# 74AHC3G14; 74AHCT3G14

# Triple inverting Schmitt trigger Rev. 6 — 18 November 2010

**Product data sheet** 

#### 1. **General description**

74AHC3G14 and 74AHCT3G14 are high-speed Si-gate CMOS devices. They provide three inverting buffers with Schmitt trigger action. These devices are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The AHC device has CMOS input switching levels and supply voltage range 2 V to 5.5 V.

The AHCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.

#### 2. Features and benefits

- Symmetrical output impedance
- High noise immunity
- ESD protection:
  - ◆ HBM JESD22-A114F exceeds 2000 V
  - MM JESD22-A115-A exceeds 200 V
  - ◆ CDM JESD22-C101D exceeds 1000 V
- Low power dissipation
- Balanced propagation delays
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

### **Applications**

- Wave and pulse shaper for highly noisy environment
- Astable multivibrator
- Monostable multivibrator



### 4. Ordering information

Table 1. Ordering information

| Type number  | Package           |        |                                                          |          |  |  |  |  |  |  |  |  |
|--------------|-------------------|--------|----------------------------------------------------------|----------|--|--|--|--|--|--|--|--|
|              | Temperature range | Name   | Description                                              | Version  |  |  |  |  |  |  |  |  |
| 74AHC3G14DP  | -40 °C to +125 °C | TSSOP8 | plastic thin shrink small outline package; 8 leads;      | SOT505-2 |  |  |  |  |  |  |  |  |
| 74AHCT3G14DP |                   |        | body width 3 mm; lead length 0.5 mm                      |          |  |  |  |  |  |  |  |  |
| 74AHC3G14DC  | –40 °C to +125 °C | VSSOP8 | plastic very thin shrink small outline package; 8 leads; | SOT765-1 |  |  |  |  |  |  |  |  |
| 74AHCT3G14DC |                   |        | body width 2.3 mm                                        |          |  |  |  |  |  |  |  |  |
| 74AHC3G14GT  | –40 °C to +125 °C | XSON8  | plastic extremely thin small outline package; no leads;  | SOT833-1 |  |  |  |  |  |  |  |  |
| 74AHCT3G14GT |                   |        | 8 terminals; body 1 $\times$ 1.95 $\times$ 0.5 mm        |          |  |  |  |  |  |  |  |  |
| 74AHC3G14GD  | −40 °C to +125 °C | XSON8U | plastic extremely thin small outline package; no leads;  | SOT996-2 |  |  |  |  |  |  |  |  |
| 74AHCT3G14GD |                   |        | 8 terminals; UTLP based; body $3 \times 2 \times 0.5$ mm |          |  |  |  |  |  |  |  |  |

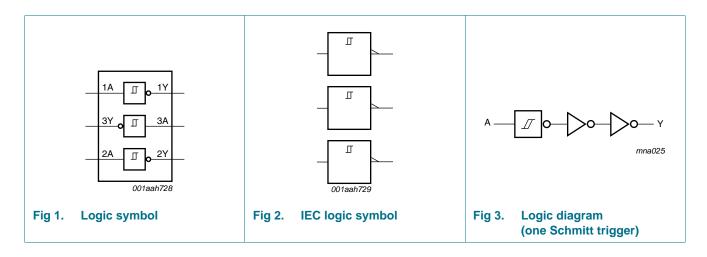
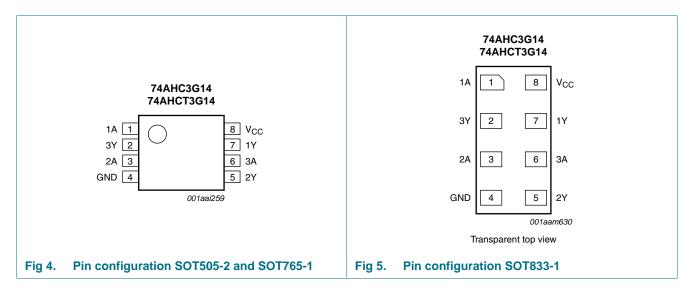
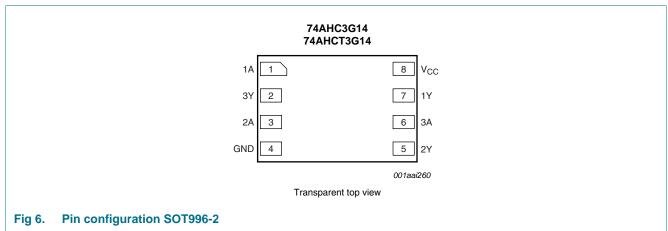

### 5. Marking

Table 2. Marking codes

| •            |                             |
|--------------|-----------------------------|
| Type number  | Marking code <sup>[1]</sup> |
| 74AHC3G14DP  | A14                         |
| 74AHCT3G14DP | C14                         |
| 74AHC3G14DC  | A14                         |
| 74AHCT3G14DC | C14                         |
| 74AHC3G14GT  | A14                         |
| 74AHCT3G14GT | C14                         |
| 74AHC3G14GD  | A14                         |
| 74AHCT3G14GD | C14                         |

<sup>[1]</sup> The pin 1 indicator is located on the lower left corner of the device, below the marking code.


