GROUND ${ }^{\text {GAULT INTERRUPTER EARTH }}$ LEAKAGE CURRENT DETECTOR

Description

The $I L 7101 \mathrm{~N} / \mathrm{D}$ is designed for use in earth leakage circuit interrupters for operation directly off the AC Line in breakers.
It contains pre regulator, main regulator, after regulator, differential amplifier, level comparator, latch circuit. The input in the differential amp latch circuit. The input in the differential amplifier is connect to the secondary node of zero current transformer.
The level comparator generates high level when earth leakage current is greater than some level.

Feature

- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}=5 \mathrm{~mW}$) $100 \mathrm{~V} / 200 \mathrm{~V}$
- 100V/200V Common Built-in Voltage Regulator
- High Gain Differential Amplifier
- High Input Sensitivity
- Minimum External Parts
- Large Surge Margin
- Wide Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
- High Noise Immunity
- Meet U. L. 943 standards

Absolute Maximum Ratings

- Supply Voltage

20 V

- Supply Current
- Power Dissipation
- Operating Temperature
- Storage Temperature

8 mA

200 m W

- 40 to $85^{\circ} \mathrm{C}$
-55 to $125^{\circ} \mathrm{C}$

Pin Configuration
(Top View)

Block Diagram

Recommended Operating Condition: $\mathrm{T}_{\mathrm{A}}=-\mathbf{3 0}{ }^{\circ} \mathrm{C}$ to $\mathbf{8 0}^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	MIN.	TYP.	MAX	UNIT
Supply Voltage	V^{+}	12			V
Vs-GND Capacitor	Cvs	1			$\mu \mathrm{~F}$
O $_{\text {S }}$-GND Capacitor	Cos			1	$\mu \mathrm{~F}$

Electrical Characteristics

PARAMETER	SYMBOL	CONDTIONS		TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN.	TYP.	MAX.	UNIT
Supply Current 1	$1_{\text {S } 1}$	$\begin{aligned} & \mathrm{V}^{+}=12 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{I}}=30 \mathrm{mV} \end{aligned}$		-30	-	-	580	$\mu \mathrm{A}$
				25	-	400	530	
				85	-	-	480	
* Trip Voltage	V_{T}	$\begin{aligned} & \mathrm{V}^{+}=16 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{I}}=\mathrm{X} \end{aligned}$		$\begin{gathered} -30 \\ 85 \end{gathered}$	9	13.5	18	$\begin{gathered} \mathrm{mV} \\ (\mathrm{rms}) \end{gathered}$
Differential Amplifier Output Current 1	$\mathrm{I}_{\text {TD } 1}$	$\begin{aligned} & \mathrm{V}^{+}=16 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{I}}=30 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{OD}}=1.2 \mathrm{~V} \end{aligned}$		25	-12	-	-30	$\mu \mathrm{A}$
Differential Amplifier Output current 2	$\mathrm{I}_{\text {TD } 2}$	$\begin{aligned} & \hline \mathrm{V}^{+}=16 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{I}}=\text { short } \\ & \mathrm{V}_{\mathrm{OD}}=0.8 \mathrm{~V} \\ & \hline \end{aligned}$		25	17	-	37	$\mu \mathrm{A}$
Output Current	I_{0}	$\begin{aligned} & \mathrm{V}_{\mathrm{SC}}=1.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OS}}=0.8 \mathrm{~V} \end{aligned}$	$1_{\text {SI }}=580 \mu \mathrm{~A}$	-30	-200	-		$\mu \mathrm{A}$
			$1_{\text {SI }}=530 \mu \mathrm{~A}$	25	-100	-		
			$1_{\text {SI }}=480 \mu \mathrm{~A}$	85	-75	-		
S_{C} On Voltage	$\mathrm{V}_{\text {SC }} \mathrm{ON}$	$\mathrm{V}^{+}=16 \mathrm{~V}$		25	0.7	-	1.4	V
S_{C} Input Current	$\mathrm{I}_{\mathrm{SC}} \mathrm{ON}$	$\mathrm{V}^{+}=12 \mathrm{~V}$		25	-	-	5	$\mu \mathrm{A}$
Output "L" Current	$\mathrm{I}_{\text {OSL }}$	$\begin{aligned} & \mathrm{V}^{+}=12 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OSL}}=0.2 \mathrm{~V} \end{aligned}$		$\begin{gathered} -30 \\ 85 \\ \hline \end{gathered}$	200	-	-	$\mu \mathrm{A}$
Input Clamp Voltage	$\mathrm{V}_{\text {IC }}$	$\begin{aligned} & \mathrm{V}^{+}=12 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{IC}}=20 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline-30 \\ 85 \end{gathered}$	4.3	-	6.7	V
Differential Input Clamp Voltage	$\mathrm{V}_{\text {IDC }}$	$\mathrm{I}_{\text {IDC }}=100 \mathrm{~mA}$		$\begin{gathered} -30 \\ 85 \\ \hline \end{gathered}$	0.4	-	2	V
Max. Current Voltage	$\mathrm{V}_{\text {SM }}$	$\mathrm{I}_{\mathrm{SM}}=7 \mathrm{~mA}$		25	20	-	28	V
Supply Current 2	$\mathrm{I}_{\mathrm{S} 2}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{OS}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{I}}=\mathrm{X} \\ & \hline \end{aligned}$		$\begin{gathered} \hline-30 \\ 85 \\ \hline \end{gathered}$	-	-	1200	$\mu \mathrm{A}$
Latch Circuit Off Supply Voltage	V+ OFF			25	0.5			V
Response Time	$\mathrm{T}_{\text {ON }}$	$\begin{aligned} & \hline \mathrm{V}^{+}=16 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{I}}=0 . \end{aligned}$		25	1	-	4	ms

