SPEC No. E L O 6 8 1 0 9 I S S U E: Jul. 18. 1995

To:

CONFIRMATION SPECIFICATIONS

Product Type 80 Output LCD Segment Driver

Nodel No. LH1542F

*This specifications contains 20 pages including the cover and appendix.

If you have any objections, please contact us before issuing purchasing order.

CUSTOMERS ACCEPTANCE

DATE:

BY:

Please return the evoluted document with your CONFIKWA MON OF ACCEPTANCE with in 15 days after its mail date.
In case there is no CONTRMATION

OF ACCEPTANCE or COMMENT on it, it shall deem to be accepted without any odjection. PRESENTED

BY: If Sano

Dept. General Manager

REVIEWED BY:

PREPARED BY:

H. nishicha

K. Kurimoto

ENGINEERING DEPARTMENT I LOGIC IC ENGINEERING CENT TENRI INTEGRATED CIRCUITS SHARP CORPORATION

8180798 0027676 885

LH1542F

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - ·Office electronics
 - •Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - ·Home appliances
 - ·Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - \cdot Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - ·Nainframe computers
 - Traffic control systems
 - ·Gas leak detectors and automatic cutoff devices
 - •Rescue and security equipment
 - •Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - ·Aerospace equipment
 - ·Communications equipment for trunk lines
 - ·Control equipment for the nuclear power industry
 - •Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

LH1542F

1

Contents	
1. Summary ·····	Page • 2
2. Features	. 2
3. Block Diagram ····································	. 3
4. Functional Operations of Each Block ·····	. 3
5. Pin Configuration ·····	. 5
6. Pin Descriptions ······	. 5
7. Description of Functional Operations ······	• 7
8. Precaution ·····	• 11
9. Absolute Maximum Ratings ······	• 12
10. Recommended Operating Conditions	• 12
11. Electrical Characteristics ····································	• 12
12. Example of System Configuration	• 15
13. Example of Typical Characteristic ·····	• 16
14. Package and Packing Specification ·····	• 17

■ 8180798 0027678 658 **■**

1. Summary

The LH1542F is a 80 output segment driver LSI suitable for driving black and white dot matrix LC panels.

Through the use of SST (Super Slim TCP) technology, it is ideal for substantially decreasing the size of the frame section of the LC module. The LH1542F is particularly well suited to driving black and white LC panels used for palmtop personal computers because of its low-voltage operation (Supply voltage for logic system: +2.5 to +5.5 V).

When combined with the LH1532F Common Driver, a low power consuming, high-precision LC panel display can be assembled.

2. Features

• Supply voltage for LC drive : +10.0 to +30.0 V

• Number of LC drive outputs : 80

• Supply voltage for the logic system : +2.5 to +5.5 V • Low output impedance : 1.0 k Ω (Typ.) • Shift Clock frequency : 8.0 MHz (Max.)

Low power consumption

· Adopts a data bus system

- Automatic transfer function of an enable signal
- Automatic counting function which, in the chip select mode, causes the internal clock to be stopped by automatically counting 80 of input data
- · Line latch circuit reset function when DISPOFF active
- Supports high capacity LC panel display when combined with the LH1532F
 Common Driver
- CMOS process (P-type Silicon Substrate)
- Package : 101 pin TCP (Tape Carrier Package)
- · Not designed or rated as radiation hardened

8180798 0027679 594

3. Block Diagram

4. Functional Operations of Each Block

Block	Function								
Active Control	Controls the selection or deselection of the chip.								
	Following a LP signal input, and after the chip select signal is								
	input, a select signal is generated internally until-80 bits of								
connection is output, and the chip is deselected. SP Conversion Data is retained until 8 bits have been completely input, after a but a b									
	Once data input has been completed, a select signal for cascade								
	connection is output, and the chip is deselected.								
SP Conversion	Data is retained until 8 bits have been completely input, after								
& Data Control	which they are put on the internal data bus 8 bits at a time.								
Data Latch	Selects the state of the data latch which reads in the data bus								
Control	signals. The shift direction is controlled by the control logic,								
	for every 16 bits of data read in, the selection signal shifts								
	one bit based on the state of the control circuit.								
Data Latch	Latches the data on the data bus. The latched state of each LC								
	driver output pin is controlled by the control logic and the data								
	latch control, 80 bits of data are read in 10 sets of 8 bits.								
Line Latch	All 80 bits which have been read into the data latch are								
	simultaneously latched on the falling edge of the LP signal, and								
	output to the level shifter block.								

