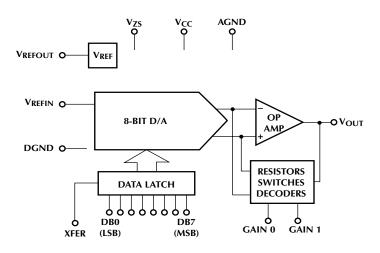


ML2340*, ML2350**

Single Supply, Programmable 8-Bit D/A Converters

GENERAL DESCRIPTION

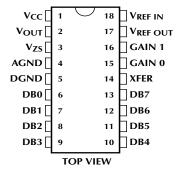
The ML2340 and ML2350 are CMOS voltage output, 8-bit D/A converters with an internal voltage reference and a μP interface. These devices are designed to be powered by a single supply, although they can be powered from dual power supplies. The output voltage swings above zero scale (V_{ZS}) in the unipolar mode or around zero scale (V_{ZS}) in the bipolar mode, both with programmable gain. V_{ZS} can be set to any voltage from AGND to 2.25V below V_{CC}. The digital and analog grounds, DGND and AGND, are totally independent of each other. DGND can be set to any voltage from AGND to 4.5V below V_{CC} for easy interfacing to standard TTL and CMOS logic families.

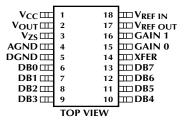

The high level of integration and versatility of the ML2340 and ML2350 makes them ideal for a wide range of applications in hard disk drives, automotive, telecom, and a variety of general purpose industrial uses. One specific intended application is controlling a hard disk voice coil.

The internal reference of the ML2340 provides a 2.25V or 4.50V output for use with A/D converters that use a single $5V \pm 10\%$ power supply, while the ML2350 provide a 2.50V or 5.00V reference output.

FEATURES

- Programmable output voltage gain settings of 2, 1, 1/2, 1/4 provide 8-, 9-, 10-, or 11-bit effective resolution around zero
- \blacksquare AGND to V_{CC} output voltage swing
- Bipolar or unipolar output voltage
- 4.5V to 13.2V single supply or ±2.25V to ±6.5V dual-supply operation
- Transparent latch allows microprocessor interface with 30ns setup time
- Data flow-through mode
- Nonlinearity $\pm \frac{1}{4}$ LSB or $\pm \frac{1}{2}$ LSB
- Output voltage settling time over temperature and supply voltage tolerance
 Within 1V of V_{CC} and AGND.......2.5µs max
 Within 100mV of V_{CC} and AGND.......5µs max
- TTL and CMOS compatible digital inputs
- Low supply current (5V supply) 5mA max
- 18-pin DIP or surface mount SOIC


BLOCK DIAGRAM


- * This Part Is Obsolete
- ** This Part Is End Of Life As Of August 1, 2000

PIN CONNECTIONS

ML2340 ML2350 18-Pin DIP (P18)

ML2340 ML2350 18-Pin SOIC (\$18W)

PIN DESCRIPTION

PIN	NAME	FUNCTION	PIN	NAME	FUNCTION
1	V_{CC}	Positive supply.	8	DB2	Data input — Bit 2.
2	V_{OUT}	Voltage output of the D/A converter. V _{OUT} is referenced to V _{ZS} .	9	DB3	Data input — Bit 3.
2	\ /		10	DB4	Data input — Bit 4.
3	V_{ZS}	Zero Scale Voltage. V_{OUT} is referenced to V_{ZS} . V_{ZS} is normally tied to AGND	11	DB5	Data input — Bit 5.
		in the unipolar mode or to mid-supply in the bipolar mode. When the device	12	DB6	Data input — Bit 6.
		is operated from a single power	13	DB7	Data input — Bit 7 (MSB).
		supply, V_{ZS} has a maximum current requirement of $-300\mu A$ in the bipolar mode.	14	XFER	Transfer enable input. The data is transferred into the transparent latch at the high level of XFER.
4	AGND	Analog ground.	15	GAIN 0	Digital gain setting input 0.
5	DGND	Digital ground. This is the ground reference level for all digital inputs.	16	GAIN 1	Digital gain setting input 1.
		The range is AGND \leq DGND \leq V _{CC} – 4.5V. DGND is normally tied to system ground.	17	V _{REF OUT}	Voltage reference output. $V_{REF\ OUT}$ is referenced to AGND. $V_{REF\ OUT}$ is set to 2.5V and 5.0V in a low-voltage and
6	DB0	Data input — Bit 0 (LSB).			high-voltage operation, respectively for the ML2350; 2.25V and 4.5V for
7	DB1	Data input — Bit 1.			the ML2340.
			18	$V_{REF\ IN}$	Voltage reference input. V _{REF IN} is referenced to AGND.