### 6. Functional diagram




74AHC\_AHCT3G14

### 7. Pinning information

#### 7.1 Pinning





#### 7.2 Pin description

Table 3. Pin description

| Symbol          | Pin     | Description    |
|-----------------|---------|----------------|
| 1A, 2A, 3A      | 1, 3, 6 | data input     |
| GND             | 4       | ground (0 V)   |
| 1Y, 2Y, 3Y      | 7, 5, 2 | data output    |
| V <sub>CC</sub> | 8       | supply voltage |

### 8. Functional description

Table 4. Function table [1]

| Input nA | Output nY |
|----------|-----------|
| L        | Н         |
| Н        | L         |

<sup>[1]</sup> H = HIGH voltage level; L = LOW voltage level

### 9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol           | Parameter               | Conditions                                                                    | Min          | Max  | Unit |
|------------------|-------------------------|-------------------------------------------------------------------------------|--------------|------|------|
| $V_{CC}$         | supply voltage          |                                                                               | -0.5         | +7.0 | V    |
| VI               | input voltage           |                                                                               | -0.5         | +7.0 | V    |
| I <sub>IK</sub>  | input clamping current  | $V_1 < -0.5 V$                                                                | -20          | -    | mA   |
| I <sub>OK</sub>  | output clamping current | $V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$                       | <u>[1]</u> - | ±20  | mA   |
| I <sub>O</sub>   | output current          | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | -            | ±25  | mA   |
| $I_{CC}$         | supply current          |                                                                               | -            | 75   | mA   |
| $I_{GND}$        | ground current          |                                                                               | <b>-75</b>   | -    | mA   |
| T <sub>stg</sub> | storage temperature     |                                                                               | -65          | +150 | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +125  ^{\circ}\text{C}$          | [2] _        | 250  | mW   |

<sup>[1]</sup> The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

### 10. Recommended operating conditions

#### Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter           | Conditions | 74  | 4AHC3G | 14       | 74  | Unit |          |    |
|------------------|---------------------|------------|-----|--------|----------|-----|------|----------|----|
|                  |                     |            | Min | Тур    | Max      | Min | Тур  | Max      |    |
| $V_{CC}$         | supply voltage      |            | 2.0 | 5.0    | 5.5      | 4.5 | 5.0  | 5.5      | V  |
| VI               | input voltage       | 0          | -   | 5.5    | 0        | -   | 5.5  | V        |    |
| Vo               | output voltage      |            | 0   | -      | $V_{CC}$ | 0   | -    | $V_{CC}$ | V  |
| T <sub>amb</sub> | ambient temperature |            | -40 | +25    | +125     | -40 | +25  | +125     | °C |

<sup>[2]</sup> For TSSOP8 package: above 55 °C the value of P<sub>tot</sub> derates linearly at 2.5 mW/K.
For VSSOP8 package: above 110 °C the value of P<sub>tot</sub> derates linearly at 8 mW/K.
For XSON8 and XSON8U packages: above 118 °C the value of P<sub>tot</sub> derates linearly with 7.8 mW/K.

