

4.8 V NPN Silicon Bipolar Common Emitter Transistor

Technical Data

Features

- 4.8 Volt Pulsed (pulse width = 577 µsec, duty cycle = 12.5%)/CW Operation
- +28 dBm Pulsed P_{out}
 @ 900 MHz, Typ.
- +23.5 dBm CW P_{out}
 @ 836.5 MHz, Typ.
- 60% Pulsed Collector Efficiency @ 900 MHz, Typ.
- 11 dB Pulsed Power Gain @ 900 MHz, Typ.
- -35 dBc IMD₃ @ P_{out} of 17 dBm per tone, 900 MHz, Typ.

Applications

- Driver Amplifier for GSM and AMPS/ETACS/ 900 MHz NMT Cellular Phones
- 900 MHz ISM and Special Mobile Radio

85 mil Plastic Surface Mount Package Outline 86

Pin Configuration

Description

Agilent's AT-38086 is a low cost, NPN silicon bipolar junction transistor housed in a surface mount plastic package. This device is designed for use as a pre-driver or driver device in applications for cellular and wireless communications markets. At 4.8 volts, the AT-38086 features +28 dBm pulsed output power, Class AB operation, and +23.5 dBm CW. Superior efficiency and gain makes the AT-38086 an excellent choice for battery powered systems.

The AT-38086 is fabricated with Agilent's 10 GHz F_t Self-Aligned-Transistor (SAT) process. The die are nitride passivated for surface protection. Excellent device uniformity, performance and reliability are produced by the use of ion-implantation, self-alignment techniques, and gold metalization in the fabrication of these devices.

Symbol	Parameter	Units	Absolute Maximum ^[1]
V _{EBO}	Emitter-Base Voltage	V	1.4
V _{CBO}	Collector-Base Voltage	V	16.0
V _{CEO}	Collector-Emitter Voltage	V	9.5
I _C	Collector Current ^[2]	mA	250
I _C	Collector Current ^[3]	mA	160
P _T	Peak Power Dissipation ^[2, 4]	W	3.7
P _T	CW Power Dissipation ^[3, 5]	mW	460
Tj	Junction Temperature	°C	150
T _{STG}	Storage Temperature	°C	-65 to 150

AT-38086 Absolute Maximum Ratings

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

- 2. Pulsed operation, pulse width = $577 \mu sec$, duty cycle = 12.5%.
- 3. CW operation.
- 4. Derate at 57.1 mW/°C for $T_C > 85$ °C. T_C is defined to be the temperature of the collector pin 3, where the lead contacts the circuit board.
- 5. Derate at 7.1 mW/°C for $T_C > 85$ °C. T_C is defined to be the temperature of the collector pin 3, where the lead contacts the circuit board.
- 6. Using the liquid crystal technique, $V_{CE}\!=\!4.5$ V, $I_c\!=\!50$ mA, $T_j\!=\!150^\circ\text{C},\,1\!\!-\!2\,\mu\text{m}$ "hot-spot" resolution.