[^0]Typical Performance Curves

REFERENCE VOLTAGE-SUPPLY VOLTAGE

DIFFERENTIAL AMPLIFIER OUTPUT VOLTAGE-DIFFERENTIAL INPUT VOLTAGE

SUPPLY CURRENT-SUPPLY VOLTAGE

BIAS CURRENT-TEMPERATURE

DIFFERENTIAL AMPUFIER OUTPUT CURRENT.TEMP

Test Circuit

1.

2.

3.

9.

10.

13.

11.
14.

12.

Typical Application

Supply voltage circuit is connected as a previous diagram. Please decide constants R1, R2, C4, and C5 of a filter in order to keep at least 12 V in Vs, when normal supply current flows.
In this case, please connect C 4 (more than $1 \mu \mathrm{~F}$) and C 2 (less than $1 \mu \mathrm{~F}$). ZCT and load resistance RL of ZCT are connected between input pin(1) and (2). In this case protective resistance ($\mathrm{R} 3=100 \Omega$) must be insulted. Sensitivity current is regulated by RL, and output of amplifier shows in pin(4). External capacitor C1 between pin(4) and GND is used for noise removal.
When large current is grounded in the primary side (AC line) of ZCT, the wave form in the secondary side of ZCT is distorted and some signals doesn't appear in the output of amplifier. So please connect a varistor or a diode (2 pcs .) to ZCT in parallel.

Latch circuit is used to inspect the output level of amplifier and to supply gate current on the external SCR. When input pin becomes more than 1.1 V (Typ.) latch circuit operates and supply gate current in the gate of SCR connected to the output pin(7).
Pin(6) can be used in the open state, but please connect capacitor (about $0.047 \mu \mathrm{~F}$) between pin(6) and (7). Capacitor C6 between pin(1) and GND is used to remove noise and is about $0.047 \mu \mathrm{~F}$.

N SUFFIX PLASTIC DIP (MS - 001BA)

[^1]
NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	8.51	10.16
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

D SUFFIX SOIC
 (MS - 012AA)

NOTES:

1. Dimensions A and B do not include mold flash or protrusion.
2. Maximum mold flash or protrusion $0.15 \mathrm{~mm}(0.006)$ per side for A ; for $\mathrm{B}-0.25 \mathrm{~mm}(0.010)$ per side.
8
1

8-Pin Plastic Single-in-Line (SIP)

Dimension	$\mathbf{m m}$	
	$\mathbf{m i n}$	\max
\mathbf{A}	6.24	6.60
\mathbf{B}	0.40	0.54
\mathbf{b}	1.15	1.40
\mathbf{C}	0.23	0.35
\mathbf{D}	19.68	20.20
\mathbf{E}	2.675	2.925
\mathbf{e}	2.54	
\mathbf{L}	2.95	3.25
$\mathbf{L} \mathbf{1}$	1.61	1.97
$\mathbf{L Q}$		0.70
\mathbf{Z}		1.21
$\mathbf{Z}_{\mathbf{1}}$		1.40

[^0]: * A: $9 \sim 12.5$

 B: $11.5 \sim 15.5$
 C: $14.5 \sim 18$

[^1]: | $母 0.25(0.010) ®$ | T |
 | :--- | :--- | :--- |