8180798 0027680 206

Block	Function						
Level Shifter	The logic voltage signal is level-shifted to the LC driver voltage level, and output to the driver block.						
4-Level Driver	Drives the LC driver output pins from the latch data, selecting one of 4 levels $(V_0,\ V_2,\ V_3,\ V_5)$ based on the FR and DISPOFF signals.						
Control Logic	Controls the operation of each block. When a LP signal has been input, all blocks are reset and the control logic waits for the selection signal output from the active control block. Once the selection signal has been output, operation of the data latch and data transmission are controlled, 80 bits of data are read in, and the chip is deselected.						

8180798 0027681 142

5. Pin Configuration

6. Pin Descriptions

6-1. Pin Designations

Pin No.	Symbol	I/0	Designation
1 to 80	Y ₁ - Y ₈₀	0	LC drive output
81, 101	Vol.VoR	-	Power supply for LC drive
82, 100	V _{2L} ,V _{2R}	-	Power supply for LC drive
83, 99	V _{3L} ,V _{3R}	-	Power supply for LC drive
84, 98	V _{5L} ,V _{5R}	-	Power supply for LC drive
85	SHL	I	Display data shift direction selection
86	V _{D D}	-	Power supply for logic system (+2.5 to +5.5 V)
87, 95	EIO2.EIO1	I/0	Input/Output for chip select
88 to 91	DI ₀ -DI ₃	I	Display data input
92	XCK	I	Display data shift clock input
93	DISPOFF	I	Control input for deselect output level
94	LP	I	Display data latch pulse input
96	FR	I	AC-converting signal input for LC drive waveform
97	V _{s s}		Ground(0 V)

8180798 0027682 089

8180798 0027683 T15 I

7. Description of Functional Operations

7-1. Pin Functions

Symbol	Function
V _D D	Logic system power supply pin connects to +2.5 to +5.5 V
Vss	Ground pin connects to 0 V
Vor, Vot	Power supply pin for LC driver voltage bias.
V _{2R} , V _{2L}	•Normally, the bias voltage used is set by a resistor divider.
V _{3R} , V _{3L}	•Ensure that voltages are set such that $V_{ss} \le V_s < V_a < V_o$.
VsR,VsL	•To further reduce the difference between the output waveforms of LC
	driver output pins Y_i and Y_{80} , externally connect V_{iR} and V_{iL}
	(i=0, 2, 3, 5).
DI ₀ -DI ₃	Input Pin for display data
	Input data into the 4 pins DI_0-DI_3 .
	•The relationship between the display data and driver output pins is
	shown in 7-2-2.
XCK	Clock input pin for taking display data
	•Data is read on the falling edge of the clock pulse.
LP	Latch pulse input pin for display data
	·Data is latched on the falling edge of the clock pulse.
SHL	Direction selection pin for reading display data
	•When set to V_{ss} level "L", data is read sequentially from Y_{s0} to Y_1 .
	•When set to V_{DD} level "H", data is read sequentially from Y_1 to Y_{80} .
DISPOFF	Control input pin for output deselect level
	•The input signal is level-shifted from logic voltage level to LC
	drive voltage level, and controls LC drive circuit.
	•When set to V_{ss} level "L", the LC driver output pins (Y_1-Y_{180}) are set
	to level V_5 .
	•While set to "L", the contents of the line latch are reset, display
	data is read in the data latch no relation with $\overline{\text{DISPOFF}}$. After $\overline{\text{DISPOFF}}$ is reset, the deselect level(V_2 or V_3) is output, and
	the contents of the line latch is output on the falling edge of the
	next LP signal. That time, if DISPOFF removal time can not keep
	regulation what is shown AC characteristics, the reading data is not
	correctly output.
FR	AC signal input for LC driving waveform
	•The input signal is level-shifted from logic voltage level to LC
	drive voltage level, and controls LC drive circuit.
	·Normally, inputs a frame inversion signal.
	•The LC driver output pin's output voltage level can be set using
i	
i	the line latch output signal and the FR signal.