Electrical Specifications, $T_c = 25^{\circ}C$

Symbol	Parameters and T	Units	Min.	Тур.	Max.	
	Freq. = 900 MHz, V_{CE} = 4.8 V, I_{CQ} = 20 m duty cycle = 12.5%, unless otherwise sp					
P _{out}	Output Power, Pulsed Operation ^[1]	Test Circuit A, $P_{in} = +17 \text{ dBm}$	dBm	+26.5	+28.0	
η _c	Collector Efficiency, Pulsed Operation ^[1]	Test Circuit A, $P_{in} = +17 \text{ dBm}$	%	50	60	
	Mismatch Tolerance No Damage, Pulsed ^[1]	Test Circuit A, P _{out} = +28 dBm, any phase, 2 sec duration				7:1
P _{out}	Output Power, CW Operation ^[2]	$F = 836.5 \text{ MHz}, I_{CQ} = 15 \text{ mA}$ Test Circuit B, $P_{in} = +10 \text{ dBm}$	dBm	+22.0	+23.5	
IMD ₃	3rd Order Intermodulation Distortion, 2-Tone Test, P _{out} each tone = +17 dBm, 0	$\begin{array}{l} F1 = 899 \ MHz, \ F2 = 901 \ MHz \\ CW^{[2,3]} & I_{CQ} = 15 \ mA, \ Test \ Circuit \ B \end{array}$	dBc		-35	
	Mismatch Tolerance, No Damage, $CW^{[2]}$	$\label{eq:F} \begin{array}{l} F = 836.5 \mbox{ MHz}, I_{CQ} = 15 \mbox{ mA} \\ Test \mbox{ Circuit B}, P_{out} = +23.5 \mbox{ dBm} \\ \mbox{ any phase, } 2 \mbox{ sec duration} \end{array}$				7:1
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E}$ = 0.2 mA, open collector	V	1.4		
BV _{CBO}	Collector-Base Breakdown Voltage	$I_c = 1.0$ mA, open emitter	V	16.0		
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C}$ = 3.0 mA, open base	V	9.5		
h _{FE}	Forward Current Transfer Ratio	$V_{CE} = 3 \text{ V}, \text{ I}_{C} = 160 \text{ mA}$	_	40	150	330
I _{CEO}	Collector Leakage Current	$V_{CEO} = 5 V$	μA			15

Notes:

1. With external matching on input and output, tested in a 50 ohm environment. Refer to Test Circuit A (GSM).

2. With external matching on input and output, tested in a 50 ohm environment. Refer to Test Circuit B (AMPS).

3. Test circuit B re-tuned at 900 MHz.

Thermal Resistance^[6]: $\theta_{ic} = 140^{\circ}C/W$

AT-38086 Typical Performance, $T_c = 25^{\circ}C$

Frequency = 900 MHz, V_{CE} = 4.8 V, I_{CQ} = 20 mA, pulsed operation, pulse width = 577 μ sec, duty cycle = 12.5%, Test Circuit A (GSM), unless otherwise specified

Γsource = 0.75 ∠ -177

Power Over Bias Voltage.

32

30

Figure 1. Output Power and Collector

Efficiency vs. Input Power.

Figure 3. Collector Efficiency vs. Input Power Over Bias Voltage.

Figure 4. Output Power vs. Input **Power Over Temperature.**

Figure 5. Output Power and **Collector Efficiency vs. Frequency.** Note: Tuned at 900 MHz, then Swept over Frequency.

Figure 6. Input and Output Return Loss vs. Frequency.

AT-38086 Typical Performance, $T_c = 25^{\circ}C$

Freq. = 836.5 MHz, V_{CE} = 4.8 V, I_{CQ} = 15 mA, CW operation, Test Circuit B (AMPS), unless otherwise specified

Figure 7. Output Power and Collector Efficiency vs. Input Power.

Figure 10. Output Power vs. Input Power Over Temperature.

Loss vs. Frequency.

Figure 9. Collector Efficiency vs. Input Power Over Bias Voltage.

Figure 12. IMD3, IMD5 vs. Output Power Per Tone. Note: Test circuit B (AMPS) used and re-tuned at 900 MHz.

	Freq. = 900 MHz, V_{CE} = 4.8 V, I_{CQ} = 20 mA, Pulsed Operation, P_{out} = +28.0 dBm						
Freq.	Γ 50	urce	Г	Γ load			
	MHz	Mag.	Ang.	Mag.	Ang.		
	880	0.743	-175.6	0.474	162.0		
	890	0.741	-176.4	0.476	161.5		
	900	0.747	-177.3	0.478	161.2		
	910	0.751	-178.1	0.481	160.0		
	915	0.752	-178.6	0.482	159.6		
	920	0.754	-179.1	0.483	158.9		

AT-38086 Typical Large Signal Impedances (GSM)

AT-38086 Typical Large Signal Impedances (AMPS) Freq. = 836.5 MHz, V_{CE} = 4.8 V, I_{CQ} = 15 mA, CW Operation, P_{out} = +23.5 dBm

Freq.	Γ 50	ource	Г	load
MHz	Mag.	Ang.	Mag.	Ang.
824	0.856	-178.9	0.455	129.1
836.5	0.864	-179.9	0.459	128.2
849	0.870	-179.1	0.464	127.3

Figure 13. Collector-Base Capacitance vs. Collector-Base Voltage (DC Test).

