

M



 1997 Microchip Technology Inc. DS00669A-page 1

INTRODUCTION

With the advent of MPLAB-C, the Microchip C-com-
piler, many PICmicro



 users need to embed existing
assembly language routines and/or Microchip applica-
tion notes into C. This application note explains how to
embed an assembly language program into MPLAB-C,
version 1.10, and the issues therein. For example,
embedding interrupt save and restore must be done
using assembly language. Also, critical timing routines
may require assembly. The 32-bit floating point multiply
routine from AN575 is used to illustrate this process.
The remaining 32-bit floating point math routines are
embedded into individual C functions and are included
in the file accompanying this application note.

PROCEDURE

For this example, we’ll use a PIC16C74A with 4K
Program Memory, and 192 bytes of RAM.

Embedding assembly routines

In order to embed an assembly language routine in C
code place the

#asm

and

 #endasm

 directives around
the assembly routine. Furthermore, if this is a subrou-
tine, as is the case with the floating point multiply, then
embed the assembly code within a C function declara-
tion. The

#asm

 construct is illustrated in Example 1 with
an excerpt from the 32-bit floating point routine.

Authors: Rick Evans

Microchip Technology, Inc.
Richard Fischer

EXAMPLE 1: #ASM, #ENDASM
CONSTRUCT

void fpm32(void)
{
#asm

FPM32 MOVF AEXP,W ;test for zero
 BTFSS _Z ;arguements
 MOVF BEXP,W
 BTFSC _Z
 GOTO RES032M

M32BNE0 MOVF AARGB0,W
 XORWF BARGB0,W
 MOVWF SIGN ;save sign
 MOVF BEXP,W ;in SIGN
 ADDWF EXP, F
 MOVLW EXPBIAS-1

 ;...etc.
#endasm
}

Locating the Routine in Program Memory,

GOTO

s and

CALL

s

There are two 2K word pages of program memory in
the PIC16C74A. Program memory 000h to 7FFh is
page 0, 800h to FFFh is page 1. By making

fpm32()

 a
C function, MPLAB-C initializes the appropriate page
bit in the PCLATH register before the subroutine call is
made. (See data sheet for more on PCLATH).

A potential problem could arise, however, if the new C
function,

fpm32(),

 crosses the page boundary
(7FFh,800h). MPLAB-C does not insert code into the
assembly code to initialize the page bits (remember
MPLAB-C does take care of paging for function calls).
That means it is up to the programmer to either; 1) add
assembly language to initialize PCLATH appropriately,
or 2) move the entire

#asm

 function within a single
page. Option 1 involves more work. The programmer
must first compile the C code, then analyze the listing
file to see if the assembly function crossed a page
boundary. Finally, add the appropriate assembly lan-
guage to initialize PCLATH then re-compile. This solu-
tion is not desirable since every time new C code is
added to or deleted from the program, the routine,

fpm32()

 can potentially move across the page bound-
ary. Option 2 is the simplest solution - to locate the C
function in a single page.

Embedding Assembly Routines into C Language Using a Floating Point
Routine as an Example

AN669



 1997 Microchip Technology Inc. DS00669A-page 2

AN669

To illustrate, lets force

fpm32()

 to cross the page
boundary. A pragma directive is required to locate a
routine (Example 2).

EXAMPLE 2: FORCING FPM32 TO CROSS
THE PAGE BOUNDARY

#pragma memory ROM [MAXROM-0x7F0] @ 0x7F0;
#include "fpm32.inc"

The listing file generated is shown in Example 3. Notice
the statement

GOTO MTUN32

 at address 0x7FC. How-
ever, the routine

MTUN32

 is located at address 0x801.
Remember, with the PIC16C74A the

GOTO

 instruction
only has an eleven bit address range. With the

GOTO
MTUN32

 example, one more bit of address is needed to
branch to 0x801 from 0x7FC. The extra bit of address
is located in the PCLATH register. That means assem-
bly code would have to be inserted into the floating
point routines to initialize PCLATH before each

GOTO

.
Since this solution is not desirable, the best approach
is to locate the floating point subroutine in a single
page. For example, change the

pragma

 directive in
Example 2 to locate the routine at 0x800.

It is important to note that when

fpm32()

 is called as a
C function, the page bit in PCLATH is updated by
MPLAB-C. In other words MPLAB-C adds the neces-
sary assembly language code needed to call

fpm32()

or any other C function. The C function is called cor-
rectly, but once within the C function, the raw embed-
ded assembly language might have

GOTO

s or

CALL

s
that cross over the page boundary and cause
problems.

