

INITIAL RELEASE Final Electrical Specifications LT1881/LT1882

DLOGY Dual and Quad Rail-to-Rail Output, Picoamp Input Precision Op Amps

FEATURES

- Offset Voltage: 50µV Maximum (LT1881A)
- Input Bias Current: 200pA Maximum (LT1881A)
- Offset Voltage Drift: 0.8µV/°C Maximum
- Rail-to-Rail Output Swing
- Supply Range: 2.7V to 36V
- Operates with Single or Split Supplies
- Open-Loop Voltage Gain: 1 Million Minimum
- ImA Maximum Supply Current Per Amplifier
- Stable at A_V = 1, C_L = 1000pF
- Standard Pinouts

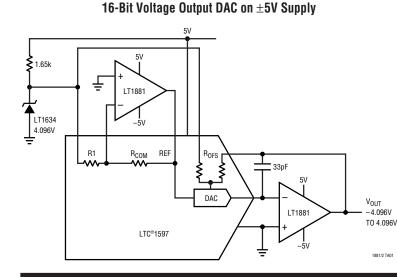
APPLICATIONS

- Thermocouple Amplifiers
- Bridge Transducer Conditioners
- Instrumentation Amplifiers
- Battery-Powered Systems
- Photo Current Amplifiers

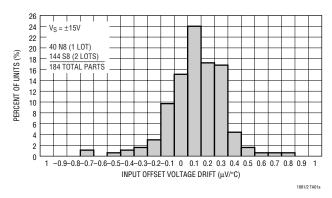
DESCRIPTION

April 2000

The LT[®]1881 and LT1882 op amps bring high accuracy input performance to amplifiers with rail-to-rail output swing. Input bias currents and capacitive load driving capabilities are superior to the similar LT1884 and LT1885 amplifiers, at the cost of a slight loss in speed. Input offset voltage is trimmed to less than 50μ V and the low drift maintains this accuracy over the operating temperature range. Input bias currents are an ultralow 200pA maximum.


The amplifiers work on any total power supply voltage between 2.7V and 36V (fully specified from 5V to \pm 15V). Output voltage swings to within 40mV of the negative supply and 220mV of the positive supply make these amplifiers good choices for low voltage single supply operation.

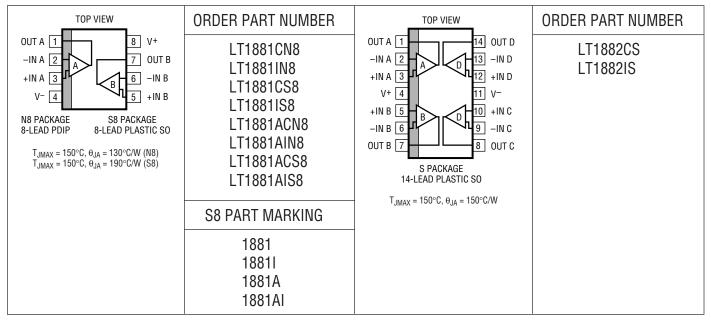
Capacitive loads up to 1000pF can be driven directly in unity-gain follower applications.


The dual LT1881 and LT1881A are available with standard pinouts in S8 and PDIP packages. The quad LT1882 is in a 14-pin S0 package. For a higher speed device with similar DC specifications, see the LT1884/LT1885.

C, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

TC V_{OS} Distribution, Industrial Grade


Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

LT1881/LT1882

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (V ⁺ to V ⁻)	40V
Differential Input Voltage (Note 2)	±10V
Input Voltage	
Input Current (Note 2)	±10mA
Output Short-Circuit Duration (Note 3)	

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. Single supply operation V_{EE} = 0, V_{CC} = 5V; V_{CM} = V_{CC}/2 unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage (LT1881A)			25	50	μV
		0°C < T _A < 70°C			85	μV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C}$			110	μV
	Input Offset Voltage (LT1881/LT1882)			30	80	μV
		0°C < T _A < 70°C			125	μV
		$-40^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C}$			150	μV
	Input Offset Voltage Drift	0°C < T _A < 70°C		0.3	0.8	μV/°C
	(Note 6)	−40°C < T _A < 85°C		0.3	0.8	μV/°C
l _{os}	Input Offset Current (LT1881A)			100	200	рА
		0°C < T _A < 70°C			250	pA
		$-40^{\circ}C < T_A < 85^{\circ}C$			300	pA
	Input Offset Current (LT1881/LT1882)			150	500	рА
		0°C < T _A < 70°C			600	pA
		-40°C < T _A < 85°C			700	pA