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Supply Voltage V _{CC} with Respect to AGND 14.2V
DGND -0.3 V to V_{CC} + 0.3 V
V_{ZS} , $V_{REF\ IN}$ $-0.3V$ to V_{CC} + $0.3V$
Logic Inputs -0.3 V to V_{CC} + 0.3 V
Input Current per Pin ±25mA
Storage Temperature –65°C to +150°C
Package Dissipation at $T_A = 25^{\circ}C$ (Board Mount) 875mW
Lead Temperature (Soldering 10 sec.)
Dual-In-Line Package (Molded)260°C
Dual-In-Line Package (Ceramic) 300°C
Molded Small Outline IC Package
Vapor Phase (60 sec.)
Infrared (15 sec.)

OPERATING CONDITIONS

Supply Voltage, V _{CC} 4.5V _{DC} to 13.2V _{DC}
Temperature Range
ML2350BIJ40°C to +85°C
ML2340BCP, ML2340CCP
ML2350BCP, ML2350CCP
ML2340BCS, ML2340CCS
ML2350BCS, ML2350CCS 0°C to +70°C

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, T_A = Operating temperature range, V_{CC} – AGND = 5V ±10% and 12V ±10%, $V_{REF\ IN}$ for ML2340 = 2.25V and 4.50V, for ML2350 $V_{REF\ IN}$ = 2.50V and 5.00V, V_{OUT} load is R_L = 1k Ω and C_L = 100pF, V_{REF} load is R_L = 1k Ω and R_L = 100pF and input control signals with R_L = R_L = 1k R_L = 1kR

			ML2340XCX, ML2350XCX			ML2350XIX			
PARAMETER	NOTES	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Converter and Programma	ble Gai	n Amplifier	•	1	'			1	
Converter Resolution			8			8			Bits
Integral Linearity Error ML2340BXX, ML2350BXX ML2340CXX, ML2350CXX		GAIN = 2, 1, $\frac{1}{2}$, or $\frac{1}{4}$			±1/ ₄ ±1/ ₂			±1/ ₄ ±1/ ₂	LSB LSB
Differential Linearity Error ML2340BXX, ML2350BXX ML2340CXX, ML2350CXX		GAIN = 2, 1, $\frac{1}{2}$, or $\frac{1}{4}$			±1/ ₄ ±1/ ₂			± ¹ / ₄ ± ¹ / ₂	LSB LSB
Mode Select Unipolar Output Bipolar Output		V _{ZS} with respect to AGND	0 1.50		1.0 V _{CC} -2.25	0 1.50		1.0 V _{CC} -2.25	V V
Offset Error Unipolar Mode		Figure 1 GAIN = ¹ / ₄ , ¹ / ₂ , 1 GAIN = 2			±10 ±20			±12 ±24	mV mV
Bipolar Mode		Figure 1 GAIN = 1/4, 1/2, 1, 2			±10 plus ±2½ LSB			±10 plus ±2½ LSB	mV
Gain Error Unipolar Mode		Figure 1 GAIN = 1/4, 1/2, 1, 2		±0.5	±2		±0.5	±2.5	%FS
Bipolar Mode		GAIN = $\frac{1}{4}$, $\frac{1}{2}$, 1, 2		±0.5	±2		±0.5	±2.5	%FS

ELECTRICAL CHARACTERISTICS (Continued)