### 11. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter                 | Conditions                                                                                                                   |      | 25 °C |      | -40 °C | to +85 °C | -40 °C t | Unit |    |
|------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------|------|-------|------|--------|-----------|----------|------|----|
|                  |                           |                                                                                                                              | Min  | Тур   | Max  | Min    | Max       | Min      | Max  |    |
| 74AHC3           | G14                       |                                                                                                                              |      |       |      |        |           |          |      |    |
| $V_{OH}$         | HIGH-level                | $V_I = V_{T+}$ or $V_{T-}$                                                                                                   |      |       |      |        |           |          |      |    |
|                  | output voltage            | $I_O = -50 \mu A; V_{CC} = 2.0 V$                                                                                            | 1.9  | 2.0   | -    | 1.9    | -         | 1.9      | -    | V  |
|                  |                           | $I_O = -50 \mu A; V_{CC} = 3.0 V$                                                                                            | 2.9  | 3.0   | -    | 2.9    | -         | 2.9      | -    | V  |
|                  |                           | $I_O = -50 \mu A; V_{CC} = 4.5 V$                                                                                            | 4.4  | 4.5   | -    | 4.4    | -         | 4.4      | -    | V  |
|                  |                           | $I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                                              | 2.58 | -     | -    | 2.48   | -         | 2.40     | -    | V  |
|                  |                           | $I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                            | 3.94 | -     | -    | 3.8    | -         | 3.70     | -    | V  |
| $V_{OL}$         | LOW-level                 | $V_I = V_{T+} \text{ or } V_{T-}$                                                                                            |      |       |      |        |           |          |      |    |
|                  | output voltage            | $I_O = 50 \mu A; V_{CC} = 2.0 V$                                                                                             | -    | 0     | 0.1  | -      | 0.1       | -        | 0.1  | V  |
|                  |                           | $I_O = 50 \mu A; V_{CC} = 3.0 V$                                                                                             | -    | 0     | 0.1  | -      | 0.1       | -        | 0.1  | V  |
|                  |                           | $I_O = 50 \mu A$ ; $V_{CC} = 4.5 V$                                                                                          | -    | 0     | 0.1  | -      | 0.1       | -        | 0.1  | V  |
|                  |                           | $I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                                               | -    | -     | 0.36 | -      | 0.44      | -        | 0.55 | V  |
|                  |                           | $I_O = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$                                                                               | -    | -     | 0.36 | -      | 0.44      | -        | 0.55 | V  |
| I <sub>I</sub>   | input leakage<br>current  | $V_I = 5.5 \text{ V or GND};$<br>$V_{CC} = 0 \text{ V to } 5.5 \text{ V}$                                                    | -    | -     | 0.1  | -      | 1.0       | -        | 2.0  | μΑ |
| I <sub>CC</sub>  | supply current            | $V_I = V_{CC}$ or GND; $I_O = 0$ A;<br>$V_{CC} = 5.5 \text{ V}$                                                              | -    | -     | 1.0  | -      | 10        | -        | 40   | μΑ |
| C <sub>I</sub>   | input<br>capacitance      |                                                                                                                              | -    | 1.5   | 10   | -      | 10        | -        | 10   | pF |
| 74AHCT           | 3G14                      |                                                                                                                              |      |       |      |        |           |          |      |    |
| V <sub>OH</sub>  | HIGH-level                | $V_{I} = V_{T+} \text{ or } V_{T-}; V_{CC} = 4.5 \text{ V}$                                                                  |      |       |      |        |           |          |      |    |
|                  | output voltage            | I <sub>O</sub> = -50 μA                                                                                                      | 4.4  | 4.5   | -    | 4.4    | -         | 4.4      | -    | V  |
|                  |                           | $I_0 = -8.0 \text{ mA}$                                                                                                      | 3.94 | -     | -    | 3.8    | -         | 3.70     | -    | V  |
| V <sub>OL</sub>  | LOW-level                 | $V_{I} = V_{T+} \text{ or } V_{T-}; V_{CC} = 4.5 \text{ V}$                                                                  |      |       |      |        |           |          |      |    |
|                  | output voltage            | Ι <sub>Ο</sub> = 50 μΑ                                                                                                       | -    | 0     | 0.1  | -      | 0.1       | -        | 0.1  | V  |
|                  |                           | $I_{O} = 8.0 \text{ mA}$                                                                                                     | -    | -     | 0.36 | -      | 0.44      | -        | 0.55 | V  |
| I <sub>I</sub>   | input leakage<br>current  | V <sub>I</sub> = 5.5 V or GND;<br>V <sub>CC</sub> = 0 V to 5.5 V                                                             | -    | -     | 0.1  | -      | 1.0       | -        | 2.0  | μΑ |
| I <sub>CC</sub>  | supply current            | $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$                                                                 | -    | -     | 1.0  | -      | 10        | -        | 40   | μΑ |
| Δl <sub>CC</sub> | additional supply current | per input pin; $V_I = 3.4 \text{ V}$ ;<br>other inputs at $V_{CC}$ or GND;<br>$I_O = 0 \text{ A}$ ; $V_{CC} = 5.5 \text{ V}$ | -    | -     | 1.35 | -      | 1.5       | -        | 1.5  | mA |
| Cı               | input<br>capacitance      |                                                                                                                              | -    | 1.5   | 10   | -      | 10        | -        | 10   | pF |

#### 11.1 Transfer characteristics

Table 8. Transfer characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). See Figure 9 and Figure 10.