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. Single supply operation V_{EE} = 0, V_{CC} = 5V; V_{CM} = V_{CC}/2 unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
I _B	Input Bias Current (LT1881A)	0°C < T _A < 70°C −40°C < T _A < 85°C	•		100	200 250 300	pA pA pA
	Input Bias Current (LT1881/LT1882)	0°C < T _A < 70°C −40°C < T _A < 85°C	•		150	500 600 700	pA pA pA
	Input Noise Voltage	0.1Hz to 10Hz			0.5		μV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			14		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.03		pA/√Hz
V _{CM}	Input Voltage Range		•	V _{EE} + 1.0 V _{EE} + 1.2		V _{CC} - 1.0 V _{CC} - 1.2	V V
CMRR	Common Mode Rejection Ratio	1V < V _{CM} < 4V 1.2V < V _{CM} < 3.8V	•	106 104	128		dB dB
PSRR	Power Supply Rejection Ratio	$ \begin{array}{l} V_{EE} = 0, V_{CM} = 1.5 V \\ 0^{\circ}C < T_A < 85^{\circ}C, 2.7 V < V_{CC} < 32 V \\ T_A = -40^{\circ}C, 3V < V_{CC} < 32 V \end{array} $	•	106 106	132 132		dB dB
	Minimum Operating Supply Voltage				2.4	2.7	V
A _{VOL}	Large-Signal Voltage Gain	R _L = 10k; 1V < V _{OUT} < 4V	•	500 350	1600		V/mV V/mV
		R _L = 2k; 1V < V _{OUT} < 4V	•	300 250	800		V/mV V/mV
		R _L = 1k; 1V < V _{OUT} < 4V	•	250 200	400		V/mV V/mV
V _{OL}	Output Voltage Swing Low	No Load I _{SINK} = 100μA I _{SINK} = 1mA I _{SINK} = 5mA	•		20 25 70 270	40 50 150 600	mV mV mV mV
V _{OH}	Output Voltage Swing High (Referred to V_{CC})	No Load I _{SOURCE} = 100µA I _{SOURCE} = 1mA I _{SOURCE} = 5mA	•		120 130 180 360	220 230 300 600	mV mV mV mV
I _S	Supply Current Per Amplifier	V _{CC} = 3V	•	0.45	0.65	0.85 1.2	mA mA
		V _{CC} = 5V	•	0.5	0.65	0.9 1.4	mA mA
		V _{CC} = 12V	•	0.5	0.70	1.0 1.5	mA mA
I _{SC}	Short-Circuit Current	V _{OUT} Short to GND V _{OUT} Short to V _{CC}	•	15 15	30 30		mA mA
GBW	Gain-Bandwidth Product	f = 20kHz		0.5	1.0		MHz
t _S	Settling Time	0.01%, $V_{OUT} = 1.5V$ to 3.5V, $A_V = -1$, $R_L = 2k$			30		μs
SR+	Slew Rate Positive	A _V = -1	•	0.15 0.12	0.35		V/μs V/μs
SR-	Slew Rate Negative	A _V = -1	•	0.11 0.08	0.18		V/µs V/µs

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. Single supply operation V_{EE} = 0, V_{CC} = 5V; V_{CM} = V_{CC}/2 unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
ΔV_{0S}	Offset Voltage Match (LT1881A)	(Note 7) $0^{\circ}C < T_{A} < 70^{\circ}C$ $-40^{\circ}C < T_{A} < 85^{\circ}C$	•		30	70 125 160	μV μV μV
	Offset Voltage Match (LT1881/LT1882)	(Note 7) $0^{\circ}C < T_{A} < 70^{\circ}C$ $-40^{\circ}C < T_{A} < 85^{\circ}C$	•		35	125 175 235	μV μV μV
	Offset Voltage Match Drift	(Notes 6, 7)	•		0.4	1.2	μV/°C
ΔI_{B} +	Noninverting Bias Current Match (LT1881A)	(Notes 7, 8) $0^{\circ}C < T_{A} < 70^{\circ}C$ $-40^{\circ}C < T_{A} < 85^{\circ}C$	•		200	300 400 500	pA pA pA
	Noninverting Bias Current Match (LT1881/LT1882)	(Notes 7, 8) $0^{\circ}C < T_{A} < 70^{\circ}C$ $-40^{\circ}C < T_{A} < 85^{\circ}C$	•		250	700 900 1000	pA pA pA
$\Delta CMRR$	Common Mode Rejection Match	(Notes 7, 9)	•	102	125		dB
∆PSRR	Power Supply Rejection Match (Notes 7, 9)	$ \begin{array}{l} V_{EE} = 0, V_{CM} = 1.5 V \\ 0^{\circ}C < T_A < 85^{\circ}C, 2.7 V < V_{CC} < 32 V \\ T_A = -40^{\circ}C, 3V < V_{CC} < 32 V \end{array} $	•	104 104	126 126		dB dB

