5V, 250mA Voice Coil Driver with H-bridge, 4:1 Gain Switch, and Head Retract Circuitry

Description

The CS-7104 is a voice coil motor driver used in 5V, 2.5 inch hard disk drive servo systems. It contains the complete H-bridge power amplifiers and all control functions. Head retraction circuitry is present

to allow controlled shutdown of the drive. Power fault and thermal fault detection are also included. A gain switch permits 4:1 transconductance changes.

Absolute Maximum Ratings

Supply Voltage	10V
Auxiliary Supply Voltage	17V
Logic Input Voltage	0.3V to V _{AUX}
Logic Output Voltage (not FAULT pin)	
Logic Output Voltage (not Brake pin)	
H-Bridge Output Current	250mA
Maximum Power Dissipation	
Electrostatic Discharge (Human Body Model)	
Operating Temperature Range	0°C to 70°C
Storage Temperature Range	65°C to 150°C
Maximum Junction Temperature	150°C

Block Diagram

Features

Full 2 Control Office

Low Supply Current (6mA)

Low Standby Current

Internally Compensated Amplifiers

No Crossover Distortion

4:1 Gain Switch

Programmable Retract Voltage

Programmable Bandwidth
Power Fault Detector

On Chip Transient Protection

Package Options

24 Lead SO Wide

Cherry Semiconductor Corporation 2000 South County Trail East Greenwich, Rhode Island 02818-1530 Tel: (401)885-3600 Fax (401)885-5786 Telex WUWWW.BataSheet4U.com

Electrical C PARAMETER	tharacteristics: V_{CC} =4.5V to 5.5V; T_{Λ} =0	°C to 70°C unless o	otherwise speci	fied	
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
■ Supply					
Supply Voltage (V _{CC1} , V _{CC2})		4.5	5.0	5.5	V
Auxiliary Voltage, V _{AUX}		2.0	0.0	15.0	V
Auxiliary Current, I _{AUX}	Head Brake Mode V _{CC} =0; V _{AUX} =5.0V		13	20	mA
Total Supply Current	V_{ENABLE} =2.0V V_{ENABLE} =0.8V		12	25 3	mA mA
■ Logic Inputs					
Input Current					
ENABLE=High ENABLE=Low	V_{IN} =2.0V V_{IN} =0.8			100 -100	uA uA
LGAIN Low input Current	V _{IN} =0.8			-200	uA
Logic High Voltage			1.5	2.0	V
Logic Low Voltage		0.8	1.5		V
Transconductance					
$(A_V=1; T_A=25^{\circ}C)$	I _{OUT} =100mA I _{OUT} =25mA	95 23.7	100 25.0	105 26.3	mA/V mA/V
Transconductance					
$(A_V=1; T_A=0$ °Cto 70°C)	I _{OUT} =100mA I _{OUT} =25mA	93 23.2	100 25.0	107 26.8	mA/V mA/V
Output Offset Current	T _A =25°C T _A =0°Cto 70°C			1.0 1.25	mA mA
Input Voltage Range	V_{REF} =2.0 V	0.50		3.50	V
Frequency Response		30			kHz
■ Power Amplifier					
Voltage Gain			14		V/V
Frequency Response		60			kHz
Bridge Output Current		250			mA
Quiescent Bias Current per sic	de		4		mA
Bridge Saturation Voltage	T _A =25°C; I _{OUT} =100mA			0.25	V
	T_A =25°C; I_{OUT} =200mA T_A =0°C to 70°C; I_{OUT} =200mA			0.50 0.60	V V
Thermal Shutdown Temperat	~			160	°C
■ Buffer Amplifier					
Open Loop Gain		60			dB
Input Offset Voltage		00		5	mV
Input Offset Current			10	100	nA
Input Bias Current			1.0	5.0	uA
Unity Gain Bandwidth		300	1000	5.0	kHz
PSRR		50	1000		dB
Input Common Mode Range		0.1		3.5	V
Output Voltage Range		0.1		3.5	v V
■ I _{SENSE} Amplifier					
Closed Loop Gain	V _{IN} =V _{OUT} -SENSE	1.45	1.50	1.58	V/V
Input Offset Voltage	II. 1001 122		2.00	5	mV
1					111 4

