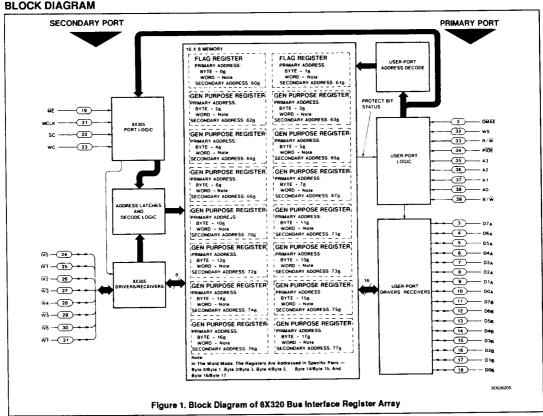
Sianetics

8X320 **Bus Interface Register Array**

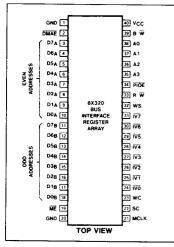
Product Specification

Military **Customer Specific Products**


FEATURES

- 16-byte/2-port interface
- 8- or 16-bit primary port (Host) interface (User selectable)
- · 8-bit secondary port interface
- . Two 8-bit flag registers (handshake control)
- DMA or programmed I/O operation
- Two 3-State bidirectional ports
- Secondary port is bus compatible with 8X305
- Single 5V supply
- 0.6", 40-pin package

ARCHITECTURAL OVERVIEW


The Signetics 8X320 Bus Interface Register Array (Figure 1) is a dual-port RAM memory designed for use between a host processor and a peripheral processor. Specifically, the register array provides a convenient and economical interface between the 8X305 Microcontroller (secondary port) and User's Host System (primary port); the host can be almost any bus-oriented device - another processor, a minicomputer, or a mainframe computer. The host has 8-bit (byte) or 16-bit (word) access to the primary port; data can be read-from or written-into any memory

location as determined by the primary-port address and control lines. The secondary port (8X305 bus) consists of eight input/ output lines and four bus control lines. To implement the secondary-port interface, an 8-bit memory location is addressed during one machine cycle and, during another cycle, data is read or written under control of the secondary (8X305) processor. Both primary and secondary ports feature 3-State outputs and both ports are bidirectional.

8X320

PIN CONFIGURATION

ORDERING INFORMATION

PACKAGE	ORDER CODE
40-Pin DIP	8X320/BQA

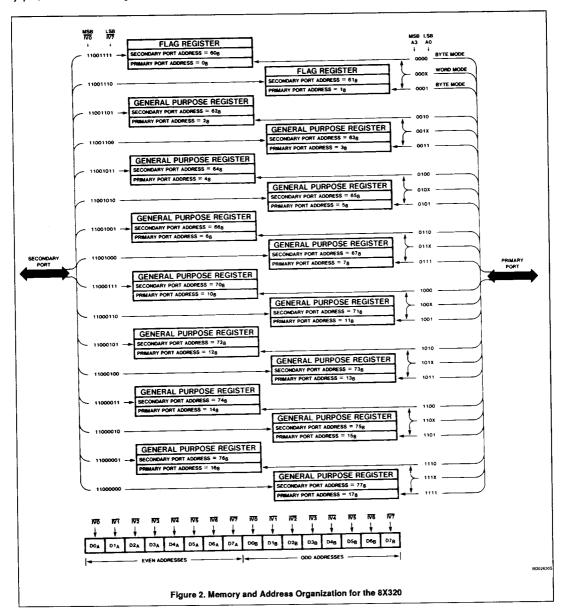
Besides the convenience and economy of a two-port memory, the array also provides simple handshake control via two 8-bit flag registers, logic to facilitate DMA transfers, and a write-protect feature for the primary port in both byte and word modes of operation.

