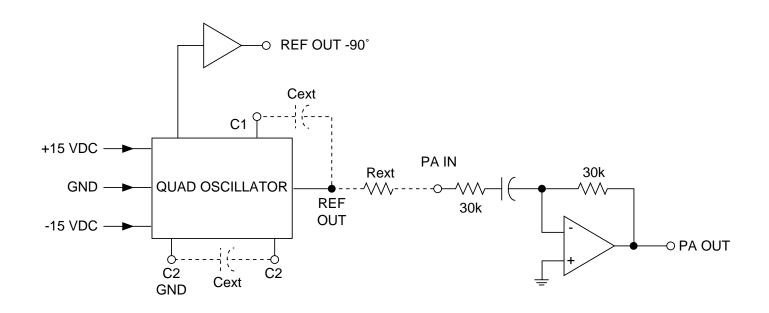


SYNCHRO/RESOLVER/INDUCTOSYN® REFERENCE OSCILLATOR

DESCRIPTION

The OSC-15801 is a quadrature power oscillator with two outputs that are 90° out of phase. These outputs provide both the reference and quadrature signals, simultaneously, making the OSC-15801 ideally suited for Inductosyn applications.


The oscillator's outputs are pin-programmable for both frequency and amplitude. The output frequency can be programmed from 400 Hz to 20 kHz by simply connecting two external capacitors. The Reference output voltage, 8.8 Vrms at 20 kHz, can be scaled down by connecting a single resistor.

APPLICATIONS

Packaged in an 18-pin hermetic DDIP, the OSC-15801 operates over a temperature range of -55°C to +125°C. This, combined with its small size and programmable output voltage and frequency capabilities, makes it an excellent choice for use in Inductosyn applications.

FEATURES

- Quadrature Reference Output Voltages for Inductosyn Applications
- Programmable Output Frequency from 400 Hz to 20 kHz
- Small 18-Pin DDIP
- Scalable Reference Output
- -55°C to +125°C Operating Temperature Range

FIGURE 1. OSC-15801 BLOCK DIAGRAM

© 1981, 1999 Data Device Corporation

® Inductosyn is a registered trademark of Farrand Controls Corporation.

TABLE 1. OSC-15801 SPECIFICATIONS					
Specifications apply over temperature range and power supply range.					
PARAMETER	UNITS	VALUE			
FREQUENCY	Hz	Programmable from 400 to 20k			
OUTPUTS (Note 1) PA OUT Voltage Continuous Current Protection REF	V rms mA rms	7.1 to 8.8 215 max Momentary short circuit (1 sec. max.)			
Voltage Continuous Current Protection	V rms mA rms	7.1 to 8.8 3 max Momentary short circuit (5 sec. max.) (Note 2) 3 max Momentary short circuit (5 sec. max.)			
REF -90° Voltage Continuous Current Protection	V rms mA rms				
POWER SUPPLIES Voltage Current Max Voltage without damage	Vdc mA Vdc	±15 ±5% 10 max plus current load ±18			
TEMPERATURE RANGE Operating -10X -30X Storage	ວ° ວ° ວ°	-55 to +125 0 to +70 -65 to +150			
PHYSICAL CHARACTERISTICS Size Package Type Weight	in (mm) oz (gm)	1.0 x 0.8 x 0.2 (25.45 x 20.32 x 4.83) 18-pin DDIP 0.4 (1)			

Notes:

1. Output voltage tracks ±15 V supply levels.

2. Clipped sine wave for demodulator drive only, 10 Vrms typ.

OSC-15801 OPERATION

PROGRAMMABLE FREQUENCY OUTPUT

The output frequency of the OSC-15801 is programmable from 20 kHz down to 400 Hz. The frequency is programmed using two external equal value capacitors (see FIGURE 2). The value of the capacitors (C_{ext}) is calculated as follows:

 $C_{ext} = (2,400,000/f) - 100$

where: C_{ext} is capacitance in picofarads, f is frequency in Hertz.

PROGRAMMABLE REFERENCE VOLTAGE OUTPUT

The PA OUT (REF), pin 13, provides from 7.1 to 8.8 Vrms, depending on the operating frequency. TABLE 2 lists the PA OUT voltages at the (programmed) operating frequency. These voltages are the maximum voltages obtained at these frequencies, with the $R_{ext} = 0$ Ohms (pin 7 jumped to pin 3).