| Symbol               | Parameter                | Conditions               |      | 25 °C |      | -40 °C 1 | to +85 °C | -40 °C to +125 °C |      | Unit |
|----------------------|--------------------------|--------------------------|------|-------|------|----------|-----------|-------------------|------|------|
|                      |                          |                          | Min  | Тур   | Max  | Min      | Max       | Min               | Max  |      |
| <b>74AHC3</b>        | G14                      |                          | '    |       | '    | '        |           |                   | '    |      |
| $V_{T+}$             | positive-going           | $V_{CC} = 3.0 \text{ V}$ | -    | -     | 2.2  | -        | 2.2       | -                 | 2.2  | V    |
|                      | threshold<br>voltage     | $V_{CC} = 4.5 \text{ V}$ | -    | -     | 3.15 | -        | 3.15      | -                 | 3.15 | V    |
|                      |                          | $V_{CC} = 5.5 \text{ V}$ | -    | -     | 3.85 | -        | 3.85      | -                 | 3.85 | V    |
| $V_{T-}$             | negative-going           | $V_{CC} = 3.0 \text{ V}$ | 0.9  | -     | -    | 0.9      | -         | 0.9               | -    | V    |
| threshold<br>voltage | $V_{CC} = 4.5 \text{ V}$ | 1.35                     | -    | -     | 1.35 | -        | 1.35      | -                 | V    |      |
|                      | voltage                  | $V_{CC} = 5.5 \text{ V}$ | 1.65 | -     | -    | 1.65     | -         | 1.65              | -    | V    |
| V <sub>H</sub>       | hysteresis<br>voltage    | $V_{CC} = 3.0 \text{ V}$ | 0.3  | -     | 1.2  | 0.3      | 1.2       | 0.25              | 1.2  | V    |
|                      |                          | $V_{CC} = 4.5 \text{ V}$ | 0.4  | -     | 1.4  | 0.4      | 1.4       | 0.35              | 1.4  | V    |
|                      |                          | $V_{CC} = 5.5 \text{ V}$ | 0.5  | -     | 1.6  | 0.5      | 1.6       | 0.45              | 1.6  | V    |
| 74AHCT               | 3G14                     |                          |      |       |      |          |           |                   |      |      |
| V <sub>T+</sub>      | positive-going           | $V_{CC} = 4.5 \text{ V}$ | -    | -     | 2.0  | -        | 2.0       | -                 | 2.0  | V    |
|                      | threshold voltage        | $V_{CC} = 5.5 \text{ V}$ | -    | -     | 2.0  | -        | 2.0       | -                 | 2.0  | V    |
| $V_{T-}$             | negative-going           | $V_{CC} = 4.5 \text{ V}$ | 0.5  | -     | -    | 0.5      | -         | 0.5               | -    | V    |
| threshold<br>voltage |                          | V <sub>CC</sub> = 5.5 V  | 0.6  | -     | -    | 0.6      | -         | 0.6               | -    | V    |
| V <sub>H</sub>       | hysteresis               | $V_{CC} = 4.5 \text{ V}$ | 0.4  | -     | 1.4  | 0.4      | 1.4       | 0.35              | 1.4  | V    |
|                      | voltage                  | V <sub>CC</sub> = 5.5 V  | 0.4  | -     | 1.6  | 0.4      | 1.6       | 0.35              | 1.6  | V    |

## 12. Dynamic characteristics

Table 9. Dynamic characteristics

GND = 0 V;  $t_r = t_f \le 3.0$  ns; for test circuit see <u>Figure 8</u>.

| Symbol          | Parameter                           | Conditions                                                                                      |            |     | 25 °C |      | -40 °C | to +85 °C | -40 °C t | o +125 °C | Unit |
|-----------------|-------------------------------------|-------------------------------------------------------------------------------------------------|------------|-----|-------|------|--------|-----------|----------|-----------|------|
|                 |                                     |                                                                                                 |            | Min | Тур   | Max  | Min    | Max       | Min      | Max       |      |
| 74AHC3G14       |                                     |                                                                                                 |            |     |       | •    | •      |           |          |           |      |
| t <sub>pd</sub> | propagation                         | nA to nY; see Figure 7                                                                          | <u>[1]</u> |     |       |      |        |           |          |           |      |
|                 | delay                               | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                                                      | [2]        |     |       |      |        |           |          |           |      |
|                 |                                     | $C_L = 15 pF$                                                                                   |            | -   | 4.2   | 12.8 | 1.0    | 15.0      | 1.0      | 16.5      | ns   |
|                 |                                     | $C_{L} = 50 \text{ pF}$                                                                         |            | -   | 6.0   | 16.3 | 1.0    | 18.5      | 1.0      | 20.5      | ns   |
|                 |                                     | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$                                                      | [3]        |     |       |      |        |           |          |           |      |
|                 |                                     | C <sub>L</sub> = 15 pF                                                                          |            | -   | 3.2   | 8.6  | 1.0    | 10.0      | 1.0      | 11.0      | ns   |
|                 |                                     | $C_L = 50 pF$                                                                                   |            | -   | 4.6   | 10.6 | 1.0    | 12.0      | 1.0      | 13.5      | ns   |
| $C_{PD}$        | power<br>dissipation<br>capacitance | per buffer;<br>$C_L = 50 \text{ pF}$ ; $f_i = 1 \text{ MHz}$ ;<br>$V_I = \text{GND to } V_{CC}$ | <u>[4]</u> | -   | 10    | -    | -      | -         | -        | -         | pF   |

