

500V, 38A, 0.10 Ω Max, $t_{rr} \leq$ 280ns

(N-Channel FREDFET)

Power MOS 8'" is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- Half bridge
- PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

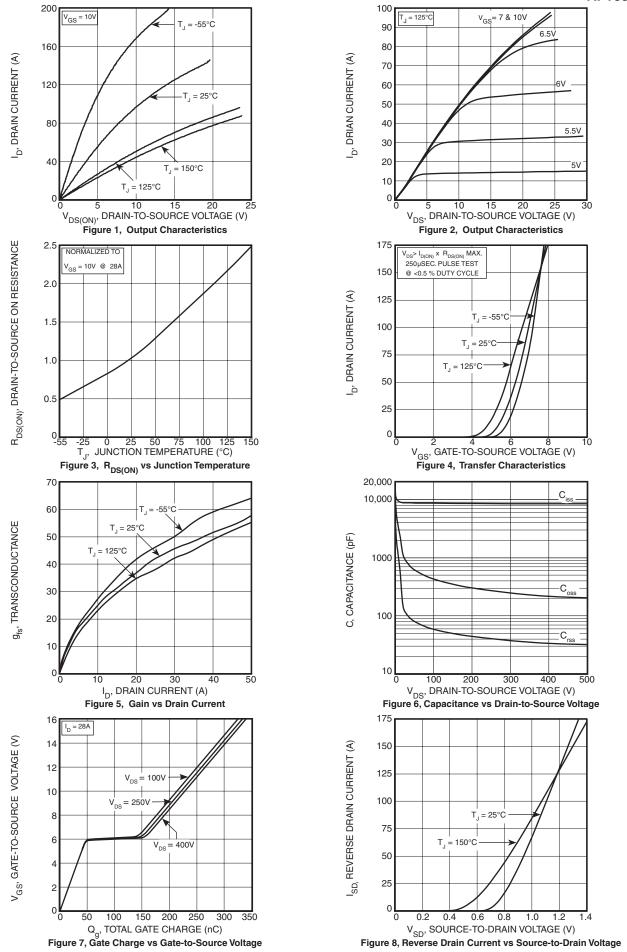
Symbol	Parameter	Ratings	Unit
L	Continuous Drain Current @ T _C = 25°C	38	
'D	Continuous Drain Current @ T _C = 100°C	24	А
I _{DM}	Pulsed Drain Current ^①	175	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy®	1200	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	28	Α

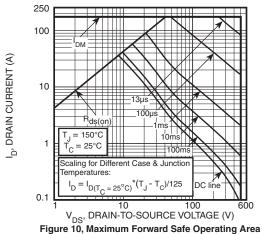
Thermal and Mechanical Characteristics

Symbol	Characteristic		Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			355	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.35	0.35 °C/W	
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	T			10	in∙lbf	
	Terminals and Mounting Screws.			1.1	N⋅m	

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		500			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			0.60		V/°C
R _{DS(on)}	Drain-Source On Resistance®	$V_{GS} = 10V, I_{D} = 28A$			0.085	0.10	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$		2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 500V T ₃	_J = 25°C			250	μA
DSS		V _{GS} = 0V T _S	_J = 125°C	·		1000	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V		·		±100	nA

Dynamic Characteristics


T₁ = 25°C unless otherwise specified


	Symbol Parameter Test Conditions Min Typ Max Unit						
Symbol	Parameter	Test Conditions		Тур	Max	Unit	
g_{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 28A$		42		S	
C _{iss}	Input Capacitance	V 0V V 0FV		8800			
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		120			
C _{oss}	Output Capacitance	7 - 111112		945			
C _{o(cr)} ④	Effective Output Capacitance, Charge Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 333V$		550		pF	
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 555V		275			
Q_g	Total Gate Charge	V 04-10V 1 004		220			
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 28A,$ $V_{DS} = 250V$		50		nC	
Q_{gd}	Gate-Drain Charge	V _{DS} = 250V		100			
t _{d(on)}	Turn-On Delay Time	Resistive Switching		38			
t _r	Current Rise Time	V _{DD} = 333V, I _D = 28A		45		ns	
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 4.7\Omega^{\textcircled{6}}, V_{GG} = 15V$		100		115	
t _f	Current Fall Time			33			

Source-Drain Diode Characteristics

Symbol	Parameter	Test Condi	Min	Тур	Max	Unit	
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the	Ŭ ⊢			38	А
I _{SM}	Pulsed Source Current (Body Diode) (1)	integral reverse p-n junction diode (body diode)	GU TI			175	^
V _{SD}	Diode Forward Voltage	$I_{SD} = 28A, T_{J} = 25^{\circ}C, V_{GS} = 0V$				1.0	V
t _{rr}	Reverse Recovery Time		T _J = 25°C			280	ne
rr			T _J = 125°C			520	ns
Q _{rr}	Reverse Recovery Charge	I _{SD} = 28A ^③	T _J = 25°C		1.20		шС
rr	neverse necovery charge	di _{SD} /dt = 100A/μs	T _J = 125°C		3.07		μC
1	Reverse Recovery Current	V _{DD} = 100V	T _J = 25°C		10.1		Α
'rrm		T _J = 125°C	T _J = 125°C		14.5		_ ^
dv/dt	Peak Recovery dv/dt	I_{SD} ≤ 28A, di/dt ≤1000A/µs, V_{DD} = 333V, T_{J} = 125°C				20	V/ns

- (1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at T_J = 25°C, L = 3.06mH, R_G = 25 Ω , I_{AS} = 28A.
- ③ Pulse test: Pulse Width < 380μs, duty cycle < 2%.
- (4) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. (5) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -2.04E-7/ V_{DS} ^2 + 4.76E-8/ V_{DS} + 1.36E-10.
- ⑥ R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

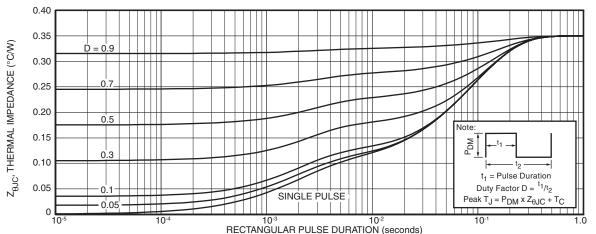
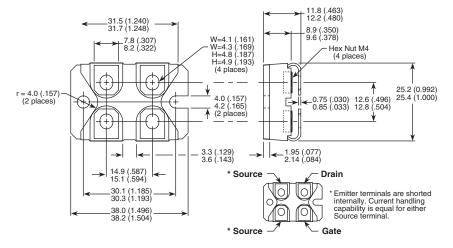



Figure 11. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration

SOT-227 (ISOTOP®) Package Outline

