MP2000

Low Input Voltage 150mA Linear Regulator

DESCRIPTION

The MP2000 is a low-voltage, low-dropout bipolar linear regulator. It operates from 1.35V to 6.0V input voltage, and regulates the output voltage from as low as 0.5V.

The MP2000 can supply up to 150mA of load current. The MP2000 features thermal overload and current limit protection. It is available in a 5-pin TSOT23-5 package.

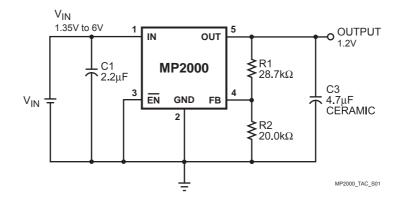
Part Number	Output Voltage
MP2000DJ-ADJ	Adjustable
MP2000DJ-1.0	1.0V

EVALUATION BOARD REFERENCE

Board Number Output*		Dimensions		
EV2000DJ-00A	1.2V	2.0"X x 2.0"Y x 0.4"Z		

* Default output voltage adjustable from 0.5V to 5.0V using an external resistor divider.

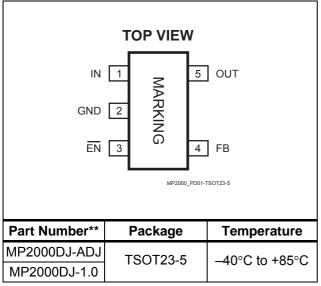
FEATURES


- Operates with V_{IN} = 1.35V
- Low 300mV Dropout at 150mA Output
- ±3% Accurate Output Voltage
- Fixed and Adjustable Output Voltage Option
- Better Than 0.001%/mA Load Regulation
- Stable With Low-ESR Output Capacitor
- Low 65µA Ground Current
- Internal Thermal Protection
- Current Limit Protection
- 6µA Typical Quiescent Current at Shutdown

APPLICATIONS

- Low Current Regulators
- · Battery Powered Systems
- Cellular Phones

"MPS" and "The Future of Analog IC Technology" are Trademarks of Monolithic Power Systems, Inc.


TYPICAL APPLICATION

© 2006 MPS. All Rights Reserved.

PACKAGE REFERENCE

^{**} For Tape & Reel, add suffix –Z (eg. MP2000DJ–ADJ–Z) For Lead Free, add suffix –LF (eg. MP2000DJ–ADJ–LF–Z)

ABSOLUTE MAXIMUM RATINGS (1)

IN Supply Voltage	–0.3V to +7.0V
FB Voltage	$-0.3V$ to $V_{OUT} + 0.3V$
EN Voltage	IN – 0.7V
Junction Temperature	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C
Recommended Opera	ting Conditions ⁽²⁾
Input Voltage	1.35V to 6.0V
Output Voltage	0.5V to 5V
Load Current	150mA Maximum

Thermal Resistance $^{(3)}$ θ_{JA} θ_{JC}

TSOT23-5......220.... 110.. °C/W

Operating Temperature-40°C to +85°C

Notes

- 1) Exceeding these ratings may damage the device.
- The device is not guaranteed to function outside of its operating conditions.
- 3) Measured on approximately 1" square of 1 oz copper.

ELECTRICAL CHARACTERISTICS

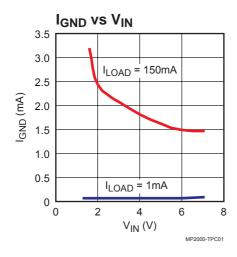
 V_{IN} = 1.8V, T_A = +25°C, unless otherwise noted.

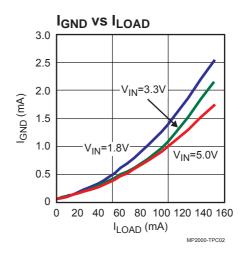
Parameter	Symbol	Condition	Min	Тур	Max	Units
Ground Pin Current		I _{OUT} = 1mA		65		μΑ
Ground i in Current		I _{OUT} = 150mA		2.7		mA
Shutdown Current		$V_{EN} = 1.0V, V_{IN} = 5V$		7	10	μΑ
FB Regulation Voltage			0.485	0.500	0.515	V
Dropout Voltage (4)		I _{OUT} = 100mA		250		m\/
Diopout Voltage		I _{OUT} = 150mA		300		mV
Line Regulation		$I_{OUT} = 1 \text{mA},$ $V_{IN} = (V_{OUT} + 0.5 \text{V}) \text{ to } 6.0 \text{V}^{(6)}$		0.01	0.08	%/V
Load Regulation		I_{OUT} = 1mA to 150mA, V_{IN} = V_{OUT} + 0.5V ⁽⁶⁾		0.001	0.02	%/mA
PSRR (5)		$V_{IN} > V_{OUT} + 0.5V$, C3 = 2.2 μ F, $V_{IN}(AC)$ = 100mV, f = 1KHz		50		dB
Output Voltage Noise (5)		$f = 1KHz, C_{FB} > 0.1\mu F, I_{OUT} = 1mA$		300		nV/√Hz
EN Input Low Voltage				0.7		V
EN Input Bias Current		V _{EN} = 5V		0.01	1	μΑ
Thermal Protection (5)				145		°C
Thermal Protection Hysteresis ⁽⁵⁾				30		°C

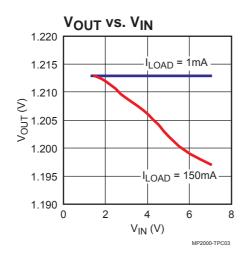
© 2006 MPS. All Rights Reserved.

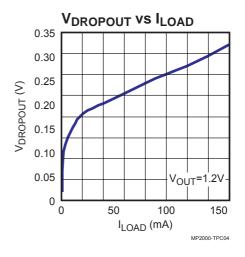
Notes:

- 4) Dropout Voltage is defined as the input to output differential when the output voltage drops 1% below its normal value.
- 5) Parameter is guaranteed by design, not production tested.
- 6) $V_{IN} = 1.35V$ for $V_{OUT} = 0.5V$ to 0.85V

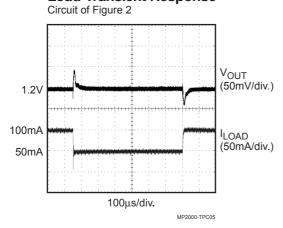

PIN FUNCTIONS

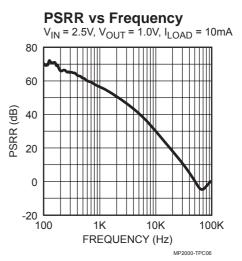

Pin#	Name	Description
1	IN	Power Source Input. IN supplies the internal power to the MP2000 and is the source of the pass transistor. Bypass IN to GND with a 2.2µF or greater capacitor.
2	GND	Ground.
3	EN	Enable Input. Drive \overline{EN} high to turn off the MP2000; low to turn it on. For automatic startup, connect EN to GND.
4	FB	Feedback Input. Connect a resistive voltage divider from OUT to FB to set the output voltage. OUT feedback threshold is 0.5V.
5	OUT	Regulator Output. OUT is the output of the linear regulator. Bypass OUT to GND with a 2.2µF or greater capacitor.




TYPICAL PERFORMANCE CHARACTERISTICS

 V_{IN} = 1.8V, V_{OUT} = 1.2V, C1 = 2.2 μ F, C3 = 4.7 μ F, T_A = +25°C unless otherwise noted.





Load-Transient Response

OPERATION

The MP2000 is a low-current, low-voltage, low-dropout linear regulator. It is intended for use in devices that require very low voltage and low quiescent current power such as wireless modems, pagers and cellular phones.

The MP2000 uses a PNP pass element and features internal thermal shutdown and an internal current limit circuit.

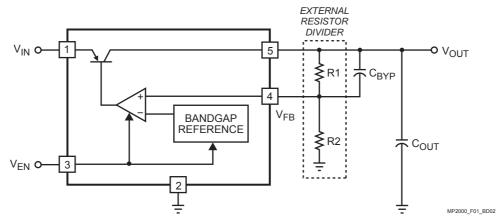


Figure 1—Adjustable Regulator

APPLICATION INFORMATION

Setting the Output Voltage

The output voltage can be adjusted by changing the values of the external resistor divider.

Use the following equation to determine these values:

$$V_{OUT} = 0.5V \times \left(1 + \frac{R1}{R2}\right)$$

Typically R1 + R2 are recommended to be less than $100k\Omega$.

In Figure 2, C2 is added for improved transient response.

TYPICAL APPLICATION CIRCUIT - ADJUSTABLE

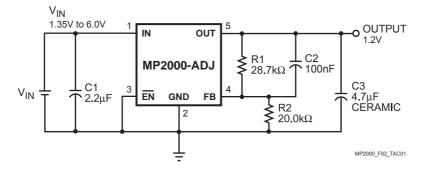
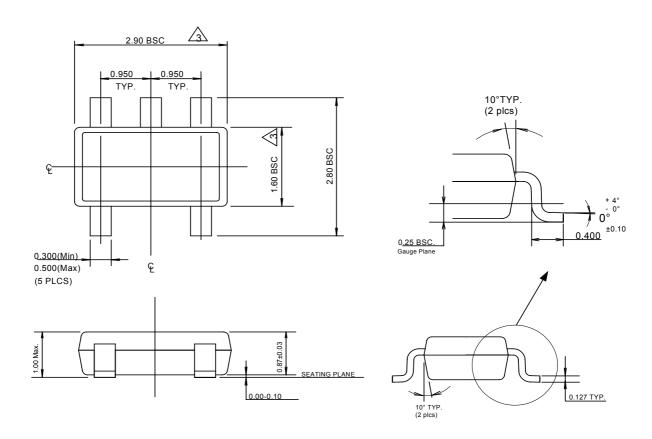



Figure 2—Typical Application Circuit with V_{OUT} = 1.2V

PACKAGE INFORMATION

TSOT23-5

Dimensions are in millimeters

NOTE:

- 1. Dimensions and tolerances are as per ANSI Y14.5M, 1994.
- 2. Die is facing up for mold. Die is facing down for trim/form, ie. reverse trim/form.
- 3. Dimensions are exclusive of mold flash and gate burr.
- The footlength measuring is based on the gauge plane method.
- 5. All specification comply to Jedec Spec MO193 Issue C.

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.