 Table 9.
 Dynamic characteristics ...continued

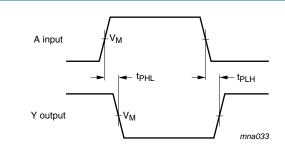
GND = 0 V;  $t_r = t_f \le 3.0$  ns; for test circuit see <u>Figure 8</u>.

| Symbol          | Parameter                           | Conditions                                                                                      |            | 25 °C |     |     | -40 °C 1 | to +85 °C | -40 °C t | o +125 °C | Unit |
|-----------------|-------------------------------------|-------------------------------------------------------------------------------------------------|------------|-------|-----|-----|----------|-----------|----------|-----------|------|
|                 |                                     |                                                                                                 |            | Min   | Тур | Max | Min      | Max       | Min      | Max       |      |
| 74AHCT          | 3G14                                |                                                                                                 |            |       |     |     |          |           |          |           |      |
| t <sub>pd</sub> | propagation delay                   | nA to nY;<br>V <sub>CC</sub> = 4.5 V to 5.5 V                                                   | [1]<br>[3] |       |     |     |          |           |          |           |      |
|                 |                                     | C <sub>L</sub> = 15 pF                                                                          |            | -     | 4.1 | 7.0 | 1.0      | 8.0       | 1.0      | 9.0       | ns   |
|                 |                                     | $C_{L} = 50 \text{ pF}$                                                                         |            | -     | 5.9 | 8.5 | 1.0      | 10.0      | 1.0      | 11.0      | ns   |
| C <sub>PD</sub> | power<br>dissipation<br>capacitance | per buffer;<br>$C_L = 50 \text{ pF}$ ; $f_i = 1 \text{ MHz}$ ;<br>$V_I = \text{GND to } V_{CC}$ | [4]        | -     | 12  | -   | -        | -         | -        | -         | pF   |

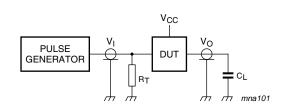
- [1] t<sub>pd</sub> is the same as t<sub>PLH</sub> and t<sub>PHL</sub>.
- [2] Typical values are measured at  $V_{CC} = 3.3 \text{ V}$ .
- [3] Typical values are measured at  $V_{CC}$  = 5.0 V.
- [4]  $C_{PD}$  is used to determine the dynamic power dissipation  $P_D$  ( $\mu W$ ).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

 $f_i$  = input frequency in MHz;


f<sub>o</sub> = output frequency in MHz;

C<sub>L</sub> = output load capacitance in pF;


V<sub>CC</sub> = supply voltage in V;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$  = sum of the outputs.

#### 13. Waveforms



The test data is given in Table 10



Test data is given in Table 10.

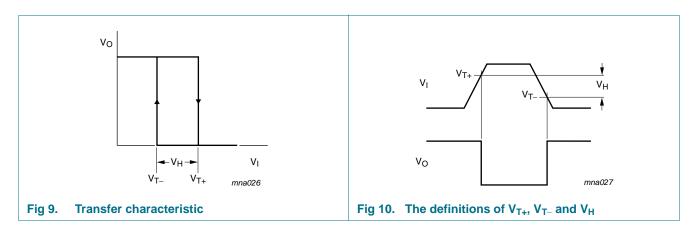
Definitions for test circuit:

 $C_L$  = Load capacitance.

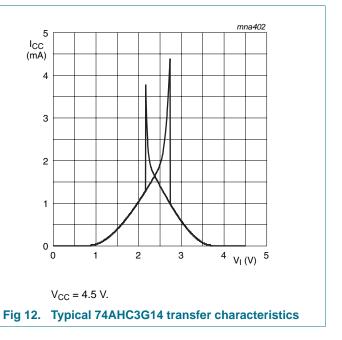
 $R_T$  = Termination resistance should be equal to output impedance  $Z_o$  of the pulse generator.