PIN DESCRIPTION

PIN NO.	IDENTIFIER	FUNCTION
1, 20	GND	Ground: Circuit ground.
2	DMAE	Direct Memory Access Enable: Enables primary port to facilitate DMA transfers; does not affect secondary port.
3 – 18	D0 _A - D7 _A / D0 _B - D7 _B	Primary Data Port: Sixteen 3-State lines used for data transfers to-and-from the primary data port; most significant bit is D0 _B and least significant bit is D7 _A .
19	ME	Master Enable: Enables secondary port when active low (ME).
21	MCLK	Master Clock: When MCLK is high, and 8X320 is enabled (ME = Low), a register location may be either selected or written-into under control of SC and WC.
22	SC	Select Command: With SC high, WC low, MCLK high and ME low, data on $\overline{\text{IVO}}$ through $\overline{\text{IVO}}$ is interpreted as an address. If any one of the 16 register addresses (60_8-77_8) matches that on the I/O (IV) bus, that particular register is selected and remains selected until another address on the same bank (i.e. $\overline{\text{ME}}=\text{low}$) is output on the I/O bus — at which time, the old register is deselected and a new register may or may not be selected.
23	wc	Write Command: With WC high, SC low, MCLK high, and ME low, the selected register stores contents of IVO – IV7 as data.
24 – 31	IV0 – IV7	Secondary Data Port: Eight 3-State lines used to transfer data or I/O address to-and-from the secondary data port; most significant bit is IVO and least significant bit is IV7.
32	ws	Write Strobe: When active high, data appearing at the primary port (DO _A - D7 _A /DO _B - D7 _B) is stored in the register array if the primary port is in the write mode.
33	R/W	Read/Write Control: When this signal is high, primary port is in read mode; when signal is low, primary port is in write mode.
34	PIOE	Programmed I/O Enable: When active low, primary port operates in programmed input/output mode with register to be read-from or written-into selected by A0 – A3.
35–38	A0 -A3	Primary Port Address Select: Select register or register-pair that primary port is read-from or write-into. Most significant bit is A3; least significant bit is A0.
39	B/W	Byte/Word: When signal is high, the primary port operates in the byte (8-bit) mode; when signal is low, the primary port operates in the word (16-bit) mode.
40	V _{CC}	Power: +5V.

NOTE:

All barred symbols (DMAE, etc.) denote signals that are asserted (or active) when low (logical 0); signals that are not barred are asserted in the high state (logical 1).

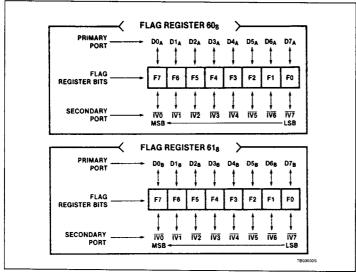

OPERATING CHARACTERISTICS

Memory Organization

Memory and address correlation for the 16-register array is shown in Figure 2. From the primary port, the sixteen 8-bit registers can be

addressed in either (8-bit) or word (16-bit) format; in the word mode, the registers are addressed in pairs — $0_9/1_8$, $2_9/3_8$, $4_9/5_8$,... $14_9/15_8$, and $16_9/17_8$. From the secondary port, all registers are addressed in byte format — 60_8 through 77_8 . The memory consists of two 8-bit

flag registers and fourteen 8-bit general-purpose registers. The flag registers facilitate information transfers between the two ports and, in addition, they protect certain registers from being written into from the primary port.



8X320

Table 1. Control Of The Two Flag Register

FLAG	60 ₈ (0 ₈)	F2	F3	F4	F5	F6	F7								
REGISTERS	61 ₈ (1 ₈)							F0	F1	F2	F3	F4	F5	F6	F7
OCTAL ADDRESS OF	Primary	2	3	4	5	6	7	10	11	12	13	14	15	16	17
CONTROLLING BYTE	Secondary	62	63	64	65	66	67	70	71	72	73	74	75	76	77

Table 2. Relationship Between Flag Register Bits And Those Of Primary And Secondary Ports

Table 3. Mode Control Of Primary Port

MODE	PIOE	DMAE
Disabled (output)	1	1
Programmed I/O	0	1
DMA	X	0

NOTE:

X = Don't Care

Table 4. Primary Port Operating in Programmed I/O Mode

MODE	B/W	AO	D0 _A – D7 _A (EVEN ADDRESSES)	D0 _B – D7 _B (ODD ADDRESSES)
Read	0 (Word)	х	Stored Data	Stored Data
Read	1 (Byte)	0	Stored Data	Hi-Z
Read	1 (Byte)	1	Hi-Z	Stored Data
Write	0 (Word)	Х	Write	Write
Write	1 (Byte)	0	Write	No Change
Write	1 (Byte)	1	No Change	Write

NOTE:

X = Don't Care

In either byte or word mode, the write-protect logic, implemented by bits F0 and F1 of register 60₈, inhibits the primary port from writing into addresses 16₈ and 17₈, respectively. Both write-protect bits (F0 and F1) can be read or written from the secondary port; the bits are read-only from the primary port.