				ML2340XCX, ML2350XCX			ML2350XIX			
PARAMETER	NOTES	CONI	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Reference									1	
V _{REF OUT} Voltage ML2340BXX		V _{CC} ≤ 7.0V	$T_A = 25$ °C T_{MIN} to T_{MAX}	2.23 2.22	2.25	2.27 2.28	2.23 2.18	2.25	2.27 2.32	V V
		V _{CC} ≥ 8.0V	$T_A = 25$ °C T_{MIN} to T_{MAX}	4.48 4.46	4.50	4.52 4.54	4.48 4.43	4.50	4.52 4.57	V V
ML2340CXX		V _{CC} ≤ 7.0V	$T_A = 25$ °C T_{MIN} to T_{MAX}	2.22 2.20	2.25	2.29 2.30	2.22 2.18	2.25	2.28 2.32	V V
		V _{CC} ≥ 8.0V	$T_A = 25$ °C T_{MIN} to T_{MAX}	4.45 4.40	4.50	4.55 4.60	4.45 4.35	4.50	4.55 4.65	V V
ML2350BXX		V _{CC} ≤ 7.0V	$T_A = 25$ °C T_{MIN} to T_{MAX}	2.48 2.47	2.50	2.52 2.53	2.48 2.43	2.50	2.52 2.57	V V
		V _{CC} ≥ 8.0V	$T_A = 25$ °C T_{MIN} to T_{MAX}	4.98 4.96	5.00	5.02 5.04	4.98 4.90	5.00	5.02 5.10	V V
ML2350CXX		V _{CC} ≤ 7.0V	$T_A = 25$ °C T_{MIN} to T_{MAX}	2.45 2.44	2.50	2.55 2.58	2.46 2.42	2.50	2.55 2.59	V V
		V _{CC} ≥ 8.0V	$T_A = 25$ °C T_{MIN} to T_{MAX}	4.95 4.90	5.00	5.05 5.10	4.95 4.85	5.00	5.05 5.15	V V
Temperature Coefficient V _{REF OUT}					50			50		ppm/°C
V _{REF} Output Current				0.75		5	0.75		5	mA
V _{REF OUT} Power Supply Rejection Ratio		100mV _{P-P} , 1 Sinewave on		-40	-60		-40	-60		dB
$V_{REF\;IN}$ and V_{ZS}										
V _{REF IN} Input Range		$V_{CC} \le 8.75V$ $V_{CC} \ge 8.75V$		AGND+2 AGND+2			AGND+2 AGND+2		V _{CC} –1.75 AGND+7	V V
V _{REF IN} DC Input Resistance				10			10			ΜΩ
V _{ZS} Voltage Range	2	V _{CC} ≤ 7.0V		AGND		V _{CC} -2.25	AGND		V _{CC} -2.25	V
Analog Output										
V _{OUT} Output Swing Unipolar Mode	2	$R_L = 100k\Omega$		AGND+ 0.01		V _{CC} -0.5	AGND+ 0.01		V _{CC} -0.5	V
		$R_L = 1k\Omega$		AGND+		V _{CC} -1.0	AGND+ 1.0		V _{CC} -1.0	V
Bipolar Mode		$R_L = 100k\Omega$		AGND+ 0.1		V _{CC} -0.1	AGND+ 0.1		V _{CC} -0.1	V
		$R_L = 1k\Omega$		AGND + 1.0		V _{CC} -1.0	AGND + 1.0		V _{CC} -1.0	V
V _{OUT} Output Current		AGND+1V<	V _{OUT} <v<sub>CC-1V</v<sub>	-10		+10	-10		+10	mA
Power Supply Rejection Ratio		100mV _{P-P} , 1 sinewave on			-60			-60		dB

ELECTRICAL CHARACTERISTICS (Continued)

				ML2340XCX, ML2350XCX			ML2350XIX		
PARAMETER	NOTES	CONDITIONS	MIN TYP		MAX	MIN TYP		MAX	UNITS
Digital and DC									
V _{IN(0)} Logical "0" Input Voltage					0.8			0.8	V
V _{IN(1)} Logical "1" Input Voltage			2.0			2.0			V
I _{IN(0)} Logical "0" Input Current		V _{IN} = DGND	-1			-1			μА
I _{IN(1)} Logical "1" Input Current		$V_{IN} = V_{CC}$			1			1	μА
Supply Current, Bipolar Mode I _{CC} , V _{CC} Current I _{AGND} , Analog Ground Current		V _{CC} = 5V ± 10%			5.3 -5.0			5.3 -5.0	mA mA
I_{VZS} , V_{ZS} Current				-90	-300		-90	-300	μΑ
I _{CC} , V _{CC} Current I _{AGND} , Analog Ground Current		$V_{CC} = 12V \pm 10\%$			9.3			9.3	mA mA
I _{VZS} , V _{ZS} Current				-90	-300		-90	-300	μΑ
Supply Current, Unipolar Mode I _{CC} , V _{CC} Current I _{AGND} ,	3	$V_{CC} = 5V \pm 10\%$			6.0			6.0	mA
Analog Ground Current I _{VZS} , V _{ZS} Current					-4.3 -1.7			-4.3 -1.7	mA mA
I _{CC} , V _{CC} Current I _{AGND} , Analog Ground Current I _{VZS} , V _{ZS} Current	3	$V_{CC} = 12V \pm 10\%$			11.0 -7.3 -3.7			11.0 -7.3 -3.7	mA mA mA
AC Performance					3.7] 3	'''' '
Settling Time		Figure 2, Output Step of AGND + 1V to V_{CC} – 1V, R_L = 1k Ω		1.2	2.5		1.2	3.0	μs
t_{S2}		Output Step of AGND + 100mV to V_{CC} – 100mV, R_L = 100k Ω		2.5	5		2.5	6	μs
t_{S3}		Output Step of ±1LSB			1			1	μs
t _{S4} , Gain Change		Change of Any Gain Setting		1.1	2.5		1.1		μs
t _{XFER} , XFER Pulse Width		Figure 3	60			60			ns
t _{DBS} , DB0–DB7 Setup Time		Figure 3	40			45			ns
t _{DBH} , DB0–DB7 Hold Time		Figure 3	0			0			ns
t _{RESET} , Power-On Reset Time					16			16	μs