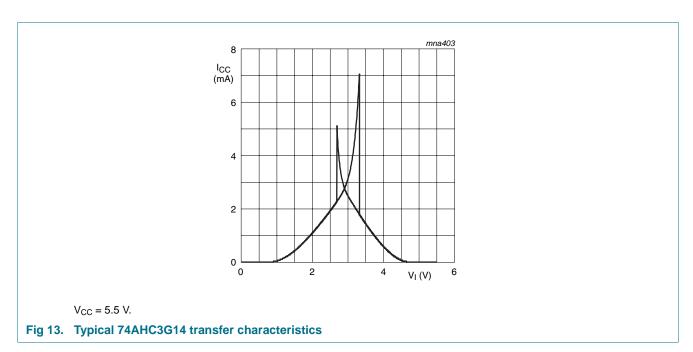
Fig 8. Test circuit for measuring switching times

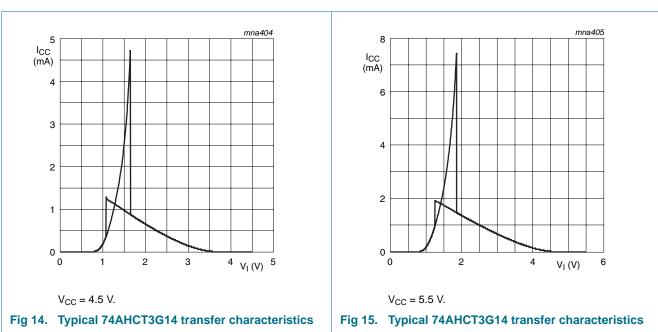
Fig 7. The input (nA) to output (nY) propagation delays


#### Table 10. Test data

| Type number | Input                  | Input C             |                     |  |  |  |  |  |
|-------------|------------------------|---------------------|---------------------|--|--|--|--|--|
|             | VI                     | V <sub>M</sub>      | V <sub>M</sub>      |  |  |  |  |  |
| 74AHC3G14   | GND to V <sub>CC</sub> | $0.5 \times V_{CC}$ | $0.5 \times V_{CC}$ |  |  |  |  |  |
| 74AHCT3G14  | GND to 3.0 V           | 1.5 V               | $0.5 \times V_{CC}$ |  |  |  |  |  |


74AHC\_AHCT3G14


All information provided in this document is subject to legal disclaimers.


#### 13.1 Transfer characteristic waveforms











### 14. Application information

The slow input rise and fall times cause additional power dissipation, which can be calculated using the following formula:

$$P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC}$$
 where:

 $P_{add}$  = additional power dissipation ( $\mu W$ );

f<sub>i</sub> = input frequency (MHz);

 $t_r$  = input rise time (ns); 10 % to 90 %;

74AHC AHCT3G14

All information provided in this document is subject to legal disclaimers.

 $t_f$  = input fall time (ns); 90 % to 10 %;

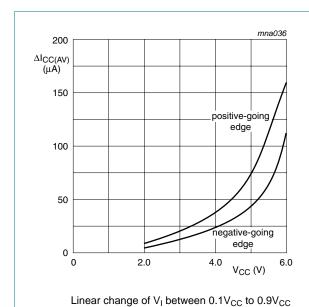
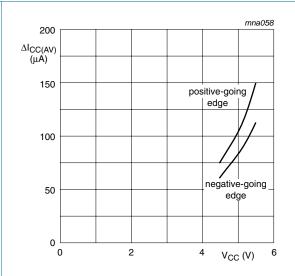
 $\Delta I_{CC(AV)}$  = average additional supply current ( $\mu A$ ).

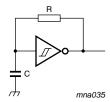
 $\Delta I_{CC(AV)}$  differs with positive or negative input transitions, as shown in <u>Figure 16</u> and <u>Figure 17</u>.

For 74AHC3G14 and 74AHCT3G14 used in relaxation oscillator circuit, see Figure 18.