EXAMPLE 3:

FPM32 FORCED TO ADDRESS 0x7F0 TO SHOW CROSSING FROM PAGE 0 TO
PAGE 1

void fpm32 (void)
{

#asm
 .
 . some code here
 .
07F0 0838 FPM32 MOVF AEXP,W ;test for zero arguments
07F1 1D03 BTFSS _Z
07F2 0839 MOVF BEXP,W
07F3 1903 BTFSC _Z
07F4 284E GOTO RES032M

07F5 0826 M32BNE0 MOVF AARGB0,W
07F6 0633 XORWF BARGB0,W
07F7 00AE MOVWF SIGN ;save sign in SIGN
07F8 0839 MOVF BEXP,W
07F9 07B8 ADDWF EXP, F

07FA 307E MOVLW EXPBIAS-1
07FB 1C03 BTFSS _C
07FC 2801 GOTO MTUN32 ;****** WON’T WORK !

07FD 02B8 SUBWF EXP,F
07FE 1803 BTFSC _C
07FF 2843 GOTO SETFOV32M ;set multiply overflow flag
0800 2804 GOTO MOK32

0801 02B8 MTUN32 SUBWF EXP,F ;****** IN PAGE 1 !
0802 1C03 BTFSS _C
0803 2854 GOTO SETFUN32M
 .
 . some more code here
 .
#endasm
}



 1997 Microchip Technology Inc. DS00669A-page 3

AN669

Assembly Language Variables, Include Files,
etc.

For the floating point math routines of AN575, there is
one include file which contains important constant and
register declarations:

math16.inc

. This file of declara-
tions is rather extensive, however, it is straightforward
to convert it to C. Example 4 shows a segment of the

math16.inc

requiring some attention for the conver-
sion.

EXAMPLE 4: MATH16.INC EXCERPT
FROM AN575. ASSEMBLY
LANGUAGE FILE

B0 equ 0
B1 equ 1
B2 equ 2
B3 equ 3
B4 equ 4
B5 equ 5
B6 equ 6
B7 equ 7
MSB equ 7
LSB equ 0
 .
 . etc.
 .
AARGB7 equ 0x20
AARGB6 equ 0x21
AARGB5 equ 0x22
AARGB4 equ 0x23
AARGB3 equ 0x24
AARGB2 equ 0x25
AARGB1 equ 0x26
AARGB0 equ 0x27
AARG equ 0x27 ; most significant
 ; byte of argument A

These Constant and Variable Declarations
Need to be Converted to C Language
Declarations

Example 5 shows the equivalent C constant and vari-
able declarations. The equates in assembly language
create constants. The equivalent C language is a

#define

. Moreover, variables are declared in assem-
bly language by equating a variable name to a register
RAM location (i.e.

AARGB7 equ 0x20

). In C the vari-
ables are declared by assigning a type to the variable.
In the listing in Example 5,

AARGB7

 is declared as an
unsigned integer data type.

EXAMPLE 5: THE CONVERTED MATH16C.C FILE. C LANGUAGE FILE

 #define B0 0
 #define B1 1
 #define B2 2
 #define B3 3
 #define B4 4
 #define B5 5
 #define B6 6
 #define B7 7
 #define MSB 7
 #define LSB 0
 .
 . etc.
 .
 unsigned int AARGB0 @ ACCB0; // most significant byte of argument A
 unsigned int AARGB1 @ ACCB1;
 unsigned int AARGB2 @ ACCB2;
 unsigned int AARGB3 @ ACCB3;
 unsigned int AARGB4 @ ACCB4;
 unsigned int AARGB5 @ ACCB5;
 unsigned int AARGB6 @ ACCB6;
 unsigned int AARGB7 @ ACCB7; // least significant byte of argument A
 unsigned int AARG @ ACC; // most significant byte of argument A

AN669

DS00669A-page 4



 1997 Microchip Technology Inc.

USING 32-BIT FLOATING POINT
MULTIPLY

Using the 32-bit floating point multiply supplied with
AN575 in a C program is straightforward. First, copy the
entire routine from the file

fpm32.a16

 (from AN575).
Then, create a function with the same name as the
assembly routine.

Lets take a well known formula:

Let,

 π

 = 3.141592654

r

 = 12.34567898 meters

Find A:

A πr
2

=

We need to convert the previous decimal numbers to
Microchip 32-bit floating point. Use

fpm32

 (from
AN575), to solve the equation. We will use MPLAB-C
and use our C function named

fpm32().

