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INTRODUCTION

 

With the advent of MPLAB-C, the Microchip C-com-
piler, many PICmicro

 



 

 users need to embed existing
assembly language routines and/or Microchip applica-
tion notes into C. This application note explains how to
embed an assembly language program into MPLAB-C,
version 1.10, and the issues therein. For example,
embedding interrupt save and restore must be done
using assembly language. Also, critical timing routines
may require assembly. The 32-bit floating point multiply
routine from AN575 is used to illustrate this process.
The remaining 32-bit floating point math routines are
embedded into individual C functions and are included
in the file accompanying this application note.

 

PROCEDURE

 

For this example, we’ll use a PIC16C74A with 4K
Program Memory, and 192 bytes of RAM. 

 

Embedding assembly routines

 

In order to embed an assembly language routine in C
code place the 

 

#asm 

 

and

 

 #endasm

 

 directives around
the assembly routine. Furthermore, if this is a subrou-
tine, as is the case with the floating point multiply, then
embed the assembly code within a C function declara-
tion. The 

 

#asm

 

 construct is illustrated in Example 1 with
an excerpt from the 32-bit floating point routine.
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EXAMPLE 1: #ASM, #ENDASM 
CONSTRUCT

 

void fpm32(void)
{
#asm

FPM32     MOVF    AEXP,W     ;test for zero
          BTFSS   _Z         ;arguements
          MOVF    BEXP,W
          BTFSC   _Z
          GOTO    RES032M

M32BNE0   MOVF    AARGB0,W
          XORWF   BARGB0,W
          MOVWF   SIGN        ;save sign
          MOVF    BEXP,W      ;in SIGN
          ADDWF   EXP, F
          MOVLW   EXPBIAS-1

   ;...etc.
#endasm
}

 

Locating the Routine in Program Memory, 

 

GOTO

 

s and 

 

CALL

 

s

 

There are two 2K word pages of program memory in
the PIC16C74A. Program memory 000h to 7FFh is
page 0, 800h to FFFh is page 1. By making 

 

fpm32()

 

 a
C function, MPLAB-C initializes the appropriate page
bit in the PCLATH register before the subroutine call is
made. (See data sheet for more on PCLATH).

A potential problem could arise, however, if the new C
function, 

 

fpm32(),

 

 crosses the page boundary
(7FFh,800h). MPLAB-C does not insert code into the
assembly code to initialize the page bits (remember
MPLAB-C does take care of paging for function calls).
That means it is up to the programmer to either; 1) add
assembly language to initialize PCLATH appropriately,
or 2) move the entire 

 

#asm

 

 function within a single
page. Option 1 involves more work. The programmer
must first compile the C code, then analyze the listing
file to see if the assembly function crossed a page
boundary. Finally, add the appropriate assembly lan-
guage to initialize PCLATH then re-compile. This solu-
tion is not desirable since every time new C code is
added to or deleted from the program, the routine,

 

fpm32()

 

 can potentially move across the page bound-
ary.  Option 2 is the simplest solution - to locate the C
function in a single page.

 

Embedding Assembly Routines into C Language Using a Floating Point 
Routine as an Example
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To illustrate, lets force 

 

fpm32()

 

 to cross the page
boundary. A pragma directive is required to locate a
routine (Example 2). 

 

EXAMPLE 2: FORCING FPM32 TO CROSS 
THE PAGE BOUNDARY

 

#pragma memory ROM [MAXROM-0x7F0] @ 0x7F0;
#include "fpm32.inc"

 

The listing file generated is shown in Example 3. Notice
the statement 

 

GOTO MTUN32

 

 at address 0x7FC. How-
ever, the routine 

 

MTUN32

 

 is located at address 0x801.
Remember, with the PIC16C74A the 

 

GOTO

 

 instruction
only has an eleven bit address range. With the 

 

GOTO
MTUN32

 

 example, one more bit of address is needed to
branch to 0x801 from 0x7FC. The extra bit of address
is located in the PCLATH register. That means assem-
bly code would have to be inserted into the floating
point routines to initialize PCLATH before each 

 

GOTO

 

.
Since this solution is not desirable, the best approach
is to locate the floating point subroutine in a single
page. For example, change the 

 

pragma

 

 directive in
Example 2 to locate the routine at 0x800.

It is important to note that when 

 

fpm32()

 

 is called as a
C function, the page bit in PCLATH is updated by
MPLAB-C. In other words MPLAB-C adds the neces-
sary assembly language code needed to call 

 

fpm32()

 

or any other C function. The C function is called cor-
rectly, but once within the C function, the raw embed-
ded assembly language might have 

 

GOTO

 

s or 

 

CALL

 

s
that cross over the page boundary and cause
problems.