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.

Note 2: Supply current and analog ground current are specified with the digital inputs stable and no load on V_{OUT}.

Note 3: In unipolar operation with V_{ZS} and AGND tied together, digital codes that represent an analog value of less than 100mV from AGND should be avoided.

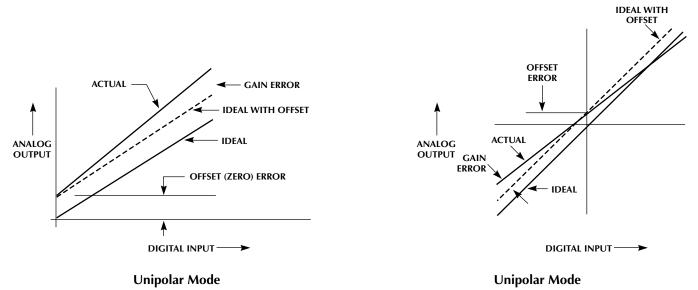
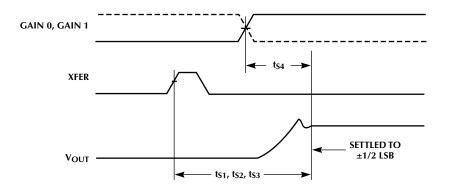
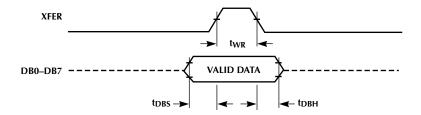




Figure 1. Gain and Offset Error

Figure 2. Settling Time

Figure 3. Single Buffered Mode

1.0 FUNCTIONAL DESCRIPTION

1.1 D/A CONVERTER

The D/A converter is implemented using an array of equal current sources that are decoded semi-linearly for the four most significant bits to improve differential linearity and to reduce output glitch around major carries. See Figure 4.

The input voltage reference of the D/A converter is the difference between V_{REF IN} and AGND. This difference voltage is converted to a reference current using an internal resistor to set up the appropriate current level in

the D/A converter. The D/A converter output current is then converted to a voltage output by an output buffer and a resistive network. The matching among the on-chip resistors preserves the gain accuracy between these conversions.

The D/A converter can be used in a multiplying mode by modulating the reference input within the specified $V_{\text{REF IN}}$ range.

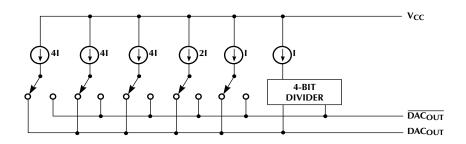


Figure 4. D/A Converter Implementation

1.2 SINGLE-SUPPLY vs. DUAL-SUPPLY OPERATION

ML2340 and ML2350 can be powered from a single supply ranging from 4.5V to 13.2V or dual supplies ranging from $\pm 2.25V$ to $\pm 6.6V$.

The internal digital and analog circuitry is powered between V_{CC} and AGND. The range of DGND is AGND \leq DGND \leq V_{CC} – 4.5V with the logic thresholds set between 0.8V and 2.0V above DGND (standard TTL logic level). The range of V_{ZS} is AGND \leq V_{ZS} \leq (V_{CC} – 2.25V).