TABLE 2. PA OUT/FREQUENCY			
PA OUT FREQUENCY			
8.8 Vrms 7.5 Vrms	20 kHz 10 kHz		
7.5 Vrms 7.1 Vrms	.4 kHz		

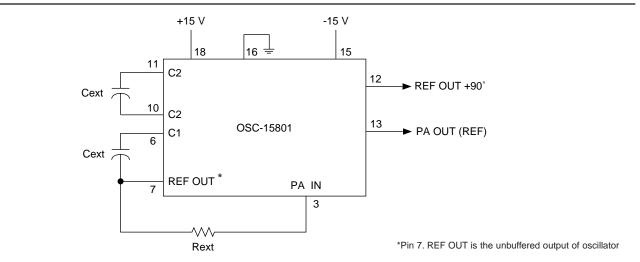
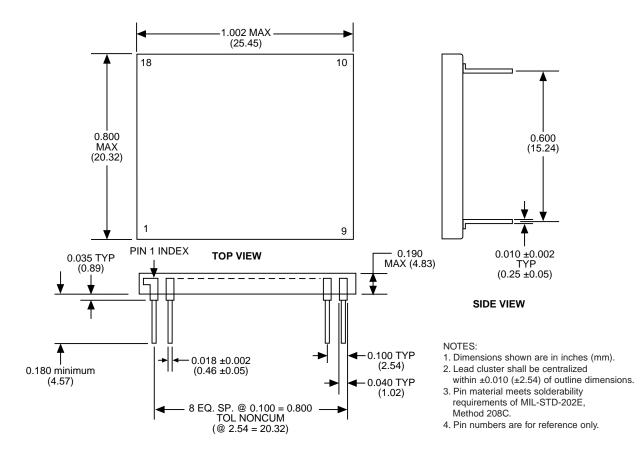
To scale down the PA OUT voltage, an external resistor (Rext) is connected between pins 3 and 7. The value of Rext is calculated as follows:

R_{ext} = 30 [(PA OUT/desired voltage) -1]

where: R_{ext} is in kOhms, desired voltage is in Vrms, PA OUT is dependent on frequency used.

FOR EXAMPLE, to scale down PA OUT to 5 Vrms at 10 kHz, the value of R_{ext} would be calculated as follows:

 $\begin{aligned} R_{ext} &= 30 \; [(PA \; OUT/desired \; voltage) \; \text{-1}] \\ R_{ext} &= 30 \; [(7.5/5) \; \text{-1}] \\ R_{ext} &= 15 k \Omega \end{aligned}$

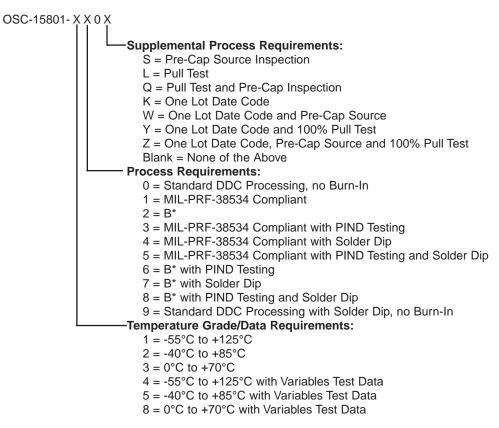

FIGURE 2. PROGRAMMING RESISTOR AND CAPACITOR CONNECTIONS

TABLE 3. OSC-15801 PIN FUNCTIONS			
PIN	NAME	FUNCTION	
1	NC	No connection	
2	NC	No connection	
3	PA IN	Power amplifier inverting input	
4	NC	No connection	
5	NC	No connection	
6	C1	Capacitor connection (pin-programmable freq.)	
7	REF OUT	Reference output	
8	NC	No connection	
9	NC	No connection	
10	C2	Capacitor connection (pin-programmable freq.)	
11	C2 GND	Capacitor connection (pin-programmable freq.)	
12	REF OUT -90°	-90° reference output signal	
13	PA OUT	Power amplifier output	
14	NC	No connection	
15	-15 V	-15 Vdc power supply voltage	
16	GND	Ground	
17	NC	No connection	
18	+15 V	+15 Vdc power supply voltage	

FIGURE 3. OSC-15801 MECHANICAL OUTLINE

ORDERING INFORMATION

*Standard DDC Processing with burn-in and full temperature test - see table below

STANDARD DDC PROCESSING				
TEST	MIL-STD-883			
	METHOD(S)	CONDITION(S)		
INSPECTION	2009, 2010, 2017, and 2032	_		
SEAL	1014	A and C		
TEMPERATURE CYCLE	1010	С		
CONSTANT ACCELERATION	2001	А		
BURN-IN	1015, Table 1			

105 Wilbur Place, Bohemia, New York 11716-2482

For Technical Support - 1-800-DDC-5757 ext. 7389 or 7413

Headquarters - Tel: (631) 567-5600 ext. 7389 or 7413, Fax: (631) 567-7358 Southeast - Tel: (703) 450-7900, Fax: (703) 450-6610 West Coast - Tel: (714) 895-9777, Fax: (714) 895-4988 Europe - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264 Asia/Pacific - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689 World Wide Web - http://www.ddc-web.com

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith.

Specifications are subject to change without notice.