 

EXAMPLE 3:

 

FPM32 FORCED TO ADDRESS 0x7F0 TO SHOW CROSSING FROM PAGE 0 TO 
PAGE 1

 

void fpm32 (void)
{

#asm
              .
              . some code here
              .
07F0 0838               FPM32         MOVF      AEXP,W         ;test for zero arguments
07F1 1D03                             BTFSS     _Z
07F2 0839                             MOVF      BEXP,W
07F3 1903                             BTFSC     _Z
07F4 284E                             GOTO      RES032M

07F5 0826               M32BNE0       MOVF      AARGB0,W
07F6 0633                             XORWF     BARGB0,W
07F7 00AE                             MOVWF     SIGN           ;save sign in SIGN
07F8 0839                             MOVF      BEXP,W
07F9 07B8                             ADDWF     EXP, F

07FA 307E                             MOVLW     EXPBIAS-1
07FB 1C03                             BTFSS     _C
07FC 2801                             GOTO      MTUN32         ;****** WON’T WORK !

07FD 02B8                             SUBWF     EXP,F
07FE 1803                             BTFSC     _C
07FF 2843                             GOTO      SETFOV32M      ;set multiply overflow flag
0800 2804                             GOTO      MOK32

0801 02B8               MTUN32        SUBWF     EXP,F          ;****** IN PAGE 1 !
0802 1C03                             BTFSS     _C
0803 2854                             GOTO      SETFUN32M
              .
              . some more code here
              .
#endasm
}
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Assembly Language Variables, Include Files, 
etc.

 

For the floating point math routines of AN575, there is
one include file which contains important constant and
register declarations: 

 

math16.inc

 

.  This file of declara-
tions is rather extensive, however, it is straightforward
to convert it to C. Example 4 shows a segment of the

 

math16.inc 

 

requiring some attention for the conver-
sion.

 

EXAMPLE 4: MATH16.INC EXCERPT 
FROM AN575. ASSEMBLY 
LANGUAGE FILE

 

B0      equ     0
B1      equ     1
B2      equ     2
B3      equ     3
B4      equ     4
B5      equ     5
B6      equ     6
B7      equ     7
MSB     equ     7
LSB     equ     0
    .
    . etc.
    .  
AARGB7  equ     0x20
AARGB6  equ     0x21
AARGB5  equ     0x22
AARGB4  equ     0x23
AARGB3  equ     0x24
AARGB2  equ     0x25
AARGB1  equ     0x26
AARGB0  equ     0x27
AARG    equ     0x27   ; most significant
                       ; byte of argument A

 

These Constant and Variable Declarations 
Need to be Converted to C Language 
Declarations

 

Example 5 shows the equivalent C constant and vari-
able declarations. The equates in assembly language
create constants. The equivalent C language is a

 

#define

 

. Moreover, variables are declared in assem-
bly language by equating a variable name to a register
RAM location (i.e. 

 

AARGB7 equ 0x20

 

). In C the vari-
ables are declared by assigning a type to the variable.
In the listing in Example 5, 

 

AARGB7

 

 is declared as an
unsigned integer data type.

 

EXAMPLE 5: THE CONVERTED MATH16C.C FILE. C LANGUAGE FILE

 

     #define  B0     0
     #define  B1     1
     #define  B2     2
     #define  B3     3
     #define  B4     4
     #define  B5     5
     #define  B6     6
     #define  B7     7
     #define  MSB    7
     #define  LSB    0
              .
              . etc.
              .
     unsigned int AARGB0 @ ACCB0;       // most significant byte of argument A
     unsigned int AARGB1 @ ACCB1;           
     unsigned int AARGB2 @ ACCB2;           
     unsigned int AARGB3 @ ACCB3;           
     unsigned int AARGB4 @ ACCB4;           
     unsigned int AARGB5 @ ACCB5;           
     unsigned int AARGB6 @ ACCB6;           
     unsigned int AARGB7 @ ACCB7;       // least significant byte of argument A
     unsigned int AARG   @ ACC;         // most significant byte of argument A
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USING 32-BIT FLOATING POINT 
MULTIPLY

 

Using the 32-bit floating point multiply supplied with
AN575 in a C program is straightforward. First, copy the
entire routine from the file 

 

fpm32.a16

 

 (from AN575).
Then, create a function with the same name as the
assembly routine. 

Lets take a well known formula:

Let,

 

                                

 

 π

 

 = 3.141592654

              

 

r

 

 = 12.34567898 meters

Find A:

A πr
2

=

 

We need to convert the previous decimal numbers to
Microchip 32-bit floating point. Use 

 

fpm32

 

 (from
AN575), to solve the equation. We will use MPLAB-C
and use our C function named 

 

fpm32(). 