SPICE Model Parameters Die Model

Label	Value	Label	Value
BF	280	NR	0.9886
IKF	299.9	TR	1E-9
ISE	9.9E-11	EG	1.11
NE	2.399	IS	3.598E-15
VAF	33.16	XTI	3
NF	0.9935	CJC	1.02 pF
TF	1.6E-11	VJC	0.4276
XTF	0.006656	MJC	0.2508
VTF	0.02785	XCJC	0.001
ITF	0.001	FC	0.999
PTF	23	CJE	0.98 pF
XTB	0	VJE	0.811
BR	54.61	MJE	0.596
IKR	81	RB	5.435
ISC	8.7E-13	RE	1.30
NC	1.587	RC	0.01
VAR	1.511		

Packaged Model

Freq.	S	11		S ₂₁			S ₁₂		S	22
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.05	0.71	-85	31.7	38.52	138	-31.7	0.026	54	0.75	-57
0.10	0.73	-124	28.2	25.72	118	-29.1	0.035	39	0.56	-90
0.25	0.75	-160	21.3	11.66	84	-27.3	0.043	35	0.39	-133
0.50	0.76	-176	15.5	5.95	76	-25.5	0.053	43	0.36	-155
0.75	0.76	175	12.0	3.98	72	-23.6	0.066	50	0.36	-165
0.90	0.77	171	10.4	3.32	69	-22.6	0.074	52	0.36	-168
1.00	0.77	169	9.5	2.99	63	-22.0	0.079	54	0.37	-170
1.25	0.78	164	7.6	2.39	57	-20.5	0.094	56	0.38	-174
1.50	0.78	160	6.0	1.99	51	-19.3	0.108	57	0.40	-176
1.75	0.79	156	4.7	1.71	46	-18.3	0.122	57	0.41	-179
2.00	0.80	152	3.5	1.49	41	-17.3	0.137	57	0.43	179
2.25	0.80	148	2.5	1.33	37	-16.4	0.151	57	0.45	176
2.50	0.81	145	1.5	1.19	32	-15.7	0.164	56	0.47	174
2.75	0.81	142	0.7	1.08	28	-15.0	0.178	55	0.49	172
3.00	0.82	139	-0.1	0.99	25	-14.4	0.191	54	0.51	169
$V_{\rm CE} = 4.8$ V	V, $I_c = 50$	mA, $T_c = 2$	5°C							
0.05	0.72	-82	31.8	39.02	139	-31.7	0.026	54	0.76	-55
0.10	0.73	-121	28.4	26.32	119	-29.1	0.035	40	0.56	-87
0.25	0.75	-158	21.6	12.00	97	-27.3	0.043	35	0.38	-130
0.50	0.75	-176	15.8	6.14	85	-25.5	0.053	43	0.35	-154
0.75	0.76	176	12.3	4.10	76	-23.7	0.065	49	0.35	-163
0.90	0.76	172	10.7	3.42	72	-22.7	0.073	52	0.35	-167
1.00	0.76	169	9.8	3.08	69	-22.0	0.079	53	0.36	-169
1.25	0.77	164	7.8	2.46	63	-20.6	0.093	56	0.37	-172
1.50	0.78	160	6.2	2.05	57	-19.4	0.107	57	0.38	-175
1.75	0.78	156	4.9	1.76	51	-18.3	0.121	58	0.40	-178
2.00	0.79	152	3.8	1.54	46	-17.4	0.135	57	0.42	180
2.25	0.80	149	2.7	1.37	41	-16.5	0.150	57	0.44	177
2.50	0.80	145	1.8	1.23	37	-15.8	0.163	56	0.46	175
2.75	0.81	142	1.0	1.12	32	-15.0	0.177	55	0.48	173
3.00	0.82	139	0.2	1.02	28	-14.4	0.190	55	0.50	170
$V_{\rm CE} = 6.0$	V, $I_c = 50$	mA, $T_c = 2$	5°C			1				
0.05	0.73	-79	31.8	39.07	140	-32.0	0.025	55	0.76	-54
0.10	0.74	-119	28.5	26.60	120	-29.1	0.035	40	0.56	-85
0.25	0.74	-157	21.7	12.21	98	-27.3	0.043	35	0.38	-128
0.50	0.75	-175	15.9	6.25	85	-25.5	0.053	42	0.34	-152
0.75	0.75	176	12.4	4.18	76	-23.7	0.065	49	0.34	-162
0.90	0.76	172	10.8	3.48	72	-22.7	0.073	52	0.34	-166
1.00	0.76	170	9.9	3.13	69	-22.2	0.078	53	0.34	-167
1.25	0.77	165	8.0	2.51	63	-20.7	0.092	56	0.36	-171
1.50	0.77	160	6.4	2.09	57	-19.5	0.106	57	0.37	-174
1.75	0.78	156	5.1	1.79	51	-18.4	0.120	57	0.39	-177
2.00	0.79	152	3.9	1.56	46	-17.5	0.134	58	0.41	-179
2.25	0.79	149	2.9	1.39	41	-10.0	0.148	57	0.43	170
2.50	0.80	140	1.9	1.25	37	-15.8	0.102	50	0.45	170
2.75	0.81	142		1.13	32	-15.1	0.175	56	0.47	1/4
3.00	0.81	139	0.3	1.03	28	-14.3	0.188	22	0.49	1/1