1.3 UNIPOLAR AND BIPOLAR OUTPUT VOLTAGE SWING

ML2340 and ML2350 can operate in either unipolar or bipolar output voltage mode. Unipolar/bipolar mode selection is determined by comparing the zero scale voltage (V_{ZS}) of these devices to a precise internal reference that is referred to AGND. V_{ZS} is ideally the voltage that will be produced at the DAC voltage output when the digital input data is set to all "0's" Unipolar mode is selected when V_{ZS} is lower than 1.00 volt, and bipolar mode is selected when V_{ZS} is greater than 1.50 volts.

1.3.1 Unipolar Output Mode

In the unipolar mode, V_{OUT} swings above V_{ZS} . Ideally the 00000000 code results in an output voltage of V_{ZS} , and the 11111111 code results in an output voltage of $V_{FS} \times 255/256$, where V_{FS} is the full-scale voltage determined by $V_{REF\ IN}$ and the gain setting.

1.3.2 Bipolar Output Mode

In the bipolar mode, V_{OUT} swings around V_{ZS} . The input data is in 2's complement binary format. Ideally, the 00000000 code results in an output voltage of V_{ZS} ; the 10000000 code results in an output voltage of $(V_{ZS} - V_{FS})$; and the 01111111 results in an output voltage of $(V_{ZS} + V_{FS})$, where V_{FS} is the full scale output voltage determined by V_{RFF} IN and the gain setting.

1.4 OUTPUT BUFFER AND GAIN SETTING

The output buffer converts the D/A output current to a voltage output using a resistive network with proper gain setting determined by the GAIN 0 and GAIN 1 inputs. There are four possible gain settings for unipolar output voltage mode and bipolar output voltage mode as listed below:

Unipolar Output Voltage Mode

GAIN 1	GAIN 0	GAIN	Voltage Output Swing Relative to V _{ZS}
0	0	1/4	V _{REF IN} × 1/4
0	1	1/2	V _{REF IN} × ¹ / ₂
1	0	1	V _{REF IN} × 1
1	1	2	V _{REF IN} × 2

Bipolar Output Voltage Mode

GAIN 1	GAIN 0	GAIN	Voltage Output _{P-P}
0	0	1/4	$V_{REF\ IN} \times 1/8$
0	1	1/2	V _{REF IN} × 1/4
1	0	1	$V_{REF\ IN} \times 1/2$
1	1	2	V _{REF IN} × 1

The output buffer can source or sink as much as 10mA of current with an output voltage of at least 1V from either V_{CC} or AGND. As the output voltage approaches V_{CC} or AGND the current sourcing/sinking capability of the output buffer is reduced. The output buffer can still swing down to within 10mV of AGND and up to within 40mV of V_{CC} with a 100k Ω load at V_{OUT} to AGND in the unipolar operation. In the bipolar operation, the output buffer swing is limited to about 100mV from either rails.

1.5 VOLTAGE REFERENCE

A bandgap voltage reference is incorporated on the ML2340 and ML2350. Two reference voltages can be produced by each device. An internal comparator monitors the power supply voltage to determine the selection of the reference voltage. A reference voltage of 2.25 volts on the ML2340 and 2.50 volts on the ML2350 is selected when the supply voltage is less than approximately 7.50 volts. Otherwise, a reference voltage of 4.50 volts and 5.00 volts is selected. To prevent the comparator from oscillating between the two selections, avoid operation with a power supply between 70 and 8.0 volts.

The bandgap reference is trimmed for zero Temperature Coefficient (TC) at 35°C to minimize output voltage drift over the specified operating temperature range.

The internal reference is buffered for use by the DAC and external circuits. The reference buffer will source more than 5mA of current and sink more than 1mA of current. With $V_{REF\ IN}$ connected to $V_{REF\ OUT}$, the following output voltage ranges of the DAC are obtained:

ML2340

Gain	$V_{REF} = 2.2$ $V_{CC} \le$		$V_{REF} = 4.5V$ with $V_{CC} \ge 8.0V$			
Setting	Unipolar	Bipolar	Unipolar	Bipolar		
1/4	0 to 0.562V	-0.281V to +0.281V	0 to 1.125V	-0.562V to +0.562V		
1/2	0 to 1.125V	-0.562V to +0.562V	0 to 2.250V	-1.125V to +1.125V		
1	0 to 2.250V	-1.125V to +1.125V	0 to 4.500V	-2.250V to +2.250V		
2	0 to 4.500V	-2.250V to +2.250V	0 to 9.000V	-4.500V to +4.500V		