 

The main
routine is listed in Example 6.

AN575 comes with a handy utility called 

 

fprep.exe

 

.
This Microchip file is a DOS executable. When running

 

fprep

 

, you can enter in a decimal number and it dis-
plays the hexadecimal floating point number. Table 1
shows the numbers in our example and their equivalent
floating point formats. 

 

TABLE 1: PICmicro

 



 

 32-BIT FLOATING POINT REPRESENTATIONS OF OUR EXAMPLE

EXAMPLE 6: MAIN ROUTINE TO TEST OUT OUR NEW 32-BIT FLOAT MULTIPLY IN C

 

#include "16c74a.h"
#include "math16c.c"
#include "fpm32.inc"
                              // Notice that fpm32 is located in page 0
                              // Thus, all GOTOs reside in the same page.
void main (void)
{
  AEXP   = 0X80;              // PI = 3.141592654
  AARGB0 = 0X49;
  AARGB1 = 0X0F;
  AARGB2 = 0XDB;
  BEXP   = 0X82;              // r = 12.34567898
  BARGB0 = 0X45;
  BARGB1 = 0X87;
  BARGB2 = 0XE7;

  fpm32();                    // AARG =  PI * r
                              // you must reload r into BARG since
                              // fpm32() destroys BARG.
  BEXP   = 0X82;              // r = 12.34567898
  BARGB0 = 0X45;
  BARGB1 = 0X87;
  BARGB2 = 0XE7;
  fpm32();                    // AARG = (PI*r)*r
  while(1);
}

 

Microchip Floating Point Equivalent

Decimal Number EXP B0 (MSB) B1 B2 (LSB)

 

π

 

 = 3.141592654 0x80 0x49 0x0F 0xDB

r = 12.34567898 meters 0x82 0x45 0x87 0xE7

A = 478.8283246 m

 

2

 

 -- fprep.exe calculated result 0x87 0x6F 0x6A 0x07

A = 478.8283246 m

 

2

 

 -- PIC16C74A measured result 
using MPLAB 3.12 and PICMASTER 16J probe

0x87 0x6F 0x6A 0x07
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SUMMARY

 

For this discussion only the 32-bit floating point multiply
is used. However, the same principles of embedded
assembly language routines into C code can be used
with other assembly language routines. A summary list
of a step- by- step process to embed assembly code
into your C code is below:

• Convert assembly register 

 

EQU

 

 equates to C vari-
able types such as

 

 unsigned int.

 

• Convert constants to 

 

#define

 

 in C.
• Place the assembly code into a subroutine using 

 

#asm

 

 and 

 

#endasm

 

• To avoid paging issues in parts with multiple pro-
gram memory pages, force the code to an 
address where it will not cross a page boundary. 
For example:

 

  #pragma memory ROM [MAXROM-0x800] @ 0x800;

 

• Macros and conditional assembly will have to be 
rewritten in actual in-line assembly code. The 
MPLAB-C compiler does not support these higher 
level assembly options to the same degree as the 
assembler, MPASM.

For your convenience, all the 32-bit floating point rou-
tines in application note AN575 are provided in a zip file
along with this application note. Each routine has been
separated to work as a stand-alone routine. There is a

separate file for each floating point routine. The files
may be included individually into your C code. Table 2
shows a list of all the files and routines included with
this application note.

 

TABLE 2: 32-BIT FLOATING POINT C FILES/FUNCTIONS INCLUDED WITH THIS APPLICATION 
NOTE

 

AN575 Original 
Assembly Routine/file *

Equivalent C 
file/function

Purpose

 

- example.c The example 

 

main()

 

 routine calculating 
the area given the radius. (uses fpm32)

FLO2432 flo2432.inc 24-bit integer to 32-bit floating point conversion

FLO3232 flo3232.inc 32-bit integer to 32-bit floating point conversion

FPD32 fpd32.inc 32-bit floating point divide

FPM32 fpm32.inc 32-bit floating point multiply

FPA32
FPS32

fpsa32.inc
fps32() 32-bit subtract
fpa32() 32-bit add

32-bit floating point add
32-bit floating point subtract

INT3224 int3224.inc 32-bit floating point to 24-bit integer conversion

INT3232 int3232.inc 32-bit floating point to 32-bit integer conversion

NRM3232 nrm3232.inc 32-bit normalization of unnormalized 32-bit 
floating point numbers

NRM4032 nrm4032.inc 32-bit normalization of unnormalized 40-bit 
floating point numbers

math16.inc math16c.c variables and constants need for the floating point functions

* Check Microchip web site and bulletin board for latest code.
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