PARAMETER TEST CONDITIONS MIN Power Fault Detection and Timer V_{FAULT} 3.99 V_{FAULT} Hysteresis 0.75 C_{DELAY} Charging Current 0.75 C_{DELAY} Park Voltage Threshold 0.45 C_{DELAY} Break Voltage Threshold 0.90 Head Park V_{PARK}	4.20 100 1.00 0.55 1.10	MAX 4.41 200 1.25 0.65 1.30 0.6	V mV uA V V wA
$V_{FAULT} \\ V_{FAULT} \\ Hysteresis \\ C_{DELAY} \\ Charging Current \\ C_{DELAY} \\ Park Voltage Threshold \\ C_{DELAY} \\ Break Voltage Threshold \\ C_{DELAY} \\ Break Voltage Threshold \\ V_{PARK} \\ V_{PARK} \\ R_{PARK} = 5k\Omega; \\ I_{COIL} = 1mA \\ Rother \\ V_{REF} \\ V_{REF}$	100 1.00 0.55 1.10	200 1.25 0.65 1.30	mV uA V V
$V_{FAULT} \ V_{FAULT} \ Hysteres is \\ C_{DELAY} \ Charging \ Current & 0.75 \\ C_{DELAY} \ Park \ Voltage \ Threshold & 0.45 \\ C_{DELAY} \ Break \ Voltage \ Threshold & 0.90 \\ \ \textbf{Head Park} & R_{PARK} = 5k\Omega; \\ V_{PARK} \ R_{PARK} = 5k\Omega; \\ I_{COIL} = 1mA & 0.4 \\ \ Park \ Current \ Capability & 10 \\ \ \textbf{Voltage Reference} & 1.92 \\ V_{REF} \ Output \ Current & 2.0 \\ \ V_{REF} \ Output \ Current & 2.0 \\ \ V_{REF} \ Output \ Current & 2.0 \\ \ V_{REF} \ Output \ Current \ Coulcide \ Coulcide \ V_{REF} \ Coulcide \ Coulci$	100 1.00 0.55 1.10	200 1.25 0.65 1.30	mV uA V V
$\begin{array}{cccc} C_{DELAY} \ C_{DELAY} \ C_{DELAY} \ C_{DELAY} \ Park \ Voltage \ Threshold & 0.45 \\ C_{DELAY} \ Break \ Voltage \ Threshold & 0.90 \\ \hline \textbf{Head Park} & R_{PARK} = 5k\Omega; & 0.4 \\ I_{COIL} = 1mA & 0.4 \\ \hline \textbf{Voltage Reference} & 1.92 \\ \hline \textbf{V}_{REF} \ Output \ Current & 2.0 \\ \hline \end{array}$	1.00 0.55 1.10	1.25 0.65 1.30	uA V V
$\begin{array}{cccc} C_{DELAY} & Park & Voltage & Threshold & 0.45 \\ C_{DELAY} & Break & Voltage & Threshold & 0.90 \\ \hline \textbf{Head Park} & & & & & \\ V_{PARK} & & & & & & \\ R_{PARK} = 5k\Omega; & 0.4 \\ I_{COIL} = 1mA & & & & \\ \hline \textbf{Park Current Capability} & 10 \\ \hline \textbf{Voltage Reference} & & & & & \\ V_{REF} & & & & & \\ V_{REF} & & & & & \\ \hline \textbf{Output Current} & & & & & \\ \hline \textbf{2.0} & & & & \\ \hline \end{array}$	0.55 1.10 0.5	0.65 1.30	V V
$\begin{array}{c cccc} C_{DELAY} \ Break \ Voltage \ Threshold & 0.90 \\ \hline \textbf{Head Park} & R_{PARK} = 5k\Omega; & 0.4 \\ V_{PARK} & R_{PARK} = 5k\Omega; & 10 \\ \hline Park \ Current \ Capability & 10 \\ \hline \textbf{Voltage Reference} & & & & \\ V_{REF} & & & 1.92 \\ V_{REF} \ Output \ Current & & 2.0 \\ \hline \end{array}$	0.5	1.30	V V
Head Park $V_{PARK} = Sk\Omega; \qquad 0.4$ $I_{COIL} = 1mA$ Park Current Capability 10 Voltage Reference $V_{REF} = 1.92$ $V_{REF} = 2.0$	0.5		V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.6	
$I_{COIL}=1 \text{mA}$ Park Current Capability 10 $ \text{Voltage Reference} $ $V_{REF} $ 1.92 $V_{REF} \text{ Output Current} $ 2.0		0.6	
V_{REF} Voltage Reference V_{REF} 1.92 V_{REF} Output Current 2.0	20		mA
V_{REF} 1.92 V_{REF} Output Current 2.0			
V _{REF} Output Current 2.0			
V _{REF} Output Current 2.0	2.00	2.08	V
			V
PSRR 40			dB
Head Brake			
V_{OUT} + Brake I_{OUT} =50mA; V_{AUX} =3.0V		0.3	V.
V_{OUT} + Brake I_{OUT} =50mA; V_{AUX} =3.0V		0.3	V
Logic Outputs			
BRAKE V _{OUT} I_{OUT} =-10uA		0.4	V
FAULT V _{OUT} I _{OUT} =-10uA		0.4	V
\overline{PWRFLT} V_{OUT} I_{OUT} =-10uA		0.4	V

