0.01% 200 ns Unity Gain Stable Operational Amplifier

Features

- Settling time for 10V swings to 0.1% of 90 ns; to 0.01% of 200 ns
- Unity gain bandwidth—50 Mhz
- High slew rate—700 V/µs
- Large power bandwidth—5 MHz
- Large open loop gain—100 dB
- Low input offset voltage—1 mV
- Low input bias current—250 nA
- · Inputs tolerant of overload
- Uses standard ±5V to ±15V supplies
- Output tolerant of load capacitance
- MIL-STD-883 Rev. C Compliant

Applications

- 12-bit DAC output amplifiers
- Fast-settling instrumentation amplifiers
- Driving 12-bit A/D converters
- Radar systems
- Replacement of costly hybrids

Ordering Information

Part No.	Temp. Range	Pkg.	Outline*
EL2028CJ	0°C to +75°C	CerDIP	MDP0014
EL2028CN	0°C to +75°C	P-DIP	MDP0031
EL2028J	-55°C to +125°C	CerDIP	MDP0014
EL2028J/883I	3 - 55°C to + 125°C	CerDIP	MDP0014

General Description

The EL2028 monolithic operational amplifier is designed for extremely fast and clean settling with millivolt accuracy. It settles to 0.01% from a 10V step in 200 ns but has no thermal tail nor input slew overload penalties. The EL2028 is a true operational amplifier with low bias currents and large voltage gain, and is compensated for unity gain feedback.

The inputs of the EL2028 are capable of 26V of differential overload without damage nor increased bias current. The input circuity does not exhibit slew aberrations even for signals beyond the output slew limit of 700 V/ μ s. The output is capable of large currents and is current-limited, and can drive as much as 100 pF stably. Even under capacitive loading the amplifier delivers a -3 dB bandwidth of 50 MHz.

The EL2028 can be used in circuits where current-feedback amplifiers were previously required for adequate speed, while offering at least a tenfold accuracy improvement.

Elantec's EL2028/883B complies with MIL-STD-883 Revision C in all aspects, including burn-in at 125°C. Elantec's facilities comply with MIL-I-45208A and other applicable quality specifications. For information on Elantec's military processing, see the Elantec document QRA-2: Elantec's Military processing-Monolithic Products.

Connection Diagram

14-Pin DIP Package

July 1991 Rev B

EL2028/EL2028

0.01% 200 ns Unity Gain Stable Operational Amplifier

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

Voltage between V+ and V-35V Voltage at GND Pin V + to V -Voltage between -IN and +IN Pins 26V Voltage at -IN or +IN Pins V + to V -Output Current

50 mA (Peak) 30 mA (Continuous)

Current into +IN, -IN, GND, or

Balance Pins 5 mA Internal Power Dissipation See Curves Operating Ambient Temperature Range

EL2028 -55°C to +125°C **EL2028C** 0°C to +75°C

Operating Junction Temperature

CerDIP 175°C Plastic DIP 150°C

Lead Temperature (Soldering 5 seconds)

300°C -65° C to $+150^{\circ}$ C Storage Temperature Range

Important Note:

All parameters having Min/Max specifications are guaranteed. The Test Level column indicates the specific device testing actually performed during production and Quality inspection. Elantec performs most electrical tests using modern high-speed automatic test equipment, specifically the LTX77 Series system. Unless otherwise noted, all tests are pulsed tests, therefore $T_J = T_C = T_A$.