As shown in Table 1, flag bits F2 through F7 of 60₈ and F0 through F7 of 61₈ are controlled by the fourteen general-purpose registers. When any one of these registers is written into by either port, the corresponding flag bit for that register is automatically set by internal logic of the 8X320. When information is read from any register, the corresponding flag bit must be reset by user software Except for the write-protect bits, all other flag bits can be read or reset from the primary or the secondary port.

Table 2 shows the relationship between bits of the flag registers and bits of the primary and secondary ports.

FUNCTION AND CONTROL OF PRIMARY PORT

The primary port provides an 8-bit (byte) or 16-bit (word) interface between the 16-byte memory and the user's host system. If the host is an 8-bit system (or 16-bit system operating in Byte mode), the sixteen bidirectional I/O lines must be tied together (DO_A to DO_B, D1_A to D1_B, ... and D7_A to D7_B); when data is input or output on DO_A to D7_A, the remaining eight lines (DO_B through D7_B) are Hi-Z and vice-versa.

Other than the Byte/Word control line, specific operating characteristics of the primary port are controlled by two signals - PIOE (Programmed I/O Enable) and DMAE (Direct Memory Access Enable). When PIOE is active (low) and DMAE is inactive (high), the primary port operates in the programmed I/O mode - refer to table 3; in this mode of operation, the register to be read-from or written-into is determined by four address lines (A0 through A3) and the Byte/Word control line - see Figure 2 and Table 4. In the DMA mode of operation, A1, A2, and A3 are not used; data is read-from or written-into preassigned registers: bytes 168 (768) and 178 (yy₈) for the byte mode of operation and bytes 148 (748)/158 (758) and 168 (768)/178 (778) for the word mode of operation. In both cases, switching between bytes 168 and 178 in the byte mode and 149/158 and 169/178 in the word mode is controlled by A0 (the least significant address bit). Refer to Table 5.

Table 4 defines programmed I/O operation of the primary port in terms of read/write functions and Byte/Word control. In the byte mode, data is read-from or written-into the even addresses (p8, 28, 48, 68, 108, 128, 148, and 168) via data lines DOA through D7A; data is read-from or written-into odd addresses (18, 38, 58, 78, 118, 138, 158, and 178) via data lines DOB through D7B. When A0 is low (logical 0), even addresses are selected and when A0 is high (logical 1), odd addresses are selected; thus, A0 is the LSB of a 4-bit address. In the word mode, the state of A0 is irrelevant, since both the odd and even bytes are, simultaneously, read-from or written-into; thus, a register pair is selected by a 3-bit address, A1 being the LSB.

In the DMA mode of operation with DMAE set to 0 and other conditions satisfied, data is directlytransferred to-or-from specified memory locations under control of Byte/Word, R/W, and A0. The state of the Byte/Word control line determines whether the data word is 8 bits or 16 bits. The A0 address line correlates eight of the sixteen data lines (D0A - D7A or D0B - D7B) with the proper byte/word location. Thus, in the word mode, the exchange of data between the

Table 5. DMA Operation Of The Primary Port

MODE	BYTE/WORD	A0	D0 _A D7 _A	D0 ₈ - D7 ₈
Read	0 (Word)	0	Data stored in byte 148	Data stored in byte 15 ₈
Read	0 (Word)	1	Data stored in byte 168	Data stored in byte 17 ₈
Read	1 (Byte)	0	Data stored in byte 168	Hi-Z
Read	1 (Byte)	1	Hi-Z	Data stored in byte 17
Write	0 (Word)	0	Write to byte 148	Write to byte 15 ₈
Write	0 (Word)	1	Write to byte 168	Write to byte 17 ₈
Write	1 (Byte)	0	Write to byte 168	Hi-Z
Write	1 (Byte)	1	Hi-Z	Write to byte 17 ₈

memory and the primary port occurs via $D0_A - D7_A$ for bytes 14_8 and 16_8 and via $D0_B - D7_B$ for bytes 15_8 and 17_8 . The byte mode of operation is similar, except that the unused eight lines are 3-Stated.

FUNCTION AND CONTROL OF SECONDARY PORT

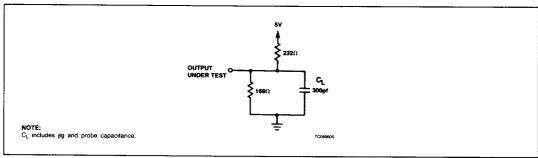
The secondary port provides an 8-bit interface between the sixteen memory registers and the 8X305 (or other processor). As shown in Table 6, the secondary-port interface is controlled by five input signals and a status latch. The status latch is set when SC is high (MCLK high/ME low) and a valid memory address (60₈ – 77₈) is presented to the 8X320 via the secondary data port (IV0/IV7). The latch is cleared by internal logic when an invalid memory address is presented at the secondary port. In all read/write operations from the secondary port, the status latch acts like a master enable; data can be transferred only if the status latch is set.

Table 6. Functional Control of Secondary Port

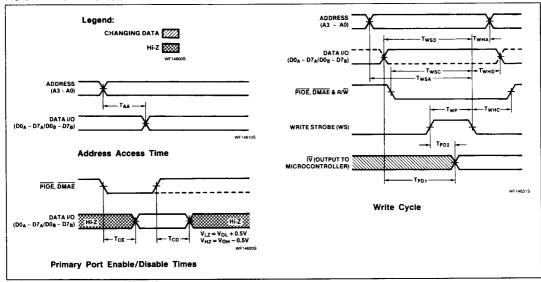
ME	SC1	WC1	MCLK	R/W	STATUS LATCH	FUNCTION OF SECONDARY BUS
L	L	Ĺ	×	Х	Set	Output data from 8X320 memory to 8X305.
L	L	Н	н	Н	Set	Data from 8X305 is input and written-into a previously-selected memory location of the 8X320 (Note 2).
L	L	Н	н	L	Set	With the primary port in the write mode (R/W = 0), the secondary port is overridden and cannot write to the same register addressed by the primary port; however, the register addressed by the primary port can be read and any other register can be read-from or written-into from the secondary port (Note 2).
L	н	L	Н	х	Х	Data transmitted to the secondary port via the \overline{N} bus is interpreted as an address; if address is within range of 60_8 - 77_8 the memory status latch is subsequently set.
L	L	н	L	Х	Х	Inactive
L	Н	L	L	X	X	Inactive
L	L	Х	Х	×	Not set	Inactive
н	×	×	X	Х	X	Inactive

NOTES:

- 1. The SC and WC lines should never both be high at the same time; the 8X305 processor never generates this condition.
- During read or write operations, the same register can be simultaneously addressed from either port. For any write operation by both ports on the same register, the primary port has priority; other than this, the 8X320 does not indicate error conditions or resolve conflicts.


3. X = Don't Care.

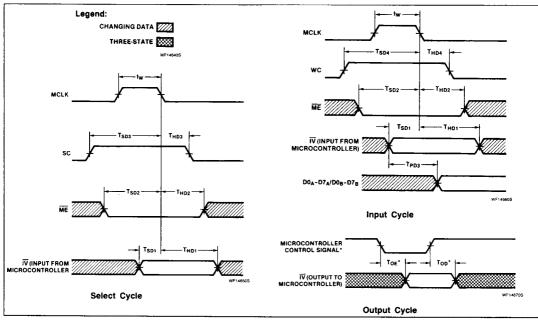
8X320


DC ELECTRICAL CHARACTERISTICS 4.5V \leq V_{CC} \leq 5.5V, -55°C \leq T_C \leq 125°C

SYMBOL	PARAMETER	TEST CONI	DITIONS ^{1, 2}		LIMITS		UNIT
				Min	Тур	Max	
V _{CC}	Supply voltage			4.5	5	5.5	V
V _{IL}	Low level input voltage					0.80	V
V _{IH}	High level input voltage			2.0			٧
VoL	Low level output voltage	V _{CC} = 4.5V;	l _{OL} = 16mA			0.5	٧
V _{OH}	High level output voltage	V _{CC} = 4.5V;	I _{OH} = -3mA	2.5			V
V _{IK}	Input clamp voltage	V _{CC} = 4.5V;	1 _i = -18mA			-1.5	٧
			T _A = 125°C			210	mA
lcc	Supply current	V _{CC} = 5.5V	T _A = 25°C			260	mA
			T _A = -55°C			300	mA
los	Short circuit output current ³	V _{CC} = 5.5V		-20		-100	mA
I _{IL}	WC, MCLK, SC, & ME	V _{CC} = 5.5V; V _{IL} = 0.50V				-1.0	mA
l _{IL}	B/W	V _{CC} = 5.5V;	V _{IL} = 0.50V	<u> </u>		-1.6	mA
կլ	A0 – A3	V _{CC} = 5.5V;	V _{IL} = 0.50V	1		-1.0	mA
I _{IL}	DMAE	V _{CC} = 5.5V;	V _{IL} = 0.5V			-800	μА
l _{IL}	WS, PIOE, & R/W	V _{CC} = 5.5V;	V _{IL} = 0.5V			-400	μА
l _{IL}	IVO – IV7	$V_{CC} = 5.5V; V_{IL} = 0.5V$ $V_{CC} = 5.5V; V_{IL} - 0.5V$				-400 each line	μА
I _{IL}	DO _A - D7 _A /DO _B - D7 _B	V _{CC} = 5.5V;	V _{IL} = 0.5V			-400 each line	μА
I _{IH}	WC, SC, MCLK, & ME	V _{CC} = 5.5V;	V _{IH} = 5.5V			100	μΑ
l _{IH}	B/W	V _{CC} = 5.5V;	V _{IH} = 5.5V			240	μА
l _H	AO	V _{CC} = 5.5V;	V _{IH} = 5.5V			120	μА
l _{iH}	A1 A3	V _{CC} = 5.5V;	V _{IH} = 5.5V			60	μА
l _{iH}	DMAE	V _{CC} = 5.5V;				120	μΑ
l _{iH}	WS, PIOE, & R/W	V _{CC} = 5.5V;	V _{IH} = 5.5V	<u> </u>		60	μА
I _{IH}	IVO - IV7 and DO _A - D7 _A /DO _B -D7 _B	V _{CC} = 5.5V;	V _{IU} = 5.5V		-	100	μA

AC TEST CIRCUIT

AC CHARACTERISTICS OF PRIMARY PORT


AC ELECTRICAL CHARACTERISTICS OF PRIMARY PORT 4.5V \leq V_{CC} \leq 5.5V, -55°C \leq T_C \leq 125°C

SYMBOL	PARAMETER	FROM	то	1	LIMITS		UNIT
				Min	Тур	Max	
TAA	Address Access Time	A3 – A0	D0 _A - D7 _A /D0 _B - D7 _B			65	ns
T _{CE}	Primary port enable time	↓PIOE ↓DMAE	DO _A - D7 _A /DO _B - D7 _B			30	ns
T _{CD}	Primary port disable time	1PIOE 1DMAE	DO _A - D7 _A /DO _B - D7 _B			35	ns
Twsa	Address setup time	A3 - A0	↓ws	60			ns
T _{WHA}	Address hold time	↓ws	A3 – A0			0	ns
T _{wsD}	Primary port data setup time	D0 _A D7 _A / D0 _B D7 _B	↓ws	30			ns
T _{WHD}	Primary port data hold time	↓ws	D0 _A - D7 _A /D0 _B - D7 _B			5	ns
Twsc	Write mode control setup time	PIOE DMAE R/W	↓ws ↓ws ↓ws	35 45 55			ns ns ns
Т _{WHC}	Write mode control hold time	↓ws	PIOE DMAE R/W			15 10 10	ns nsns
Tw₽	Write strobe pulse width			25			ns
T _{PD1} ⁴	Primary port data delay	DO _A - D7 _A / DO _B - D7 _B	IV0 - IV7			90	ns
T _{PD2} 5	Primary port data delay from WS	↑ws	IVO – IV7			90	ns

593

8X320

AC CHARACTERISTICS OF SECONDARY PORT

AC ELECTRICAL CHARACTERISTICS 4.5V < Voc < 5.5V. -55°C < Tc < 125°C

SYMBOL	PARAMETER ¹	FROM	то		UNIT		
				Min	Тур	Max	
Tw	MCLK pulse width			30			ns
T _{SD1}	Data setup time	170 – 177	↓mclk	35			ns
T _{SD2}	ME setup time	ME	↓MCLK	40			ns
T _{SD3}	SC setup time	sc	↓MCLK	40			ns
T _{SD4}	WC setup time	wc	↓MCLK	40			ns
T _{HD1}	Data hold time	↓MCLK	IVO – IV7			5	ns
T _{HD2}	ME hold time	↓MCLK	ME			0	ns
T _{HD3}	SC hold time	↓MCLK	SC			0	ns
T _{HD4}	WC hold time	↓MCLK	wc			0	ns
T _{PD3} 6	Ⅳ propagation time	ī∇	D0 _A - D7 _A /D0 _B - D7 _B	İ		65	ns
T _{OE}	Output enable	ME, SC, or WC	IVO – IV7			30	ns
T _{OD}	Output disable	RME, SC, or WC	1V0 – IV7	1		35	ns