#### Note to the application information:

1. All values given are typical unless otherwise specified.



Fig 16. Average additional I<sub>CC</sub> for 74AHC3G14 Schmitt

trigger devices



Linear change of  $V_I$  between  $0.1 V_{CC}$  to  $0.9 V_{CC}$ 

Fig 17. Average additional I<sub>CC</sub> for 74AHCT3G14 Schmitt trigger devices



For 74AHC3G14:  $f = \frac{1}{T} \approx \frac{1}{0.55 \times RC}$ 

For 74AHCT3G14:  $f = \frac{1}{T} \approx \frac{1}{0.60 \times RC}$ 

Fig 18. Relaxation oscillator using the 74AHC3G14 and 74AHCT3G14

### 15. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

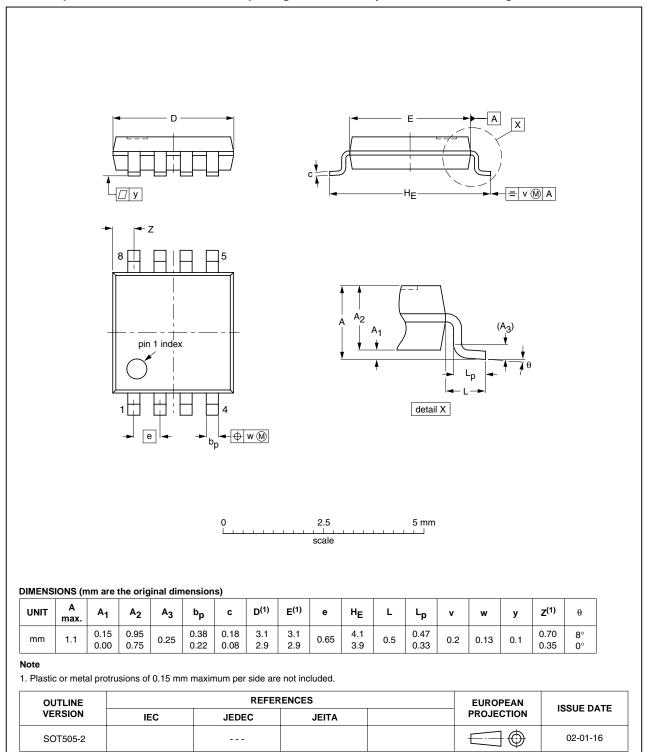
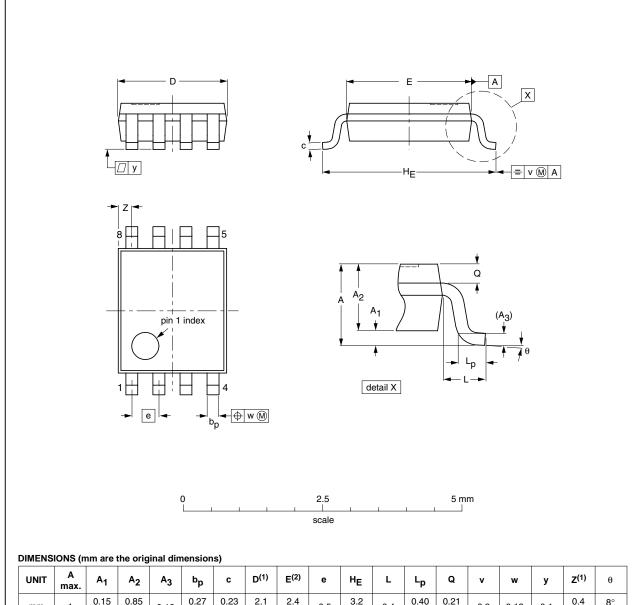




Fig 19. Package outline SOT505-2 (TSSOP8)

74AHC\_AHCT3G14 All information provided in this document is subject to legal disclaimers.

#### VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1



| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | U            | D <sup>(1)</sup> | E <sup>(2)</sup> | e   | HE         | L   | Lp           | ď            | ٧   | w    | у   | Z <sup>(1)</sup> | θ        |
|------|-----------|----------------|----------------|----------------|--------------|--------------|------------------|------------------|-----|------------|-----|--------------|--------------|-----|------|-----|------------------|----------|
| mm   | 1         | 0.15<br>0.00   | 0.85<br>0.60   | 0.12           | 0.27<br>0.17 | 0.23<br>0.08 | 2.1<br>1.9       | 2.4<br>2.2       | 0.5 | 3.2<br>3.0 | 0.4 | 0.40<br>0.15 | 0.21<br>0.19 | 0.2 | 0.13 | 0.1 | 0.4<br>0.1       | 8°<br>0° |

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

|      | OUTLINE  | REFERENCES |        |       |  | EUROPEAN   | ISSUE DATE |
|------|----------|------------|--------|-------|--|------------|------------|
| VERS | VERSION  | IEC        | JEDEC  | JEITA |  | PROJECTION | ISSUE DATE |
|      | SOT765-1 |            | MO-187 |       |  |            | 02-06-07   |

Fig 20. Package outline SOT765-1 (VSSOP8)

74AHC\_AHCT3G14

All information provided in this document is subject to legal disclaimers.



Fig 21. Package outline SOT833-1 (XSON8)

74AHC\_AHCT3G14

All information provided in this document is subject to legal disclaimers.