8180798 0027684 951

Symbol	Function						
EIO ₁	Input/Output pin for chip selection						
EIO ₂	-When SHL input is at V_{ss} level "L", EIO, is set for output, and EIO, is set for input.						
	•When SHL input is at V_{DD} level "H", EIO_1 is set for input, and EIO_2 is set for output. •During output, set to "H" while LP* \overline{XCK} is "H" and after 80 bits of						
	data have been read set to "L" for one cycle (from falling edge to falling edge of XCK). after which it returns to "H".						
	•During input, after the LP signal is input, the chip is selected while EI is set to "L". After 80-bits of data have been read, the chip is deselected.						
Y ₁ -Y ₈₀	LC driver output pins Corresponding directly to each bit of the data latch, one level						
1	$(V_0, V_2, V_3, or V_5)$ is selected and output.						

7-2. Functional Operations

7-2-1. Truth Table

FR	Latch Data	DISPOFF	Driver Output Voltage Level (Y ₁ -Y ₈₀)				
L	L	Н	V ₃				
L	H	Н	ν ₅				
Н	L	Н	V ₂				
Н	Н	Н	V ₀				
X	x	L	V ₅				

Here, $V_{ss} \le V_5 < V_3 < V_2 < V_0$, H: $V_{DD}(+2.5 \text{ to } +5.5 \text{ V})$, L: $V_{ss}(0 \text{ V})$, x: Don't care [Note] "Don't care" should be fixed to "H" or "L", avoiding floating. There are two kinds of power supply (logic level voltage, LC drive voltage) for LCD driver, please supply regular voltage which assigned by specification for each power pin.

7-2-2. Relationship between the Display Data and Driver Output pins

SHL	EIO:	EIO ₂	Data		Figure of Clock						
			Input	20clock	19clock	18clock	•••	3clock	2clock	lclock	
			DIo	Υı	Y 5	Y 9	•••	Yeo	Y79	Y ₇₇	
	ŀ		DI ₁	Y 2	Υ 6	Y 1 0	•••	Y 7 0	Y74	Y 7 8	
L	Output	Input	DI2	Υ 3	Υ ,	Y 1 1	•••	Y ₇₁	Y75	Y 7 9	
			DI ₃	Υ 4	Y s	Y ₁₂	•••	Y 7 2	Y74	Yao	
			DIo	Y 8 0	Y 7 6	Y 7 2		Y 1 2	Y s	Y 4	
			DI ₁	Y 7 9	Y75	Y ₇₁	•••	Υ ₁₁	Y 7	Y 3	
Н	Input	Output	DI2	Y 7 8	Y ₇₄	Y 7 0	•••	Yio	Y 6	Y 2	
			DI ₃	Y 7 7	Y ₇₃	Y 6 9	•••	e Y	Y 5	Y	

Here, $H:V_{DD}(+2.5 \text{ to } +5.5 \text{ V})$, $L:V_{SS}(0 \text{ V})$

7-2-3. Connection Examples of Plural Segment Drivers

(a) Case of SHL="L"

(b) Case of SHL="H"

8180798 0027686 724

8. Precaution

OPrecaution when connecting or disconnecting the power
This LSI has a high-voltage LC driver, so it may be permanently damaged by
a high current which may flow if a voltage is supplied to the LC driver
power supply while the logic system power supply is floating.
The detail is as follows.

- •When connecting the power supply, connect the LC driver voltage after connecting the logic system power. Furthermore, when disconnecting the power, disconnect the logic system power after disconnecting the LC driver voltage.
- •We recommend you connecting the serial resistor $(50\sim100~\Omega)$ to the LC driver voltage V_0 of the system as a current limitter resistor. And set up the suitable value of the resistor in consideration of LC display grade.

And when connecting the logic power supply, the logic condition of this LSI inside is insecurity. Therefore connect the LC drive power supply after resetting logic condition of this LSI inside on DISPOFF function. After that, cancel the DISPOFF function after the LC drive power supply has become stable. Furthermore, when disconnecting the power, set the LC drive output pins to level $V_{\rm S}$ on DISPOFF function. After that, disconnect the logic system power after disconnecting the LC drive power.

When connecting the power supply, show the following recommend sequence.

