
5-TAP, ECL-INTERFACED **FIXED DELAY LINE** SERIES DDU12H)

FEATURES

- Ten equally spaced outputs
- Fits in 300 mil 32-pin DIP socket
- Input & outputs fully 10KH-ECL interfaced & buffered

Т3 21 T5 N/C N/C GND N/C T6 T8 DDU12H-xxC4 SMD

DDU12H-xxMC4 Mil SMD

FUNCTIONAL DESCRIPTION

The DDU12H-series device is a 10-tap digitally buffered delay line. The signal input (IN) is reproduced at the outputs (T1-T10), shifted in time by an amount determined by the device dash number (See Table). For dash numbers less than 20, the total delay of the line is measured from T1 to T10. The nominal tap-to-tap delay increment is given by one-ninth of the

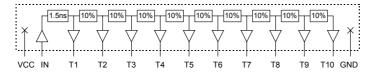
Signal Input IN T1-T10 Tap Outputs **VEE** -5 Volts

Ground

PIN DESCRIPTIONS

total delay, and the inherent delay from IN to T1 is nominally 1.5ns. For dash numbers greater than or equal to 20, the total delay of the line is measured from IN to T10. The nominal tap-to-tap delay increment is given by one-tenth of this number.

DDU12H-xx DIP


SERIES SPECIFICATIONS

Minimum input pulse width: 10% of total delay

Output rise time: 2ns typical Supply voltage: $-5VDC \pm 5\%$

Power dissipation: 400mw typical (no load) Operating temperature: -30° to 85° C

Temp. coefficient of total delay: 100 PPM/°C

Functional diagram for dash numbers < 20

Functional diagram for dash numbers >= 20

©1997 Data Delay Devices

DASH NUMBER SPECIFICATIONS

GND

Part	Total	Delay Per	
Number	Delay (ns)	Tap (ns)	
DDU12H-10	9 ± 1.0 *	1.0 ± 0.3	
DDU12H-20	20 ± 2.0	2.0 ± 0.4	
DDU12H-25	25 ± 2.0	2.5 ± 0.4	
DDU12H-40	40 ± 2.0	4.0 ± 0.5	
DDU12H-50	50 ± 2.5	5.0 ± 1.0	
DDU12H-75	75 ± 4.0	7.5 ± 1.5	
DDU12H-100	100 ± 5.0	10.0 ± 2.0	
DDU12H-150	150 ± 7.5	15.0 ± 2.0	
DDU12H-200	200 ± 10.0	20.0 ± 2.0	
DDU12H-250	250 ± 12.5	25.0 ± 2.0	
DDU12H-300	300 ± 15.0	30.0 ± 2.0	
DDU12H-400	400 ± 20.0	40.0 ± 2.0	
DDU12H-500	500 ± 25.0	50.0 ± 2.5	
DDU12H-750	750 ± 37.5	75.0 ± 4.0	
DDU12H-1000	1000 ± 50.0	100.0 ± 5.0	
DDU12H-1500	1500 ± 75.0	150.0 ± 7.0	

^{*} Total delay is referenced to first tap output Input to first tap = 1.5ns ± 1ns

NOTE: Any dash number between 10 and 1500 not shown is also available.

APPLICATION NOTES

HIGH FREQUENCY RESPONSE

The DDU12H tolerances are guaranteed for input pulse widths and periods greater than those specified in the test conditions. Although the device will function properly for pulse widths as small as 10% of the total delay and periods as small as 20% of the total delay (for a symmetric input), the delays may deviate from their values at low frequency. However, for a given input condition, the deviation will be repeatable from pulse to pulse. Contact technical support at Data

Delay Devices if your application requires device testing at a specific input condition.

POWER SUPPLY BYPASSING

The DDU12H relies on a stable power supply to produce repeatable delays within the stated tolerances. A 0.1uf capacitor from VEE to GND, located as close as possible to the VEE pin, is recommended. A wide VEE trace and a clean ground plane should be used.