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. Split supply operation $V_S = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage (LT1881A)	$0^{\circ}C < T_A < 70^{\circ}C - 40^{\circ}C < T_A < 85^{\circ}C$	•		25	50 85 110	μV μV μV
	Input Offset Voltage (LT1881/LT1882)	$0^{\circ}C < T_A < 70^{\circ}C - 40^{\circ}C < T_A < 85^{\circ}C$	•		30	80 125 150	μV μV μV
	Input Offset Voltage Drift (Note 6)	$0^{\circ}C < T_A < 70^{\circ}C -40^{\circ}C < T_A < 85^{\circ}C$	•		0.3 0.3	0.8 0.8	μV/°C μV/°C
I _{OS}	Input Offset Current (LT1881A)	0°C < T _A < 70°C -40°C < T _A < 85°C	•		150	200 250 300	pA pA pA
	Input Offset Current (LT1881/LT1882)	$0^{\circ}C < T_A < 70^{\circ}C - 40^{\circ}C < T_A < 85^{\circ}C$	•		150	500 600 700	рА рА рА
I _B	Input Bias Current (LT1881A)	$0^{\circ}C < T_A < 70^{\circ}C - 40^{\circ}C < T_A < 85^{\circ}C$	•		150	200 250 300	рА рА рА
	Input Bias Current (LT1881/LT1882)	$0^{\circ}C < T_{A} < 70^{\circ}C - 40^{\circ}C < T_{A} < 85^{\circ}C$	•		150	500 600 700	рА рА рА
	Input Noise Voltage	0.1Hz to 10Hz			0.5		μV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			14		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.03		pA/√Hz
V _{CM}	Input Voltage Range		•	V _{EE} + 1.0 V _{EE} + 1.2		V _{CC} - 1.0 V _{CC} - 1.2	V V

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. Split supply operation $V_S = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
CMRR	Common Mode Rejection Ratio	-13.5V < V _{CM} < 13.5V	•	114	130		dB
+PSRR	Positive Power Supply Rejection Ratio	V _{EE} = -15, V _{CM} = 0; 1.5V < V _{CC} < 18V	•	110	132		dB
–PSRR	Negative Power Supply Rejection Ratio	V _{CC} = 15, V _{CM} = 0; -1.5V < V _{EE} < -18V	•	106	132		dB
	Minimum Operating Supply Voltage		•		±1.2	±1.35	V
A _{VOL}	Large-Signal Voltage Gain	R _L = 10k; -13.5V < V _{OUT} < 13.5V	•	1000 700	1600		V/mV V/mV
		R _L = 2k; -13.5V < V _{OUT} < 13.5V	•	175 125	420		V/mV V/mV
		$R_L = 1k; -12V < V_{OUT} < 12V$	•	90 65	230		V/mV V/mV
V _{OL}	Output Voltage Swing Low (Referred to V _{EE})	No Load I _{SINK} = 100µA I _{SINK} = 1mA I _{SINK} = 5mA	•		20 25 70 270	40 50 150 600	mV mV mV mV
V _{OH}	Output Voltage Swing High (Referred to V_{CC})	No Load I _{SOURCE} = 100µA I _{SOURCE} = 1mA I _{SOURCE} = 5mA	•		160 160 180 360	220 230 300 600	mV mV mV mV
I _S	Supply Current Per Amplifier	$V_{S} = \pm 15V$	•	0.5	0.85	1.1 1.6	mA mA
I _{SC}	Short-Circuit Current	V _{OUT} Short to V _{EE}	•	20 15	40 40		mA mA
		V_{OUT} Short to V_{CC}	•	20 15	30 30		mA mA
GBW	Gain-Bandwidth Product	f = 20kHz		0.6	1.1		MHz
t _S	Settling Time	0.01%, $V_{OUT} = -5V$ to 5V, A _V = -1, R _L = 2k			35		μs
SR+	Slew Rate Positive	A _V = -1	•	0.21 0.18	0.4		V/µs V/µs
SR ⁻	Slew Rate Negative	A _V = -1	•	0.13 0.1	0.20		V/µs V/µs
ΔV_{0S}	Offset Voltage Match (LT1881/LT1882)	(Note 5) $0^{\circ}C < T_A < 70^{\circ}C$ $-40^{\circ}C < T_A < 85^{\circ}C$	•		42	125 175 235	μV μV μV
	Offset Voltage Match (LT1881A)	$0^{\circ}C < T_A < 70^{\circ}C -40^{\circ}C < T_A < 85^{\circ}C$	•		35	70 125 160	μV μV μV
	Offset Voltage Match Drift	(Notes 6, 7)	•		0.4	1.1	μV/°C
ΔI_{B} +	Noninverting Bias Current Match (LT1881/LT1882)	$\begin{array}{l} (\text{Notes 7, 8}) \\ 0^{\circ}\text{C} < \text{T}_{\text{A}} < 70^{\circ}\text{C} \\ -40^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C} \end{array}$	•		240	700 900 1000	pA pA pA
	Noninverting Bias Current Match (LT1881A)	$0^{\circ}C < T_A < 70^{\circ}C -40^{\circ}C < T_A < 85^{\circ}C$	•		200	300 400 500	pA pA pA
∆CMRR	Common Mode Rejection Match	(Notes 7, 9)	•	110	125		dB