AT-38086 Typical Scattering Parameters, Common Emitter, \textbf{Z}_0 = 50 Ω V_{CE} = 3.6 V, I_c = 50 mA, T_c = 25°C

Typical Performance

Figure 14. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency. V_{CE} = 3.6 V, I_C = 50 mA.

Figure 16. Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency. V_{CE} = 6.0 V, I_{C} = 50 mA.

Part Number Ordering Information

Part Number	No. of Devices	Container
AT-38086-TR1	1000	7" Reel
AT-38086-BLK	100	Antistatic Bag

Package Dimensions Outline 86

DIMENSIONS ARE IN MILLIMETERS (INCHES)

Test Circuit A: Test Circuit Board Layout @ 900 MHz for Pulsed Operation (GSM)

Test Circuit A: Test Circuit Schematic Diagram @ 900 MHz for Pulsed Operation (GSM)

Test Circuit B: Test Circuit Board Layout @ 836.5 MHz for CW Operation (AMPS)

Test Circuit B: Test Circuit Schematic Diagram @ 836.5 MHz for CW Operation (AMPS)

Tape Dimensions and Product Orientation for Outline 86

Г	DESCRIPTION	SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER	A B K P ₁ D ₁	$\begin{array}{c} 5.77 \pm 0.10 \\ 6.10 \pm 0.10 \\ 1.70 \pm 0.10 \\ 8.00 \pm 0.10 \\ 1.50 \text{ min.} \end{array}$	0.227 ± 0.004 0.240 ± 0.004 0.067 ± 0.004 0.314 ± 0.004 0.059 min.
PERFORATION	DIAMETER PITCH POSITION	D ₀ Po E	1.50 + 0.10/-0.05 4.00 ± 0.10 1.75 ± 0.10	0.059 + 0.004/-0.002 0.157 ± 0.004 0.069 ± 0.004
CARRIER TAPE	WIDTH THICKNESS	W t	$\begin{array}{c} \textbf{12.00} \pm \textbf{0.20} \\ \textbf{0.30} \pm \textbf{0.05} \end{array}$	$\begin{array}{c} \textbf{0.472} \pm \textbf{0.008} \\ \textbf{0.012} \pm \textbf{0.002} \end{array}$
COVER TAPE	WIDTH TAPE THICKNESS	C T	9.30 ± 0.10 0.065 ± 0.010	$\begin{array}{c} \textbf{0.366} \pm \textbf{0.004} \\ \textbf{0.0026} \pm \textbf{0.0004} \end{array}$
DISTANCE BETWEEN CENTERLINE	CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION	F P ₂	$\begin{array}{c} {\bf 5.50 \pm 0.05} \\ {\bf 2.00 \pm 0.05} \end{array}$	$\begin{array}{c} \textbf{0.217} \pm \textbf{0.002} \\ \textbf{0.079} \pm \textbf{0.002} \end{array}$

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies Obsoletes 5965-5959E 5966-3835E (11/99)