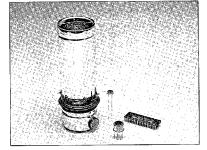
PbSe Photoconductive Cells

Capable of Detecting to 5 μ m Range (TE-cooled Types)


PbSe cells operates on the same principle as in PbS cells, but can be used to detect longer wavelengths up to or over 5μ m. In particular, TE-cooled types ensure stable and reliable measurement over extended time periods.

High-speed Response

Operates at Room Temperature

Compared to other types of detectors used in the same wavelength range, PbSe cells have higher response speed and can also operate at room temperature, making them useful in a wide range of applications such as gas analyzers. (Cooled types are provided for higher precision photometry.)

Lower Temperature Detection Limit: Approx. 50°C

Noncooled Types

Multielement Types

These devices operate at room temperature, making them easy to use in a variety of applications.

Multielement types include 4-element and 16-element linear arrays as standard items.

Cooled Types

Thermoelectrically-cooled devices and glass dewar devices are available. Cooling a PbSe cells enhances the responsivity and improves the S/N ratio, thus cooled types are widely used in precision photometry for applications such as in analytical instru-

SPECIFICATIONS (Common)

- ·					
Peak wavelength	3.8μ m (element temperature $25 ^{\circ}$ C)				
Cutoff Wavelength	4.8 μ m (element temperature 25 °C)				
	Bandpass filter (P3207 series)				
Window Material	Sapphire glass (other than P3207 series)				
Thermistor Allowable Dissipation	0.2 mW				
Peltier Element Allowable	1.5 A (one-stage TE-cooled types)				
Current	1.0 A (two-stage TE-cooled types)				
Maximum Supply Voltage	100 V				
Operating Temperature	-30 to +50℃				
Storage Temperature	-55 to +60℃				

ACCESSORIES (Optional)

Heatsink for one-stage TE-cooled types Heatsink for two-stage TE-cooled types : A3179-01 Temperature controller for TE-cooled types: C1103-04 : C3757-02 Preamplifier for PbS/PbSe cells : A3262-02 Housing for glass dewar devices

(Dewar devices are available potted in the housing upon request.)

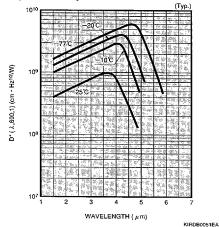
(Typical data unless otherwise specified)