ELECTRICAL CHARACTERISTICS

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. Split supply operation V_S = ±15V, V_{CM} = 0V unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Δ +PSRR	Positive Power Supply Rejection Match	$V_{EE} = -15V, V_{CM} = 0V,$ 1.5V < V _{CC} < 18V, (Notes 7, 9)	•	108	130		dB
Δ –PSRR	Negative Power Supply Rejection Match	$V_{CC} = 15V, V_{CM} = 0V,$ -1.5V < V _{EE} < -18V, (Notes 7, 9)	•	104	130		dB

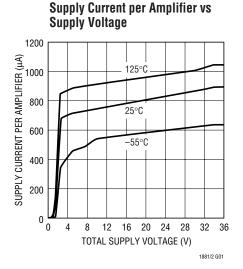
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The inputs are protected by internal resistors and back-to-back diodes. If the differential input voltage exceeds $\pm 0.7V$, the input current should be limited externally to less than 10mA.

Note 3: A heat sink may be required to keep the junction temperature below absolute maximum.

Note 4: The LT1881C, LT1882C, LT1881I and LT1882I are guaranteed functional over the operating temperature range of -40° C to 85° C.

Note 5: The LT1881C and LT1882C are designed, characterized and expected to meet specified performance from -40° C to 85° C but are not tested or QA sampled at these temperatures. The LT1881I and LT1882I are guaranteed to meet specified performance from -40° C to 85° C.


Note 6: This parameter is not 100% tested.

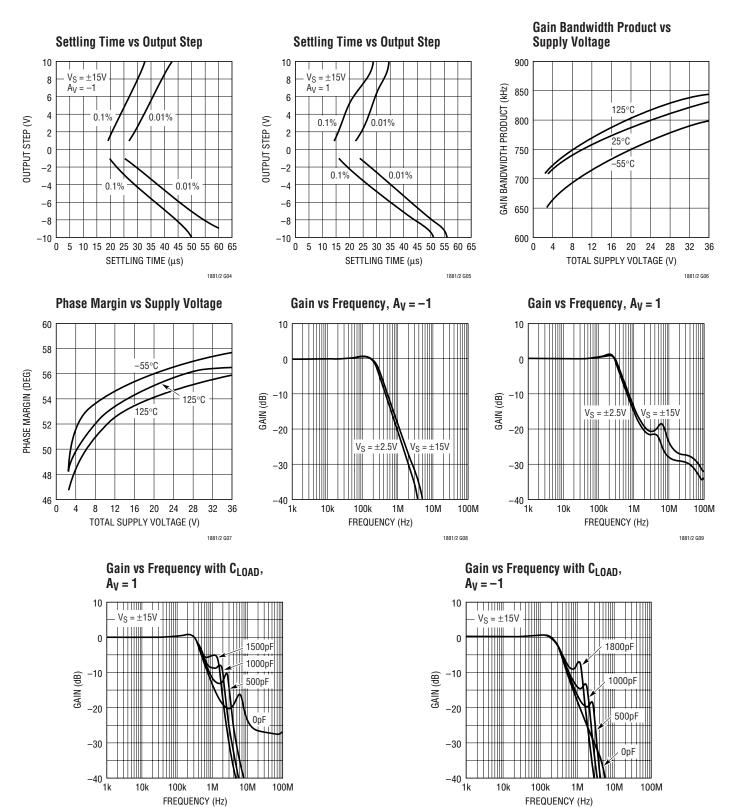
Note 7: Matching parameters are the difference between amplifiers A and B in the LT1881; and between amplifiers A and D and B and C in the LT1882.