9. Absolute Maximum Ratings

Parameter	Symbo	l Conditions	Applicable pins	Ratings	Unit
Supply voltage (1)	V _D D	Ta=25 t	V _{DD}	-0.3 to $+7.0$	V
Supply voltage (2)	V ₀	Referenced	Vol. Vor	-0.3 to +32.0	V
	V ₂	to $V_{ss}(0 V)$	V _{2L} , V _{2R}	-0.3 to $V_0 + 0.3$	V
	V 3	1	V _{3L} ,V _{3R}	-0.3 to $V_0 + 0.3$	V
	V ₅		V _{SL} , V _{SR}	-0.3 to $V_0 + 0.3$	V
Input voltage	٧,	1	DI ₀₋₃ ,XCK,LP,SHL,FR	-0.3 to $V_{DD}+0.3$	V
-			EIO1, EIO2, DISPOFF		
Storage temperature	T g			-45 to +125	ť

10. Recommended Operating Conditions

Parameter	Symbol	Conditions Applicable	pins Min.	Typ.	Max. U	nit
Supply voltage (1)	V _{D D}	Referenced V _{DD}	+2.5		+5.5	V
Supply voltage (2)	V _o	to V _{ss} (0 V)V _{oL} ,V _{oR}	+10.0		+30.0	V
Operating temperature	Topr		-20		+85	Ť

11. Electrical Characteristics

11-1. DC Characteristics

 $(V_{ss}=V_{5}=0 \text{ V}, V_{DD}=+2.5 \text{ to } +5.5 \text{ V}, V_{0}=+10.0 \text{ to } +30.0 \text{ V}, Ta=-20 \text{ to } +85 \text{ }\%)$

Symbol	Conditions	Applicable pins	Min.	Typ.	Мах.	Unit
νιн	-	DI ₀₋₃ , XCK, LP, SHL, FE	0.8V _D		_	V
VIL		EIO1, EIO2, DISPOFF			0.2V D D	V
V _{o H}	I _{OH} =-0.4 mA	EIO ₁ ,EIO ₂	V _{DD} -0.4			V
Vol	$I_{oL}=+0.4$ mA				+0.4	٧
ILI	V _{ss} \V _l \V _b	All input pins		-	±10.0	μА
111/0	$V_{S,S} \leq V_{I} \leq V_{D,D}$	EIO1, EIO2			±10.0	μА
Ron	*1 V ₀ =+30 V	Y1-Y80		1.0	1.5	kΩ
	$V_0 = +20 \text{ V}$			1.5	2.0	
	$V_0 = +10 \text{ V}$			2.0	3.0	1
Ізтв	*2	Vss			50.0	μА
IDDI	$V_{DD} = +3.0 \text{ V } *3$	V _{D D}			0.6	mA
	$V_{DD} = +5.0 \text{ V } *3$				1.0	mA
I _{DD2}	$V_{DD} = +3.0 \text{ V } *3$	V _{D D}			3.0	mA
	$V_{DD} = +5.0 \text{ V *}3$				5.0	mA
Ιο	*4	Vol, Vor			1.0	mΑ
	VIH VIL VOH VOL ILI ILI/O RON ISTB IDD1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{1H} V _{1L} V _{OH} I _{OH} =-0.4 mA V _{OL} I _{OL} =+0.4 mA I _{L1} V _{SS} ≤V ₁ ≤V _{DD} R _{ON} *1 V _O =+20 V V _O =+10 V V _{DD} =+3.0 V *3 V _{DD} =+5.0 V *3 V _{DD} =+5.0 V *3 V _{DD} EIO ₁ ,EIO ₂ V _{DD} EIO ₁ ,EIO ₂ V _{DD} V _{DD} =+5.0 V *3 V _{DD} V _{DD} EIO ₁ ,EIO ₂ V _{DD} V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

[Note]

- *1: $|\Delta V_{ON}| = 0.5 \text{ V}$
- *2: V_{DD} =+5.0 V, V_{0} =+30.0 V, V_{IH} = V_{DD} , V_{IL} = V_{SS}
- *3: $V_0 = +30.0 \text{ V}$, $f_{xck} = 6.15 \text{ MHz}$, No-load

The input data is turned over by data taking clock(4-bit parallel input mode)

*4: V_{DD} =+5.0 V. V_0 =+30.0 V, f_{XCX} =6.15 MHz, f_{LP} =19.2 kHz, f_{FR} =80 Hz, No-load The input data is turned over by data taking clock(4-bit parallel input mode)

■ 8180798 0027689 433 ■

11-2. AC Characteristics

 $(V_{ss}=V_{5}=0 \text{ V, } V_{DD}=+2.5 \text{ to } +5.5 \text{ V, } V_{0}=+10.0 \text{ to } +30.0 \text{ V, } Ta=-20 \text{ to } +85 \text{ T})$