NOTE

- 1. Operating temperature ranges are guaranteed after terminal equilibrium has been reached.
- 2. All voltages are measured with respect to ground terminal.
- 3. Short only one output at a time.
- 4. Measurement with Write Strobe set High and the control signals of the secondary port set for output data from the same register.
- 5. Measurement with primary port data stable and control signals of secondary port set for output data from the same register.
- 6. Measured with MCLK = High and control signals of the primary port set for output data from the same register.

May 30, 1986 594

Signetics

Packaging Information

T.90-20

Military Products

SIGNETICS STANDARD PACKAGE DESCRIPTIONS

All Military package case outlines and physical dimensions conform with the current revision MIL-M-38510, Appendix C, except for package types which are not included in that specifica-

The physical dimensions for standard package types which are not included in Appendix C are included herein in Appendix C format. Case outline letters are assigned to these packages according to JEDEC Publication 101 as follows:

- Leadless chip carriers Dual-in-line packages U;
- Flat packages
- All other configurations

A case outline suffix number is assigned herein for identification purposes only, and is not marked on the product.

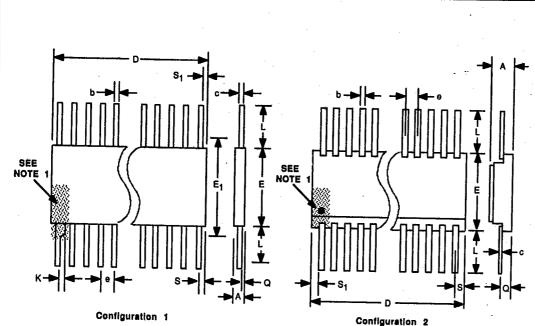
Signetics Military products are offered in a wide range of package configurations to optimally fit our customer needs.

- Dual-in-line Packages; Frit glass sealed CERDIP (F package family) with 8-40 leads, and skie-brazed ceramic (I package family) with 48-64 leads.
- Flat Packages; Frit glass sealed alumina CERPAC (W package family) with 14-28 leads, and brazed leaded ceramic (Q package family) with 52 leads.
- · Ceramic Chip Carriers; triple laminated, metal-lidded LCC (G package family) with 20-68 terminals.
- Pin Grid Array; metal-lidded ceramic pin grid (P package family) with 68-100 leads.
- Shown in Table 1 are the case outline letters assigned according to Appendix C of MIL-M-38510 and JEDEC publication 101. Unless otherwise noted, all package types are Configuration 1 and all lead finishes are hot solder dip Finish "A".

Table 1

Package Description	Type Designation	Case Outline	Theta-JC °C/Watt4
· · · · · · · · · · · · · · · · · · ·	D-4	Р	28 28 28 28 28
8DIP3	D-1	C	28
14DIP3	D-2	Ě	28
16DIP3	D-6	Ě	28 '
18DIP3	D-8	Ř	1 28
20DIP3		w	. 28
22DIP4	D-7		28
24DIP3	D-9	X ₅	28 28
24DIP4	D-11	ĵ	28
24DIP6	D-3	, v2	28
28DIP6	D-10	<u>^</u>	28
40DIP6	D-5	X ² Q X ² X ²	28
48DIP6	D-14 ¹	<u> </u>	28 28 28
50DIP9	D-12 ¹	<u> </u>	28
64DIP9	D-13 ¹	X²	
14FLAT	F-2	D F	22
16FLAT	F-5	F ·	22 22
18FLAT	F-10	Y2	22
20FLAT	F-9	Y2 S K Y2 Y2	22
24FLAT	F-6	l K	22
28FLAT	F-11	Y ²	22
52FLAT	Y-ii	Y2	22
18LLCC	C-9	U ²	20
20LLCC	Č-23	2	20
28LLCC	C-43	2 3 U ² U ² U ²	20
32LLCC	C-12	l Ü2	20
		l ܲ	20 20
44LLCC	C-5 C-7	l ŭ2 -	20
68LLCC	l		<u> </u>
68PGA	P-AB	Z ² Z ²	20 20
84PGA	P-AB	Z ²	20

NOTES:


NOTES:
1. Configuration 2.
2. Per JEDEC publication 101.
3. Dimension A (LLCC thickness) is 75mils maximum.
4. See RADC test report RADC-TR-86-97 for thermal resistance confidence and derating.