Note 8: This parameter is the difference between the two noninverting input bias currents.


Note 9: \triangle CMRR and \triangle PSRR are defined as follows: CMRR and PSRR are measured in μ V/V on each amplifier. The difference is calculated in μ V/V and then converted to dB.

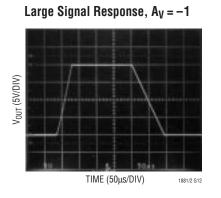
TYPICAL PERFORMANCE CHARACTERISTICS

Slew Rate vs Supply Voltage 0.45 0.40 RISING 0.35 SLEW RATE (V/µs) 0.30 0.25 FALLING 0.20 0.15 0.10 0.05 Λ 12 16 20 24 8 28 32 0 4 36 TOTAL SUPPLY VOLTAGE (V) 1881/2 G02

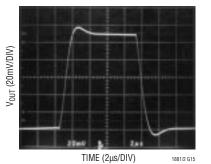

Slew Rate vs Temperature

1881/2 G11

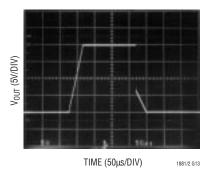
TYPICAL PERFORMANCE CHARACTERISTICS

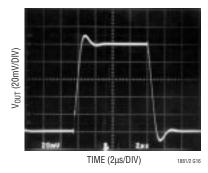


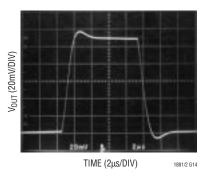
1881/2 G10

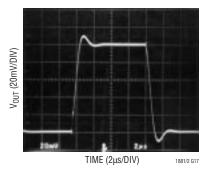


LT1881/LT1882


TYPICAL PERFORMANCE CHARACTERISTICS






Small Signal Response, $A_V = 1$, $R_L = 2k$

Small Signal Response, $A_V = -1$, No Load

APPLICATIONS INFORMATION

The LT1881 dual and LT1882 quad op amps feature exceptional input precision with rail-to-rail output swing. The amplifiers are similar to the LT1884 and LT1885 devices. The LT1881 and LT1882 offer superior capacitive load driving capabilities over the LT1884 and LT1885 in low voltage gain configurations. Offset voltages are trimmed to less than 50 μ V and input bias currents are less than 200pA on the "A" grade devices. Obtaining beneficial advantage of these precision input characteristics depends upon proper applications circuit design and board layout.

Preserving Input Precision

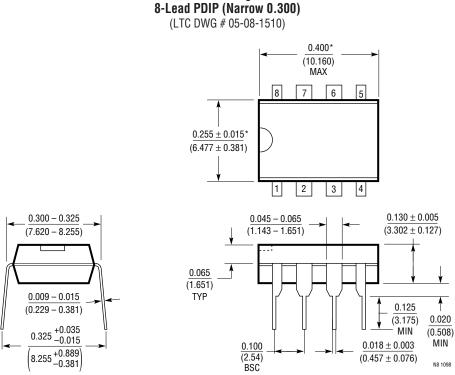
Preserving the input voltage accuracy of the LT1881/ LT1882 requires that the applications circuit and PC board layout do not introduce errors comparable to or greater than the $30\mu V$ offset. Temperature differentials across the input connections can generate thermocouple voltages of 10's of microvolts. PC board layouts should keep connections to the amplifier's input pins close together and away from heat dissipating components. Air currents across the board can also generate temperature differentials.