Package Pin Description					
PACKAGE PIN #	PIN SYMBOL	FUNCTION			
24 Lead SO Wide					
1	V _{OUT} -	H-Bridge negative output			
2	C_{DELAY}	An external capacitor on this pin sets the Head Brake, HeadPark and Spin Brake	e time intervals for		
3	PWRFLT	Digital output that signals a low supply	voltage condition		
4	Gnd2	Ground for H-bridge driver			
5	V_{AUX}	Auxiliary power for head park during a	VCC failure		
6	V_{PARK}	Park voltage programming pin			
7	$ m V_{REF}$	Internal voltage reference			
8	BUF-	Buffer amplifier negative input			
9	BUF+	Buffer amplifier positive input			
10	BUF _{OUT}	Buffer amplifier output			
11	Gnd1	Ground			
12	IN-	Error amplifier negative input			
13	IN+	Error amplifier positive input			
14	COMP	Error amplifier compensation pin			
15	V_{CC1}	Positive supply voltage			
16	SENSE	VCM current sense input			
17	I _{SENSE}	VCM current sense amplifier input	www.DataSheet4U.com		

Package Pin Description: continued					
PACKAGE PIN #	PIN SYMBOL	FUNCTION			
24 Lead SO Wide					
18	LGAIN	Digital input that selects high or low transconductance			
19	ENABLE	Digital input that selects standby or full power mode			
20	Gnd_3	Ground for H-bridge driver			
21	FAULT	Digital signal indicating a thermal fault condition; the pin is reset through the ENABLE pin			
22	BRAKE	Digital output to brake the spin motor			
23	V _{OUT} +	H-bridge positive output			
24	V_{CC2}	Positive supply voltage for H-bridge driver			

Circuit Description

Logic Functions

The ENABLE input is used to select full power mode or standby mode. When ENABLE is high, the circuit is full power mode. When ENABLE is low, the circuit is in standby mode with only the logic functions receiving power.

The LGAIN input selects high or low transconductance. When LGAIN is high, the circuit is in the low transconductance mode. The LGAIN input pin has a $50k\Omega$ internal pull up resistor.

The BRAKE output is a PNP transistor with a 70 k Ω internal pull down resistor that is intended to drive an external FET spin brake circuit.

The \overline{FAULT} line is an NPN transistor with a 70 $k\Omega$ internal pull up resistor.

The PWRFLT line is an NPN transistor with a 70 k Ω internal pull up resistor. Its correct logic state is maintained down to V_{CC}=1.0V.

Power Amplifier

The power amplifier is a full H-bridge with 250mA capability and built in protection diodes. The differential voltage gain of the bridge is 14.

The amplifier is protected from overload by thermal shutdown circuitry. If a thermal overload condition occurs, the amplifier is turned off and remains off until the ENABLE input line is toggled low then high.

Buffer Amplifier

The buffer amplifier is a low offset operational amplifier that can be used either as an additional gain stage or as a second order low pass filter.

Power Fault Detection

The power fault detection circuitry monitors V_{CC1} . If an under voltage condition occurs, a timed sequence of events happens. First the head brake is activated. The head park follows and finally the \overline{BRAKE} line goes low, initiating the spin brake. If power recovers at any time during the sequence, the head brake and head park will complete their sequences. The spin brake will be canceled if the supply voltage recovers in time.

During head brake, both power NPN transistors in the H-bridge are turned on. Braking occurs in response to either a power fault or a thermal shutdown fault.

Head Park only occurs if there is a power fault. During head park, one side of the H-bridge is pulled low and a voltage, preset at the V_{PARK} pin, is applied across the VCM.

The timing of the head brake, head park and spin brake is controlled by the power fault timer. The timer uses an internally generated charge current and an external capacitor. Two threshold levels create the three timing sequences. While the capacitor is charging to the first threshold, the head brake is initiated. Head park is initiated as the capacitor passes to the second threshold. Once the capacitor's charge exceeds the second threshold, the spin brake function is activated. The BRAKE output is brought low and the timer remains in this state until power is restored. If power is restored while the timer is in this mode, the spin brake will be released.

			Pa	ckage Sp	ecificatio	n		
PACKAGE D	IMENSIONS IN	mm (IN	CHES)			PACK	AGE THERMAL DATA	
			D		Therma	ıl Data	24L SO Wide	
Lead Count	Me	tric	Eng	lish	$R\Theta_{JC}$	typ	16	°C/W
	Max	Min	Max	Min	$R\Theta_{JA}$	typ	80	°C/W
24	15 54	15 29	612	602				

7.59 (.299) 7.42 (.292) 0.48 (.019) 0.35 (.014)

Ordering Information

Part Number CS-7104DW24

Description 24 Lead SO Wide

Preliminary

This product is in the preproduction stages of the design process. The data sheet contains preliminary data. CSC reserves the right to make changes to the specifications without notice. Please contact CSC for the latest available information.