The main
routine is listed in Example 6.

AN575 comes with a handy utility called

fprep.exe

.
This Microchip file is a DOS executable. When running

fprep

, you can enter in a decimal number and it dis-
plays the hexadecimal floating point number. Table 1
shows the numbers in our example and their equivalent
floating point formats.

TABLE 1: PICmicro



 32-BIT FLOATING POINT REPRESENTATIONS OF OUR EXAMPLE

EXAMPLE 6: MAIN ROUTINE TO TEST OUT OUR NEW 32-BIT FLOAT MULTIPLY IN C

#include "16c74a.h"
#include "math16c.c"
#include "fpm32.inc"
 // Notice that fpm32 is located in page 0
 // Thus, all GOTOs reside in the same page.
void main (void)
{
 AEXP = 0X80; // PI = 3.141592654
 AARGB0 = 0X49;
 AARGB1 = 0X0F;
 AARGB2 = 0XDB;
 BEXP = 0X82; // r = 12.34567898
 BARGB0 = 0X45;
 BARGB1 = 0X87;
 BARGB2 = 0XE7;

 fpm32(); // AARG = PI * r
 // you must reload r into BARG since
 // fpm32() destroys BARG.
 BEXP = 0X82; // r = 12.34567898
 BARGB0 = 0X45;
 BARGB1 = 0X87;
 BARGB2 = 0XE7;
 fpm32(); // AARG = (PI*r)*r
 while(1);
}

Microchip Floating Point Equivalent

Decimal Number EXP B0 (MSB) B1 B2 (LSB)

π

 = 3.141592654 0x80 0x49 0x0F 0xDB

r = 12.34567898 meters 0x82 0x45 0x87 0xE7

A = 478.8283246 m

2

 -- fprep.exe calculated result 0x87 0x6F 0x6A 0x07

A = 478.8283246 m

2

 -- PIC16C74A measured result
using MPLAB 3.12 and PICMASTER 16J probe

0x87 0x6F 0x6A 0x07



 1997 Microchip Technology Inc. DS00669A-page 5

AN669

SUMMARY

For this discussion only the 32-bit floating point multiply
is used. However, the same principles of embedded
assembly language routines into C code can be used
with other assembly language routines. A summary list
of a step- by- step process to embed assembly code
into your C code is below:

• Convert assembly register

EQU

 equates to C vari-
able types such as

 unsigned int.

• Convert constants to

#define

 in C.
• Place the assembly code into a subroutine using

#asm

 and

#endasm

• To avoid paging issues in parts with multiple pro-
gram memory pages, force the code to an
address where it will not cross a page boundary.
For example:

 #pragma memory ROM [MAXROM-0x800] @ 0x800;

• Macros and conditional assembly will have to be
rewritten in actual in-line assembly code. The
MPLAB-C compiler does not support these higher
level assembly options to the same degree as the
assembler, MPASM.

For your convenience, all the 32-bit floating point rou-
tines in application note AN575 are provided in a zip file
along with this application note. Each routine has been
separated to work as a stand-alone routine. There is a

separate file for each floating point routine. The files
may be included individually into your C code. Table 2
shows a list of all the files and routines included with
this application note.

TABLE 2: 32-BIT FLOATING POINT C FILES/FUNCTIONS INCLUDED WITH THIS APPLICATION
NOTE

AN575 Original
Assembly Routine/file *

Equivalent C
file/function

Purpose

- example.c The example

main()

 routine calculating
the area given the radius. (uses fpm32)

FLO2432 flo2432.inc 24-bit integer to 32-bit floating point conversion

FLO3232 flo3232.inc 32-bit integer to 32-bit floating point conversion

FPD32 fpd32.inc 32-bit floating point divide

FPM32 fpm32.inc 32-bit floating point multiply

FPA32
FPS32

fpsa32.inc
fps32() 32-bit subtract
fpa32() 32-bit add

32-bit floating point add
32-bit floating point subtract

INT3224 int3224.inc 32-bit floating point to 24-bit integer conversion

INT3232 int3232.inc 32-bit floating point to 32-bit integer conversion

NRM3232 nrm3232.inc 32-bit normalization of unnormalized 32-bit
floating point numbers

NRM4032 nrm4032.inc 32-bit normalization of unnormalized 40-bit
floating point numbers

math16.inc math16c.c variables and constants need for the floating point functions

* Check Microchip web site and bulletin board for latest code.

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