												(1 ypical data	unicas ounerw	isc specifica)
Type No.	Outline No.		Active Area	Element Tempera-	Photo Sensitivity		8)			D*(500		D'	Rise Time	Resistance
iyec ito	(P.34—36			ture	at lab	Min.	Тур.	Тур.	Max.	-Min.	Тур.	(Ap,600,1)	0 to 63%	Rd
			(mm)	(°C)	Vs=15V (V/W)	(μV)		(µ V)	(μV)	(cm+Hz++2/W)	(cm•Hz ¹¹² /W)	(cm•Hz ^{1/2} /W)	(μS)	(MΩ)
Noncooled	Types	1 Tourse is used 100 the Michael and 11												
P791	T -	2-pin TO-5	1×5	25	8×10 ²	50	70	1.5	3	5×10 ⁷	1×10 ⁸	1×10°	1 to 3	0.1 to 0.6
P791-01	The state of	2-pin TO-5	1×3	25	1×10 ³	50	70	1.5	3	5×10 ⁷	1×10 ⁸	1×10°	1 to 3	0.2 to 1
P791-02	Մ	2-pin TO-5	3×3	25	5.×10 ²	50	70	1.5	3	5×10 ⁷	1×10 ⁸	1×109	1 to 3	0.35 to 2
P791-03	1 .	2-pin TO-5	2×5	25	4×10 ²	50	70	1.5	3	5×10 ⁷	1×10 ⁸	1×109	1 to 3	0.2 to 0.8
P791-11	20	3-pin TO-5	2×2	25	1×10³	50	70	1.5	3	5×10 ⁷	1×10 ⁸	1×10°	1 to 3	0.7 to 1.6
P3207-04	4	2-pin TO-5	1×2	25	5×10 ²	_		1.5	3		_		1 to 3	0.3 to 1
Multielemer	nt Type	s	<u> </u>											
P3211-16	(B)	40-pin DIP	(16 element)	25	3×10³	40	50	2.2	4	5×10 ⁷	1×10 ⁸	1×1 <u>0</u> 9	1 to 3	0.5 to 1.8
P4115	2	Cooled TO-66	1×1 (4 element)	-10	6×10 ³	80	100	2.5	5	1×108	3×108	3×10 ⁹	2 to 5	1.5 to 7
One-stage	Thermo	electrically-		s										
P2038-01		6-pin TO-8		-10	4×10³	150	200	2	4	1×10 ⁸	3×10 ⁸	3×109	2 to 5	0.5 to 5
P2038-03	•	6-pin TO-8		-10	1×10 ³	150	200	2	4	1×10 ⁸	3×10 ⁸	3×10 ⁹	2 to 5	1.7 to 7
Two-stage	Thermo	electrically-	cooled Type	es										
P2680		6-pin TO-8	1×3	-20	5×10 ³	180	280	2	4	2×10 ⁸	4×10 ⁸	4×109	2 to 5	0.5 to 5
P2680-01	- 6	6-pin TO-8	3×3	-20	2×10³	180	280	2	4	2×10 ⁸	4×10 ⁸	4×10 ⁹	2 to 5	1.8 to 8
Glass Dewa	ar Type										<u> </u>			
P5169	1	Glass dewar	1×5	-77	5×10 ³	400	500	2	4	4×10 ⁸	7×10 ⁸	6×10 ⁹	40 to 100	0.1 to 10
A		COOK Hardshads		(a)	Channing free	anenov: 60	nn Hz							

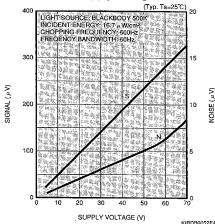
A Light source : 500 K I Chopping frequency : 600 Hz Supply Voltage : 15 V Load resistance : Nearly 6

: 500 K blackbody

: Nearly equal to the element dark resistance. : 16.7 \(\mu \) W/cm²

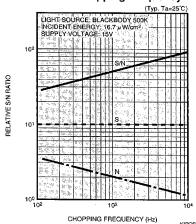

Chopping frequency Noise bandwidth

: Nearly equal to the element dark resistance

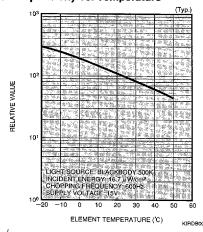

4229609 0004324 T55 🗪

Spectral Response 1.5 to 5.8 μ m

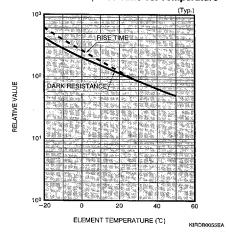
Spectral Response



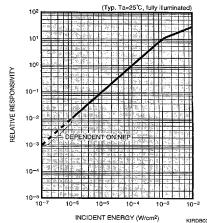
S/N Ratio vs. Supply Voltage


If a voltage higher than 60V is applied, the noise increases exponentially, degrading the S/N ratio. The device should be operated at 60V or less.

● S/N Ratio vs. Chopping Frequency

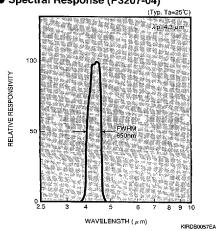

Increasing the chopping frequency reduces the 1/f noise and results in an improved S/N ratio. The S/N ratio can also be improved by narrowing the noise bandwidth using a lock-in amplifier.

• Responsivity vs. Temperature



Cooling the device enhances its responsivity. But the responsivity also depends on the load resistance in the circuit.

Dark Resistance, Rise Time vs. Temperature



Linearity

When the incident light spot is smaller than the active area, the upper limit of the linearity becomes lower.

Spectral Response (P3207-04)