January 1990

T-90-20

Packaging Information

CASE OUTLINES Y (FLAT PACKAGES)

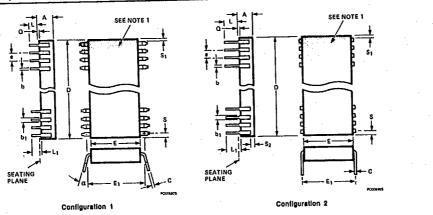
NOTES:

- A lead tab (enlargement) or index dot is located within the shaded area shown at Pin 1. Other pin numbers proceed sequentially from Pin 1 counterclockwise (as viewed from the top of the device).
- 2. This dimension allows for off-center lid, meniscus, and glass overrun.
- 3. The reference pin spacing is 0.050 between centerlines. Each pin centerline is located within ± 0.005 of its logitudinal position relative to the first and last pin numbers.

 4. This dimension is measured at the point of exit of the lead

- body.

 5. This dimension applied to all four comer pins.

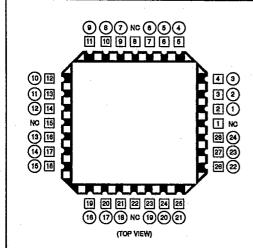

 6. Lead dimensions include 0.003 inch allowance for hot solder dip lead finish.

OUTLINE		Y 1		1
CONFIGURATION		2		
NO. LEADS		NOTES	l	
SIG. PKG.	QP		NOTES	
SYMBOL	INC	HES	1	ı
STMBUL	Min	Max		l
A	0.045	0.100		l
b	0.015	0.026	6	
C	0.008	0.015	6	
D	• •	1.330	2	
E	0.620	0.660		
	0.050	BSC	3	
L,	0.250	0.370	-	
Q	0.054	0.0666	4	
S	-	0.045	5	
S 1	0.005		5	

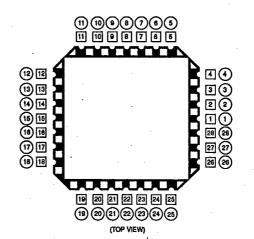
T-90-20

Packaging Information

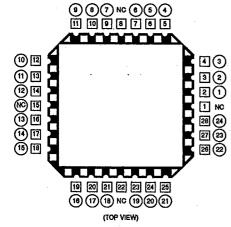
CASE OUTLINES X (DUAL IN-LINE PACKAGES)


- 1. An index notch is located within the shaded area shown. Pin 1 is adjacent to the notch to the immediate left (as viewed from the top of the device) and other pin numbers proceed sequentially from Pin 1 counterclockwise.

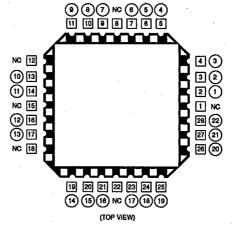
 2. The minimum limit for Dimension b1 is 0.023 inches for all four corner pins.
- This dimension allows for off-center lid, meniscus, and glass overrun.
- 4. This dimension is measured at the centerline of the leads for Configuration 2.
- 5. The reference pin spacing is 0.100 between centerlines. Each pin centerline is located within ± 0.010 of its longitudinal position relative to the first and last pin numbers.
- 6. This dimension is measured from the seating plane to the base plane.
- 7. This dimension applies to all four corner pins.
- 8. Lead dimensions include 0.003 inch allowance for hot solder dip lead finish.


D

Packaging Information


LEADLESS CHIP CARRIER (LLCC) PINOUTS

24-Lead Logic Pinout for 28 Terminal Chip Carrier



28-Lead Pinout for 28 Terminal Chip Carrier for all Device Types

24-Lead Memory Pinout for 28 Terminal Chip Carrier

- ☐ = Chip Carrier Terminal Number
- O = Dual In-Line Lead Number NC = No Connect

22-Lead Memory Pinout for 28 Terminal Chip Carrier