		8. S. S. S.				60 30.			. 'SSE 25c.	S 240 K 1 1 1			. 400		400 . 400 . 1	A. A. B.	Same Anna	2 alice 2 alice			8.0384 803			100 7	
	T-~	t Lev	40	110 - KG			Theat	Proc		2000000			(100 to 100 to 1					- 64 (66)					59.00		
365	1 00	LLCV	**	41	100		TCSF	FIVE	ouur	300 March 180	250.90		700000		***	S. 100	4000				8 1 M. 1 M	201 501	490 000		
				80 m.					2000				5.335 A.333 F.			8000 20		SE. 860.	16 L		5 5	44			
33.			. *				MAA	in distance in the	anti de la como de la		A				20,000	S 1000	272 32	711. Albert	AMI	***	1000		200 - 6 -		
	- 900 70	8 Sec. 364	- Bu : 4	Security.	384 39	c wild	10070	DEGG	испол	teste	a anc	I UA	samr	не те		Mar Lab	A TOST	: Dian	ULA	URNIZ.			-000		
in.			750						200,000		2000		100 x 2000 m		110000		,	1000,1000	VIII - 2000 100				AVC - 201		1.18.
		- 3	T		300 40	i da						. 30. als	***	ala di kacama			and and a		tales	***			35. 30	7 .	
		000. 000	33 - 3	84 F		v	111170	progr	uction	tested	at I	4	25	ana (JA ss:	mpie	rester	1 at 1		4000	ani 35 . 1000	20-11-1	44. 684		
áu:		want with	385.50	hà ann	مستمع	a mana					A 300 A 500	Marie Villa	20.0.20					10 10			6000000	31-75	700, 405	066.45	
	200 300	1932 4000	~,					-: 997 00%	200 191 7								*********	**************************************	800 Million (8)	S 18 100	dame the	diameter.		and.	
34.		100					1 4 2 4 2	w and	100	v per (1A 10	et rik	ara CM	XIYE	2			4.4	- 90 AME - 18	9.50 98	1776 - 176		3110.00	950.32	
					200		- Dan.	A	- DATE	V ,		****							Santana San	abov					
	40.400	White in					L. 3. St.		2000, 244		3 A 18 Sec.	22. 34	*********	4.000	201001000	E 25 CE	A. A. S.			V (181		9. 31	30.00		
	700 - 7700	**************************************	ш				DA G	mnie	tester	l per Q		et min		x ann		**********			Nai Olivada	20 12					
	200 10	53 . 3				- 67	***					re pres			************	. 1050 . 1000						30 477	300		
		300 000 2		100												.400 -000			the Silve in S	2000					
	ali et		V				Parar	neter:	e ano	rantee	d Own	t not	testa	d) hw	Dagie	m an	Cha	corte	rivotin	n Do	•	4. 30.	59-46		
		No. 335-8	800 SW		X - XX	2 30 733		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								****			LECTION	4	LEL.				

Parameter is typical value at TA = 25°C for information purposes only.

DC Electrical Characteristics $V_S = \pm 15V$; $R_L = 1k$; $T_A = 25^{\circ}C$ unless otherwise specified

Parameter	Description	Temp	Min	Тур	Max	EL2028 Test Level	EL2028C Test Level	Units
v _{os}	Input Offset Voltage EL2028	25°C		0.25	2.0	1	rukstal rakstalen	mV
	EL2028C	25°C		0.25	1.0		I	mV
	EL2028	Full			3.0	I		mV
	EL2028C	Full			3.0	Bundan in 1	III	mV
TCVOS	Average Offset Voltage Drift	Full		3		٧	Y	μV/°C
IB	Input Bias Current	25°C Full		250	500 800	1	ın	nA nA
I _{OS}	Input Offset Current	25°C Full		120	250 350	I	i de la deservación d La deservación de la	nA nA
R _{IN, DIFF}	Input Differential Resistance	25°C		10		V	v	$\mathbf{M}\Omega$
R _{IN, COMM}	Input Common-Mode Resistance	25°C		120		V	v	$\mathbf{M}\Omega$
CIN	Input Capacitance	25°C		2		٧	٧	pF
V _{CM}	Common-Mode Input Range	Full	±11	± 12		I	ં યુક્ ા	v
E _{IN}	Input Noise Voltage $(f = 1 \text{ kHz}, R_G = 0\Omega)$	25°C		10		v	V	nV/√hz
A _{VOL}	Large Signal Voltage Gain $(V_O = \pm 10V)$	25°C Full	45 20	80		I I	111 I	V/mV V/mV
CMRR	Common-Mode Rejection Ratio (Note 1)	Full	80	95		1	g in in a san ta each a H arain each an an siria	dB
PSRR	Power-Supply Rejection Ratio (Note 2)	Full	80	95		1	II	dB
vo	Output Voltage Swing	Full	± 11	± 12		1	11	v
I _O	Output Current (Note 3)	Full	± 25	± 50		ese j e se e	II	mA
IS	Supply Current	Full		14	17	e e al se e .	11	mA