DEVICE SPECIFICATIONS

TABLE 1: ABSOLUTE MAXIMUM RATINGS

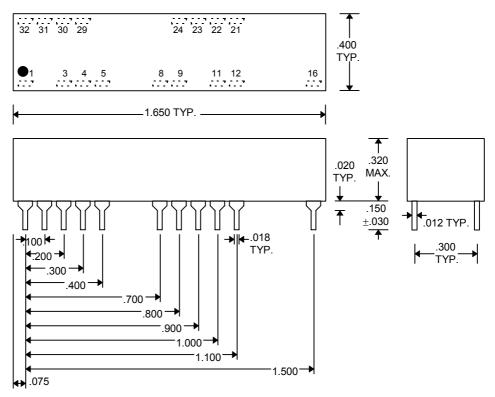
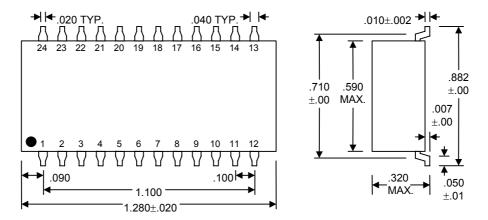

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
DC Supply Voltage	V_{EE}	-7.0	0.3	V	
Input Pin Voltage	V_{IN}	V _{EE} - 0.3	0.3	V	
Storage Temperature	T_{STRG}	-55	150	С	
Lead Temperature	T_{LEAD}		300	С	10 sec

TABLE 2: DC ELECTRICAL CHARACTERISTICS


(0C to 75C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
High Level Output Voltage	V _{OH}	-1.020		-0.735	V	$V_{IH} = MAX,50\Omega$ to -2V
Low Level Output Voltage	V _{OL}	-1.950		-1.600	V	V_{IL} = MIN, 50Ω to -2V
High Level Input Voltage	V_{IH}			-1.070	V	
Low Level Input Voltage	V_{IL}	-1.480			V	
High Level Input Current	I _{IH}			475	μΑ	V _{IH} = MAX
Low Level Input Current	I _{IL}	0.5			μΑ	V _{IL} = MIN

PACKAGE DIMENSIONS

DDU12H-xx (Commercial DIP) DDU12H-xxM (Military DIP)

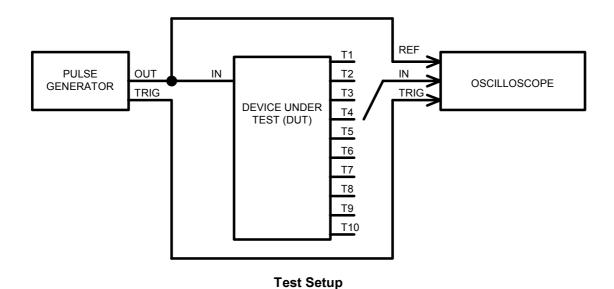
DDU12H-xxC4 (Commercial SMD) DDU12H-xxMC4 (Military SMD)

Period:

DELAY LINE AUTOMATED TESTING

TEST CONDITIONS

INPUT: OUTPUT:


PER_{IN} = 10 x Total Delay

Ambient Temperature: 25°C ± 3°C Load: 50Ω to -2V Supply Voltage (Vcc): $-5.0V \pm 0.1V$ $5pf \pm 10\%$ C_{load}: Input Pulse: Standard 10KH ECL Threshold: $(V_{OH} + V_{OL}) / 2$ (Rising & Falling) levels

Source Impedance: 50Ω Max.

Rise/Fall Time: 2.0 ns Max. (measured between 20% and 80%) **Pulse Width:** PW_{IN} = 1.5 x Total Delay

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

PERIN PW_{IN} - T_{RISE} $\mathsf{T}_{\mathsf{FALL}}$ **INPUT** V_{IH} 80% 50% 20% **SIGNAL** $\mathsf{T}_{\mathsf{RISE}}$ $\mathsf{T}_{\mathsf{FALL}}$ **OUTPUT** V_{OH} 50% 50% **SIGNAL** V_{OL}

Timing Diagram For Testing