Parameter	Symbo.	Conditions	Min.	Typ.	Max.	Unit
Shift clock period	twck	t.,t.≤11 ns	125			ns
Shift clock "H" pulse width	twcki	4	51			ns
Shift clock "L" pulse width	twcki		51			ns
Data setup time	t _{os}		40			ns
Data hold time	t _{DH}		30			ns
Latch pulse "H" pulse width	twipi	0	51			ns
Shift clock rise to Latch pulse rise time			0			ns
Shift clock fall to Latch pulse fall time	tsı		51			ns
Latch pulse rise to Shift clock rise time			51			ns
Latch pulse fall to Shift clock fall time	t _{LH}		51			ns
Enable setup time	ts		30			ns
DISPOFF "L" pulse width	twoL		1.2			μs
DISPOFF removal time	trem		100			пs
Input signal rise time	t,	Note			50	ns
Input signal fall time	t,				50	ns
Output delay time (1) XCK to EIO ₁ ,EIO ₂	t _D	C _L =15 pF			80	ns
Output delay time (2) FR to $Y_1 - Y_{80}$	tpd ₁				1.2	μs
Output delay time (3) LP to Y ₁ -Y ₈₀ .	tpd ₂				1.2	μs
Output delay time (4) DISPOFF to Y_1-Y_{80}	tpd3				1.2	μ5

[Note] $(t_{wck}-t_{wckh}-t_{wckl})/2$ is maximum in the case of high speed operation.

11-3. Timing Diagrams

Input Timing Characteristics

3180798 0027690 155

8180798 0027691 091

8180798 0027692 T28

13. Example of Typical Characteristic

Parameter	Conditions	Mim.	Typ.	Max. Unit
Typical Fundamental Rating	Ta=+25		10	ns
Propagation Delay Time				

8180798 0027693 964

17

14. PACKAGE AND PACKING SPECIFICATION

1. Package Outline Specification

SHARP

Refer to drawing No. SPN2201-00

2. Markings

The meanings of the device code printed on each tape carrier package are as follows.

- (1) Date code (example) : $\frac{4}{a}$ $\frac{3.7}{b}$ $\frac{0}{c}$
 - a) denotes the last figure of Anno Domini (of production)
 - b) denotes the week (of production)
 - c) denotes the number of times of alteration
- 3. Packing Specifications
 - (1) Packing Materials

ltem	Material	Purpose		
Reel -	Anti-static treated plastic (405mm dia.)	Packing of tape carrier package.		
Separator	Anti-static treated PET (188 \(\alpha\) mt)	Protects device and prevents ESD (Electro Static Discharge)		
Laminated aluminium bag	$(520 \times 600 \text{mm})$	Keeping dry.		
Adhesive tape paper		Fixing of tape carrier package and sparator.		
Carton	Cardboard(420x420x50mm)	Contains a reel.		
Label	Paper .	Indicates production name, lot.No and quantity.		
Desiccant	Silica gel	Drying of device		

- (2) Packing Form
 - a) Tape carrier package(TCP) is wound on a reel with separators 1 and 2 and the ends of them are fixed with adhesive tape.
 - b) A label indicating production name, lot no. and quantity is stuck on one side of the reel.
 - c) The reel and silica gel is put in a laminated aluminium bag. Nitrogen gas is enclosed in the bag and the bag is sealed. The same label(b) is affixed to the bag. The bag is put in a carton and the same label(b) is affixed to one side of the carton.
- * Specification of label

ТҮРЕ	PRODUCTION NAME LOT NO.
QUANTITY	QUANTITY
LOT(DATE)	SHIPPING DATE

- 4. Miscellaneous
 - (1) The length of the tape carrier is 34 × 46 meters maximum per reel, and depends on shipping quantity.
 - (2) Before unpacking, prepare a work bench equipped with anti-static devices. Also, the operator should ware anti-static wrist bands.
 - (3) The device, once unpacked, should be stored in a nitrogen gas, room temperature atomosphere and used within 1 week.

1	ISSUE DATE	AUG.24.1994	APROVE	CHECK	DESIGN	(NOTE)
	ISSUE NUMBER	H6807	1 1		62 71. 1	
	S/C NUMBER	,	J. SUZUK	y. Hordi	J. Ridogucki	

■ 8180798 0027694 8TO ■

142618