0.01% 200 ns Unity Gain Stable Operational Amplifier

AC Electrical Characteristics

 $V_S = \pm 15V$; $R_L = 1 \text{ k}\Omega$; $C_L = 25 \text{ pF}$; $T_A = 25^{\circ}\text{C}$; Unless otherwise specified

Parameter	Description	Min	Тур	Max	EL2028 Test Level	EL2028C Test Level	Units
BW	Unity Gain -3 dB Bandwidth (Note 4)		50		v	V	MHz
GBW	Gain-Bandwidth Product (Note 4)		25		v	v	MHz
FPBW	Full-Power Bandwidth ($V_0 = \pm 10V$)		5		v	V	MHz
SR	Slew Rate ($V_0 = \pm 10V$)		700		٧	V	V/µs
t _r	Rise Time (Notes 4, 5)		8	,	V	V	ns
os	Overshoot (Notes 4, 5)		10		V	v	%
t _s	Settling Time (Note 4) to 0.1% 10V Step to 0.01%		90 200		v v	v	ns ns

Note 1: Two tests are performed with $V_{CM} = 0V$ to -11V and $V_{CM} = 0V$ to 11V.

Note 2: Two tests are performed with V+ = 15V, V- changed from -5V to -15V; V- = -15V, V+ changed from 5V to 15V.

Note 3: The inputs are overdriven by $\pm 15V$ and the output $R_{\rm L} = 100\Omega.$

Note 4: A $100\Omega + 100$ pF snubber is used to load the output—see Applications section.

Note 5: $V_{IN} = 100 \text{ mV peak-to-peak.}$

Test Circuit

Optional snubber network 100 pF

Burn-In Circuit

2028-3

1-97

EL2028/EL2028

0.01% 200 ns Unity Gain Stable Operational Amplifier

14-Lead Plastic DIP

Typical Performance Curves — Contd.

2028-22

Maximum Power Dissipation vs Ambient Temperature T, MAX = 150°C 0_{JC} = 43°C/W POWER DISSIPATION (W) 4.0 0_{JA} = 73°C/W 3.0 INFINITE HEAT SINK 2.0 1.0 FREE AIR NO HEAT SINK | O 125 -50 -25 25 75 TEMPERATURE (°C)

2028-23

Applications Information

The EL2028 is a conventional high-accuracy operational amplifier with the speeds and bandwidths normally found only in current-feedback amplifiers. All the usual op amp configurations may be applied since the device is unity gain stable. The EL2028 will work well with a wide variety of loads and power supplies.

Power Supplies and Grounding

As with all high-frequency amplifiers, it is necessary to bypass the supply pins to ground close to the part. 0.01 μF capacitors of the ceramic type will suffice, although tantalum capacitors of any available value are perhaps the best choice. Tantalum capacitors have low series inductance yet are not high-Q in nature, helping to damp supply variations caused by load currents.

The EL2028 will work well from $\pm 5 V$ supplies, with the input and output swings reduced to $\pm 1 V$ over temperature, $\pm 2 V$ nominally. At higher supplies, the part's dissipation must be maintained within package limits when the device and any load-related dissipations are calculated. Clipon heatsinks are effective in reducing die temperature. Note that the device will warm approximately 36°C upon power-up: any accurate DC tests should either be done within 1 second or after 1 minute of turn-on at maximum supplies.