ML2350

Gain	$V_{REF} = 2.5$ $V_{CC} \le$		$V_{REF} = 5.0V$ with $V_{CC} \ge 8.0V$			
Setting	Unipolar	Bipolar	Unipolar	Bipolar		
1/4	0 to 0.625V	-0.3125V to +0.3125V	0 to 1.25V	-0.625V to +0.625V		
1/2	0 to 1.250V	-0.6250V to +0.6250V	0 to 2.50V	-1.250V to +1.250V		
1	0 to 2.500V	-1.2500V to +1.2500V	0 to 5.00V	-2.500V to +2.500V		
2	0 to 5.000V	-2.5000V to +2.5000V	0 to 10.00V	-5.000V to +5.000V		

An external reference can alternatively be used on $V_{REF\ IN}$ to set the desired full scale voltage. The linearity of the D/A converter depends on the reference used, however. To insure integral linearity at an 8-bit level, a reference voltage of no less than 2V and no more than 7V (2.75V for operation with a low-voltage power supply) should be used.

1.6 DIGITAL INTERFACE

The digital interface of the ML2340 and ML2350 consist of a transfer input (XFER) and eight data inputs, DB0 through DB7. The digital interface operates in one of the two modes:

1.6.1 Single-Buffered Mode

Digital input data on DB0–DB7 is passed through an 8-bit transparent input latch on the rising edge of XFER. Because the outputs of the latch are connected directly to the inputs of the internal DAC, changes on the digital data while the XFER input is still active will cause an immediate change in the DAC output voltage. To hold the input data on the latch, the XFER input needs deactivated while the data is still stable.

1.6.2 Flow-Through Mode

In the flow-through mode, the input latch is bypassed. When XFER is set to logic "1", a change of data inputs, DB0–DB7, results in an immediate update of the output voltage.

1.7 POWER-ON-RESET

The ML2340 and ML2350 have an internal power-on-reset circuit to initialize the device when power is first applied to the device. The power-on-reset interval of typically 8μ s begins when the supply voltage, V_{CC} reaches approximately 2.0V. During the power-on-reset interval, the transparent latch is reset to all "0's".

2.0 TYPICAL APPLICATIONS

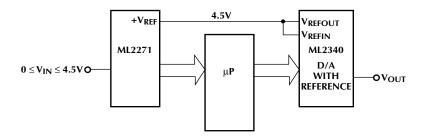


Figure 5. Using 4.50V Reference of D/A for Reference of A/D Using Single 5V $V_{CC}\pm10\%$

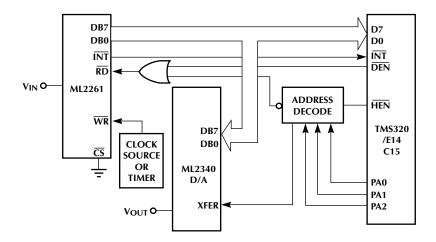


Figure 6. TMS320 Interface

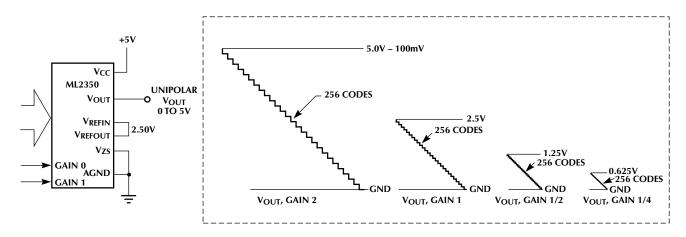


Figure 7. Single 5V Supply Unipolar V_{OUT}

TYPICAL APPLICATIONS (Continued)