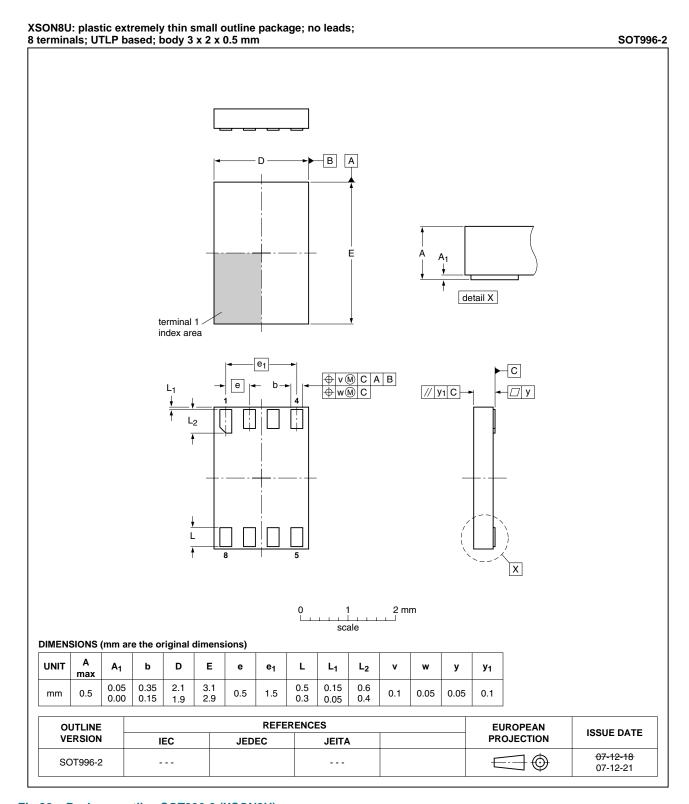



Fig 22. Package outline SOT996-2 (XSON8U)

74AHC\_AHCT3G14

All information provided in this document is subject to legal disclaimers.

## 16. Abbreviations

#### Table 11. Abbreviations

| Acronym | Description                             |  |
|---------|-----------------------------------------|--|
| CDM     | Charged Device Model                    |  |
| CMOS    | Complementary Metal-Oxide Semiconductor |  |
| DUT     | Device Under Test                       |  |
| ESD     | ElectroStatic Discharge                 |  |
| НВМ     | Human Body Model                        |  |
| MM      | Machine Model                           |  |
| TTL     | Transistor-Transistor Logic             |  |

## 17. Revision history

#### Table 12. Revision history

| Document ID        | Release date                    | Data sheet status            | Change notice             | Supersedes                    |
|--------------------|---------------------------------|------------------------------|---------------------------|-------------------------------|
| 74AHC_AHCT3G14 v.6 | 20101118                        | Product data sheet           | -                         | 74AHC_AHCT3G14 v.5            |
| Modifications:     | <ul> <li>Descriptive</li> </ul> | title changed from Inverting | Schmitt trigger into Trip | ole inverting Schmitt trigger |
| 74AHC_AHCT3G14 v.5 | 20100923                        | Product data sheet           | -                         | 74AHC_AHCT3G14 v.4            |
| Modifications:     | <ul> <li>Added type</li> </ul>  | number 74AHC3G14GT and       | d 74AHCT3G14GT (XS        | ON8 package)                  |
| 74AHC_AHCT3G14 v.4 | 20090505                        | Product data sheet           | -                         | 74AHC_AHCT3G14 v.3            |
| 74AHC_AHCT3G14 v.3 | 20080617                        | Product data sheet           | -                         | 74AHC_AHCT3G14 v.2            |
| 74AHC_AHCT3G14 v.2 | 20041018                        | Product specification        | -                         | 74AHC_AHCT3G14 v.1            |
| 74AHC_AHCT3G14 v.1 | 20031127                        | Product specification        | -                         | -                             |
| -                  |                                 |                              |                           |                               |

### 18. Legal information

#### 18.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

#### 18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be

suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74AHC\_AHCT3G14

# 74AHC3G14; 74AHCT3G14

**Triple inverting Schmitt trigger** 

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

#### 18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

#### 19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: <a href="mailto:salesaddresses@nxp.com">salesaddresses@nxp.com</a>

#### 20. Contents

| 1    | General description                 |
|------|-------------------------------------|
| 2    | Features and benefits               |
| 3    | Applications                        |
| 4    | Ordering information 2              |
| 5    | Marking 2                           |
| 6    | Functional diagram 2                |
| 7    | Pinning information 3               |
| 7.1  | Pinning                             |
| 7.2  | Pin description                     |
| 8    | Functional description 4            |
| 9    | Limiting values 4                   |
| 10   | Recommended operating conditions 4  |
| 11   | Static characteristics 5            |
| 11.1 | Transfer characteristics 6          |
| 12   | Dynamic characteristics 6           |
| 13   | Waveforms                           |
| 13.1 | Transfer characteristic waveforms 8 |
| 14   | Application information 9           |
| 15   | Package outline                     |
| 16   | Abbreviations                       |
| 17   | Revision history                    |
| 18   | Legal information                   |
| 18.1 | Data sheet status                   |
| 18.2 | Definitions                         |
| 18.3 | Disclaimers                         |
| 18.4 | Trademarks17                        |
| 19   | Contact information 17              |
| 20   | Contents                            |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.