Although the part is current-limited at its output, that current can cause enough dissipation such that the maximum die temperature specification will be exceeded.

The EL2028 has a unique ground pin connection. The compensation capacitor returns to this pin rather than ground to aid in noise and settling characteristics. The input bias current compensation circuitry is also referred to this pin, so it cannot be connected to a voltage outside the input common-mode range.

Input Circuitry

The input appears as a high impedance even when the amplifier is overloaded. The input will not be damaged by transient nor continuous overloads, although an additional supply current of 2 mA per volt of overload will result. This should be considered in the device thermal calculations.

Like many other high-speed amplifiers, the input circuitry can resonate or even oscillate when driven by high-impedance inputs. The worst situation is when the device looks into an unterminated coaxial cable or a large inductance. Normal circuit interconnects cause no trouble. If the source impedance is difficult, a snubber similar to the output snubber can be added in parallel with the input.

0.01% 200 ns Unity Gain Stable Operational Amplifier

Applications Information — Contd.

High values of feedback impedance can sacrifice loop stability. The main point is that the pole caused by any stray capacitance and the feedback network impedance should be several times greater than the EL2028's gain-bandwidth product divided by the noise gain of the feedback loop. If this condition cannot be met, the feedback resistor can have a small (1 pF-2 pF) capacitor in parallel to improve closed-loop phase margin.

Output Circuitry

The output circuitry was designed to deliver more current than the device can safely continuously output so that the transient currents caused by fast slews can be developed. For instance, a 50 pF load will draw 35 mA in response to a 700 V/ μ s output transient. The snubber network will draw similar currents, and it may not be useable if the amplifier is called upon to deliv-

er large outputs continuously at high frequencies. In any event, the device is rated at 30 mA continuously.

The output circuit will resonate with capacitive loads if it is not damped. The output impedance of all amplifiers is approximately modeled as an inductor in series with a DC resistance. The equivalent component values for the EL2028 are 300 nH and $20\Omega.$ To reduce the output stage resonance with capacitive loads, the snubber network can be added to de-Q the load. The EL2028 will comfortably drive 100 pF with the snubber values of 100 pF and $100\Omega.$

Offset Adjust

To effect input offset voltage adjustment, a 10k to 100k potentiometer is connected to the balance pins with the wiper connected to $V-.\pm2.8~mV$ of adjustment is possible.

0.01% 200 ns Unity Gain Stable Operational Amplifier

EL2028 Macromodel

```
* Connections:
                   +input
                         -input
                                + Vsupply
                                      -Vsupply
                                            output
.subckt M2028
                                            10
* Input Stage
il 37 6 2mA
г1 36 37 2К
r2 38 37 2K
r3 11 30 2K
r4 11 39 2K
q1 30 5 36 qn
q2 39 4 38 qna
e1 33 0 39 30 1
r5 33 0 1Meg
* Compensation Section
ga 0 34 33 0 1m
rh 34 0 80Meg
ch 34 0 5pF
rc 34 40 100
cc 40 0 1pF
* Poles
ep 41 0 40 0 1
r6 41 42 150
c1 42 0 10pF
r7 42 43 150
c2 43 0 10pF
* Output Stage
i2 11 50 1.25mA
i3 51 6 1.25mA
q3 6 43 50 qp
q4 11 43 51 qn
q5 11 50 52 qn
q6 6 51 53 qp
r8 52 10 5
r9 10 53 5
* Power Supply Current
ips 11 6 9mA
* Models
.model qn npn(is = 800e - 18 bf = 2000 tf = 0.1nS)
.model qna npn(is = 824e - 18 bf = 2700 tf = 0.1nS)
.model qp pnp(is = 800e - 18 bf = 260 tf = 0.1nS)
.ends
```

