BCV27 ## **Darlington Transistor** ### **FEATURES** - ♦ High collector current - ♦ High current gain - NPN Silicon Planar Darlington Transistor for general NF applications - As complementary type, the PNP transistor BCV26 is recommended. #### Dimensions in inches and (millimeters) Pin configuration 1 = Base 2 = Emitter 3 = Collector #### **MECHANICAL DATA** **Case:** SOT-23 Plastic Package **Weight:** approx. 0.008 g Marking FF #### MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Value | Unit | | |---|------------------|-------------|------|--| | Collector-Emitter Voltage | V _{CEO} | 30 | V | | | Collector-Base Voltage | V _{CBO} | 40 | V | | | Emitter-Base Voltage | V _{EBO} | 10 | V | | | Collector Current | Ic | 300 | mA | | | Peak Collector Current | I _{CM} | 800 | mA | | | Base Current | I _B | 100 | mA | | | Power Dissipation at T _{SB} = 50 °C | P _{tot} | 3001) | mW | | | Junction Temperature | Tj | 150 | °C | | | Storage Temperature Range | T _S | -65 to +150 | °C | | | 1) Device on fiberglass substrate, see layout | | 1 | 1 | | #### **ELECTRICAL CHARACTERISTICS** Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Min. | Тур. | Max. | Unit | |--|------------------------------------|------------------------|---------------|-------------------|---------------| | Collector-Base Cutoff Current at V _{CBO} = 30 V | I _{CBO} | _ | - | 0.1 | μΑ | | Emitter-Base Cutoff Current at V _{EB} = 10 V | I _{EBO} | - | - | 0.1 | μА | | Collector-Emitter Breakdown Voltage at I _C = 10 mA | V _{(BR)CEO} | 30 | - | _ | V | | Collector-Base Breakdown Voltage at $I_C = 10 \mu A$ | V _(BR) CBO | 40 | - | _ | V | | Emitter-Base Breakdown Voltage at I _E = 100 nA | V _{(BR)EBO} | 10 | - | _ | V | | DC Current Gain
at $V_{CE} = 5 \text{ V}$, $I_C = 1 \text{ mA}$
at $V_{CE} = 5 \text{ V}$, $I_C = 10 \text{ mA}$
at $V_{CE} = 5 \text{ V}$, $I_C = 100 \text{ mA}$ | h _{FE}
h _{FE} | 4000
10000
20000 | -
 -
 - | -
-
- | -
 -
 - | | Collector-Emitter Saturation Voltage at $I_C = 100 \text{ mA}$, $I_B = 0.1 \text{ mA}$ | VCEsat | _ | _ | 1.0 | V | | Base-Emitter Saturation Voltage at $I_C = 100 \text{ mA}$, $I_B = 0.1 \text{ mA}$ | V _{BEsat} | _ | - | 1.5 | V | | Gain-Bandwidth Product
at V _{CE} = 5 V, I _C = 30 mA, f = 100 MHz | f _T | _ | 220 | _ | MHz | | Collector-Base Capacitance at $V_{CB} = 30 \text{ V}$, $I_E = 0$, $f = 1 \text{ MHz}$ | ССВО | _ | 3.5 | _ | pF | | Thermal Resistance Junction to Ambient Air | R _{thJA} | _ | _ | 430 ¹⁾ | K/W | ¹⁾ Device on fiberglass substrate, see layout below Layout for R_{thJA} test Thickness: Fiberglass 0.059 in (1.5 mm) Copper leads 0.012 in (0.3 mm)