The extremely low input bias currents, 150pA, allow high accuracy to be maintained with high impedance sources and feedback networks. The LT1881/LT1882's low input bias currents are obtained by using a cancellation circuit on-chip. This causes the resulting I_{BIAS} + and I_{BIAS} - to be uncorrelated, as implied by the I_{OS} specification being greater than the I_{BIAS} . The user should not try to balance the input resistances in each input lead, as is commonly recommended with most amplifiers. The impedance at either input should be kept as small as possible to minimize total circuit error.

PC board layout is important to insure that leakage currents do not corrupt the low I_{BIAS} of the amplifier. In high precision, high impedance circuits, the input pins should be surrounded by a guard ring of PC board interconnect, with the guard driven to the same common mode voltage as the amplifier inputs.

Input Common Mode Range

The LT1881 and LT1882 outputs are able to swing nearly to each power supply rail, but the input stage is limited to operating between V_{EE} + 0.8V and V_{CC} – 0.9V. Exceeding this common mode range will cause the gain to drop to zero; however, no gain reversal will occur.


Input Protection

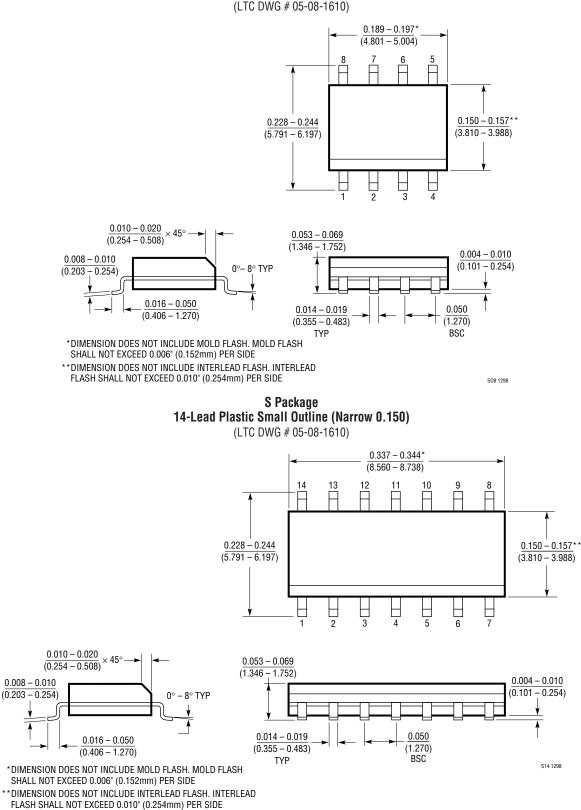
The inverting and noninverting input pins of the LT1881 and LT1882 have limited on-chip protection. ESD protection is provided to prevent damage during handling. The input transistors have voltage clamping and limiting resistors to protect against input differentials up to 10V. Short transients above this level will also be tolerated. If the input pins can see a sustained differential voltage above 10V, external limiting resistors should be used to prevent damage to the amplifier. A 1k resistor in each input lead will provide protection against a 30V differential voltage.

Capacitive Loads

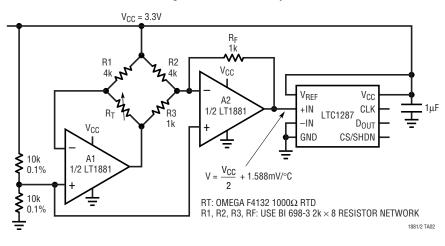
The LT1881 and LT1882 can drive capacitive loads up to 1000pF in unity-gain. The capacitive load driving increases as the amplifier is used in higher gain configurations. Capacitive load driving may be increased by decoupling the capacitance from the output with a small resistance.

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

N8 Package


*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

PACKAGE DESCRIPTION


PTION Dimensions in inches (millimeters) unless otherwise noted.

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610)

LINEAR TECHNOLOGY

TYPICAL APPLICATION

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1112/LT1114	Dual/Quad Picoamp Input Op Amp	$V_{OS} = 60 \mu V Max$
LT1677	Gain Programmable Instrumentation Amp	Gain Error = 0.08% Max
LT1793	Low Noise JFET Op Amp	I _B = 10pA Max
LT1884/LT1885	Dual/Quad Picoamp Input Op Amp	3 Times Faster than LT1881/LT1882
LTC2050	Zero Drift Op Amp in SOT-23	V _{OS} = 3μV Max, Rail-to-Rail Output