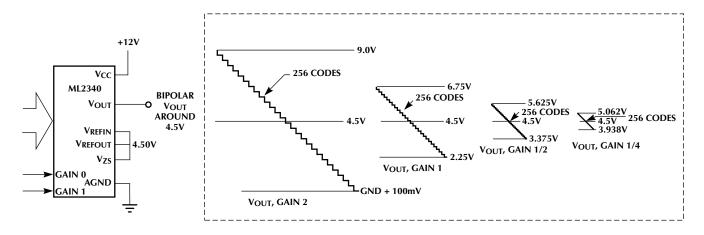


Figure 8. Single 12V Supply, Bipolar V_{OUT} with 11-Bits Resolution Around 4.5V

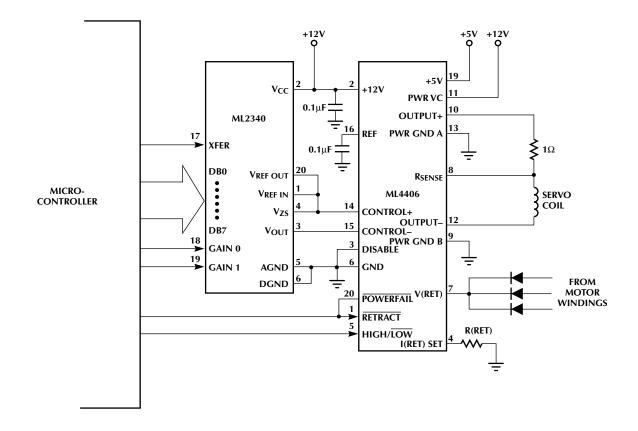
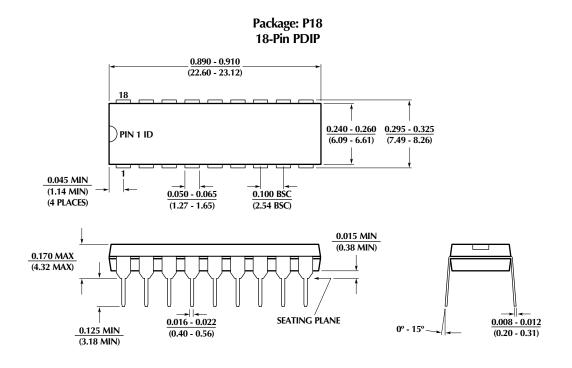
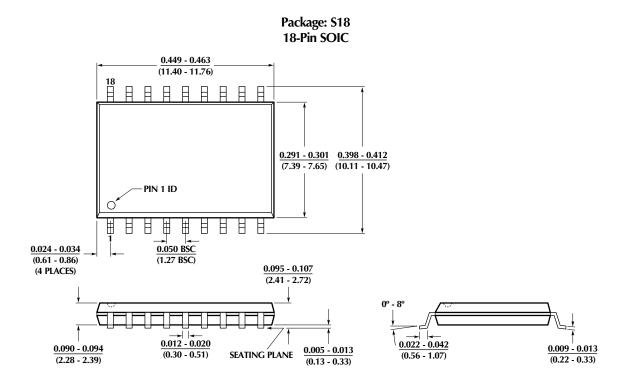




Figure 9. Hard Disc Drive Servo Coil Driver Providing 13-Bit Effective Resolution

PHYSICAL DIMENSIONS inches (millimeters)

ORDERING INFORMATION

PART NUMBER	INTEGRAL & DIFFERENTIAL NON-LINEARITY	TEMPERATURE RANGE	PACKAGE
$V_{REF\ OUT} = 2.25V$ with $V_{CC} = 5V$,		
ML2340CCP/5 (OBS) ML2340CCS/5 (OBS)	±1/2 LSB	0°C to 70°C 0°C to 70°C	Molded DIP (P18) Molded SOIC (S18)
$V_{REF\ OUT} = 2.50V$ with $V_{CC} = 5V$			
ML2350CCP/5 (OBS) ML2350CCS/5 (EOL) ML2350CIS/5 (EOL)	±1/2 LSB	0°C to 70°C 0°C to 70°C −40°C to 85°C	Molded DIP (P18) Molded SOIC (S18) Molded SOIC (S18)
$V_{REF OUT} = 4.50V$ with $V_{CC} = 12$	V		
ML2340CCP/12 (OBS) ML2340CCS/12 (OBS)	±1/2 LSB	0°C to 70°C 0°C to 70°C	Molded DIP (P18) Molded SOIC (S18)
$V_{REF OUT} = 5.00V$ with $V_{CC} = 12$	V		
ML2350CCP/12 (OBS) ML2350CCS/12 (OBS) ML2350CIS/12 (OBS)	±1/2 LSB	0°C to 70°C 0°C to 70°C –40°C to 85°C	Molded DIP (P18) Molded SOIC (S18) Molded SOIC (S18)

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation