwdata[31:0]
(data_from_master[31:0] on bridge)

periph_stb

pstb_rising

periph_add[13:0]

periph_write

pwdata[31:0]

done donewaitwait

Memory
Address

TransferNOT GRANTED NOT GRANTED

Peripheral Address

PDC Data

PDC
Data Data from Master

14'h0000 Peripheral Address Address from Master 14'h0000

bwrite from Master

Previous Data PDC Data Data from Master

done

bwrite from Master

Memory
Address ba from Master
10 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
Figure 5. APB to ASB Transfer with Zero Wait States Memory Followed by an APB Access Made by Another Master

clock

areq (PDC2)

agnt (PDC2)

bridge_sel

agnt (other master)

bwait

bwrite

ba[31:0]

PDC2 status

bwrite (ASB)

ba[31:0] (ASB)

memory_write

pdc_size[1:0]

pdc_write

pdc_add[20:0]

pdc_sel

brdata[31:0]

periph_stb

pstb_rising

periph_add[13:0]

periph_write

data_to_master[31:0]
(output of the bridge)

done donewait

Memory Address

TransferNOT GRANTED NOT GRANTED

Peripheral Address

Data from Bridge

14'h0000 Peripheral Address Address from Master 14'h0000

bwrite from Master

Previous Data Data for PDC Transfer Data for Master

done done

Locked Idle Cycle

bwrite from Master

Memory Address ba from Master

Data from Memories

14'h0000
11
1734B–CASIC–02/02

Figure 6. APB to ASB Transfer with Zero Wait States Following:

1. Series of APB Accesses Made by Another Master

2. Memory With One Wait State Made by Another Master

clock

areq (PDC2)

agnt (PDC2)

bridge_sel

agnt (other master)

bwait

bwrite

ba[31:0]

PDC2 status

bwrite (ASB)

ba[31:0] (ASB)

memory_write

pdc_size[1:0]

pdc_write

pdc_add[20:0]

pdc_sel

brdata[31:0]

periph_stb

pstb_rising

periph_add[13:0]

periph_write

data_to_master[31:0]
(output of the bridge)

done

Memory Address

TransferNOT GRANTED NOT GRANTED

Data from Bridge

Peripheral Address14'h0000

bwrite from Master

done done

bwrite from Master

Data from Memories

wait done wait wait done

bwrite from Masterbwrite from Master

Memory Addressba from Masterba from Master ba from Master

Peripheral Address

Data from Bridge

Address from Master Address from Master 14'h0000

bwrite from Master

Data for Master Data for PDC TransferData for Master

Locked Idle Cycle
12 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
Figure 7. ASB to APB Transfer with Three Wait States Memory

clock

areq (PDC2)

agnt (PDC2)

bridge_sel

agnt (other master)

bwait

bwrite

master_add[31:0]

PDC2 status

bwrite (ASB)

ba [31:0] (ASB)

memory_write

pdc_size[1:0]

pdc_write

pdc_add[20:0]

done

Memory Address

TransferNOT GRANTED NOT GRANTED

wait

bwrite from Master

Memory Address ba from Master

Peripheral Address

pdc_sel

bwdata[31:0]
(data_from_master[31:0]

on bridge)

periph_stb

pstb_rising

periph_add[13:0]

periph_write

pwdata[31:0]

Address from MasterPeripheral Address14'h0000

done wait wait wait wait done

PDC Data

Data from MasterPDC
Data

bwrite from Master

Previous Data Data from MasterPDC Data

Data from Memories
(pdc_data[31:0] on bridge)
13
1734B–CASIC–02/02

Figure 8. APB to ASB Transfer with Three Wait States Memory

clock

areq (PDC2)

agnt (PDC2)

bridge_sel

agnt (other master)

bwait

bwrite

master_add[31:0]

PDC2 status

bwrite (ASB)

ba[31:0] (ASB)

memory_write

pdc_size[1:0]

pdc_write

pdc_add[20:0]

pdc_sel

brdata[31:0]

periph_stb

pstb_rising

periph_add[13:0]

periph_write

data_to_master[31:0]
(output of the bridge)

Memory Address

TransferNOT GRANTED NOT
GRANTEDLocked Idle Cycle

bwrite from Master

Data from Memories

done wait wait done

Memory Addressba from Master

Peripheral Address

14'h0000 Peripheral Address 14'h0000

Data for PDC TransferPrevious Data

wait done wait wait wait
14 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
Software
Interface

Ten registers make up the peripheral memory map for each of the peripherals. Depending on
the peripheral (UART/ USART/SSC/SPI), the offset of these registers is always the same as
shown below.

Peripheral User Interface

Table 2. Peripheral Memory Map

Offset Register Name Access Reset State

0x100 Receive Pointer Register PERIPH_RPR Read/Write 0

0x104 Receive Counter Register PERIPH_RCR Read/Write 0

0x108 Transmit Pointer Register PERIPH_TPR Read/Write 0

0x10C Transmit Counter Register PERIPH_TCR Read/Write 0

0x110 Receive Next Pointer Register PERIPH_RNPR Read/Write 0

0x114 Receive Next Counter Register PERIPH_RNCR Read/Write 0

0x118 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0

0x11C Transmit Next Counter Register PERIPH_TNCR Read/Write 0

0x120 PDC2 Transfer Control Register PERIPH_PTCR Write 0

0x124 PDC2 Transfer Status Register PERIPH_PTSR Read 0
15
1734B–CASIC–02/02

UART/USART/SSC/SPI Receive Pointer Register
Register Name: UART_RPR, USART_RPR, SSC_RPR, SPI_RPR
Access Type: Read/Write

• RXPTR: Receive Pointer Register
RXPTR must be loaded with the address of the receive buffer.

UART/USART/SSC/SPI Receive Counter Register
Register Name: UART_RCR, USART_RCR, SSC_RCR, SPI_RCR
Access Type: Read/Write

• RXCTR: Receive Counter Register
RXCTR must be loaded with the size of the receive buffer.
0 = Stop peripheral data transfer to the receiver
1 - 65535 = Start peripheral data transfer if corresponding periph_px_rdy is active

31 30 29 28 27 26 25 24

RXPTR

23 22 21 20 19 18 17 16

RXPTR

15 14 13 12 11 10 9 8

RXPTR

7 6 5 4 3 2 1 0

RXPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RXCTR

7 6 5 4 3 2 1 0

RXCTR
16 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
UART/USART/SSC/SPI Transmit Pointer Register
Register Name: UART_TPR, USART_TPR, SSC_TPR, SPI_TPR
Access Type: Read/Write

• TXPTR: Transmit Counter Register
TXPTR must be loaded with the address of the transmit buffer.

UART/USART/SSC/SPI Transmit Counter Register
Register Name: UART_TCR, USART_TCR, SSC_TCR, SPI_TCR
Access Type: Read/Write

• TXCTR: Transmit Counter Register
TXCTR must be loaded with the size of the transmit buffer.
0 = Stop peripheral data transfer to the transmitter
1- 65535 = Start peripheral data transfer if corresponding periph_tx_rdy is active

31 30 29 28 27 26 25 24

TXPTR

23 22 21 20 19 18 17 16

TXPTR

15 14 13 12 11 10 9 8

TXPTR

7 6 5 4 3 2 1 0

TXPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXCTR

7 6 5 4 3 2 1 0

TXCTR
17
1734B–CASIC–02/02

UART/USART/SSC/SPI Receive Next Pointer Register
Register Name: UART_RNPR, USART_RNPR, SSC_RNPR, SPI_RNPR
Access Type: Read/Write

• RXNPTR: Receive Next Pointer
RXNPTR contains the address of the next buffer to fill with received data when the current one is completed.

UART/USART/SSC/SPI Receive Next Counter Register
Register Name: UART_RNCR, USART_RNCR, SSC_RNCR, SPI_RNCR
Access Type: Read/Write

• RXNCTR: Receive Next Counter
RXNCTR contains the next buffer maximum size.

31 30 29 28 27 26 25 24

RXNPTR

23 22 21 20 19 18 17 16

RXNPTR

15 14 13 12 11 10 9 8

RXNPTR

7 6 5 4 3 2 1 0

RXNPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RXNCTR

7 6 5 4 3 2 1 0

RXNCTR
18 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
UART/USART/SSC/SPI Transmit Next Pointer Register
Register Name: UART_TNPR, USART_TNPR, SSC_TNPR, SPI_TNPR
Access Type: Read/Write

• TXNPTR: Transmit Next Pointer
TXNPTR contains the address of the next buffer from where to read data when the current one is complete.

UART/USART/SSC/SPI Transmit Next Counter Register
Register Name: UART_TNCR, USART_TNCR, SSC_TNCR, SPI_TNCR
Access Type: Read/Write

• TXNCTR: Transmit Counter Next
TXNCTR contains the next transmit buffer size.

31 30 29 28 27 26 25 24

TXNPTR

23 22 21 20 19 18 17 16

TXNPTR

15 14 13 12 11 10 9 8

TXNPTR

7 6 5 4 3 2 1 0

TXNPTR

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXNCTR

7 6 5 4 3 2 1 0

TXNCTR
19
1734B–CASIC–02/02

UART/USART/SSC/SPI PDC2 Transfer Control Register
Register Name: UART_PTCR, USART_PTCR, SSC_PTCR, SPI_PTCR
Access Type: Write

• RXTEN: Receiver Transfer Enable
0 = No effect.
1 = Enables the receiver PDC2 transfer requests if RXTDIS is not set.

• RXTDIS: Receiver Transfer Disable
0 = No effect.
1 = Disables the receiver PDC2 transfer requests.

• TXTEN: Transmitter Transfer Enable
0 = No effect.
1 = Enables the transmitter PDC2 transfer requests.

• TXTDIS: Transmitter Transfer Disable
0 = No effect.
1 = Disables the transmitter PDC2 transfer requests.

UART/USART/SSC/SPI PDC2 Transfer Status Register
Register Name: UART_PTSR, USART_PTSR, SSC_PTSR, SPI_PTSR
Access Type: Read

• RXTEN: Receiver Transfer Enable
0 = Receiver PDC2 transfer requests are disabled.
1 = Receiver PDC2 transfer requests are enabled.

• TXTEN: Transmitter Transfer Enable
0 = Transmitter PDC2 transfer requests are disabled.
1 = Transmitter PDC2 transfer requests are enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – TXTDIS TXTEN

7 6 5 4 3 2 1 0

– – – – – – RXTDIS RXTEN

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – TXTEN

7 6 5 4 3 2 1 0

– – – – – – – RXTEN
20 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
Timing Diagrams

Figure 9. AMBA Peripheral Bus (APB) Interface

Table 3. AMBA Peripheral Bus (APB) Interface Parameters

Parameter Description

tSU_STB periph_stb setup to rising periph_clocks [i]

tHOLD_STB periph_stb hold after rising periph_clocks [i]

tSU_A periph_add setup to rising periph_clocks [i]

tHOLD_A periph_add hold after rising periph_clocks [i]

tSU_DIN pwdata setup to rising periph_clocks [i]

tHOLD_DIN pwdata hold after rising periph_clocks [i]

tSU_WRITE periph_write setup to rising periph_clocks [i]

tHOLD_WRITE periph_write hold after rising periph_clocks [i]

tSU_PSEL periph_select setup to rising periph_clocks [i]

tHOLD_PSEL periph_select hold after rising periph_clocks [i]

tVALID_OUT prdata valid after falling periph_clocks[i]

tHOLD_OUT prdata hold after falling periph_select[i]

periph_clocks[i]

periph_stb

periph_write

pwdata[31:0]

prdata[31:0]

periph_select[i]

tSU_STB tHOLD_STB

tHOLD_AtSU_A

tSU_DIN tHOLD_DIN

tSU_WRITE tHOLD_WRITE

tVALID_OUT tHOLD_OUT

tSU_PSEL tHOLD_PSEL

periph_add[13:0]
21
1734B–CASIC–02/02

Figure 10. Advanced System Bus (ASB) Dedicated Signals

clock

areq

bsize[1:0]

bprot[1:0]

btran[1:0]

tVALID_AREQ tHOLD_AREQ

master_add[31:0]
tHOLD_BAtVALID_BA

tHOLD_BPROTtVALID_BPROT

tHOLD_BSIZEtVALID_BSIZE

tHOLD_BTRANtVALID_BTRAN

tHOLD_BWRITEtVALID_BWRITE

tHOLD_BLOKtVALID_BLOK

Memory Address

bwrite

blok
22 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Peripheral Data Controller 2 (PDC2)
Specific Signals Interface with Bridge and Memory Management Units

Figure 11. Read APB

clock

agnt

pdc_sel

bwait

memory_write
(to memory

management
units)

pdc_add[20:0]

tINVALID_RPDC_SELtVALID_RPDC_SEL

pdc_size[1:0]

pdc_write

tVALID_PDC_WRITE tHOLD_PDC_WRITE

tVALID_PDC_SIZE tHOLD_PDC_SIZE

tVALID_PDC_ADD tHOLD_PDC_ADD

tVALID_MW tHOLD_MW
23
1734B–CASIC–02/02

Figure 12. Write APB

clock

agnt

pdc_sel

bwait

memory_write
(to memory

management
units)

pdc_add[20:0]

tHOLD_WPDC_SELtVALID_WPDC_SEL

pdc_size[1:0]

pdc_write

tVALID_PDC_WRITE tHOLD_PDC_WRITE

tVALID_PDC_SIZE tHOLD_PDC_SIZE

tVALID_PDC_ADD tHOLD_PDC_ADD

tVALID_MW tHOLD_MW
24 Peripheral Data Controller 2 (PDC2)
1734B–CASIC–02/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Microcontrollers
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Atmel Smart Card ICs
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1734B–CASIC–02/02 0M

Atmel® is the registered trademark of Atmel.

ARM® is a registered trademark of ARM Ltd.; ARM7TDMI and AMBA are trademarks of ARM Ltd. Other terms
and product names may be trademarks of others.

