

ITC1000 1000 WATT, 50V, Pulsed Avionics 1030 MHz

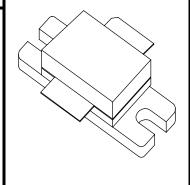
GENERAL DESCRIPTION

The ITC1000 is a common base bipolar transistor. It is designed for pulsed interrogator systems in the frequency band of 1030 MHz. The device has gold thin-film metallization for proven high MTTF. The transistor includes input returns for improved output rise time . Low thermal resistance package reduces junction temperature which extends the life time of the product.

CASE OUTLINE 55SW, Style 1 Common Base

ABSOLUTE MAXIMUM RATINGS

Power Dissipation


Device Dissipation¹ @25°C (P_d) 3400 W Thermal Resistance¹ (θ_{IC}) .08°C/W

Voltage and Current

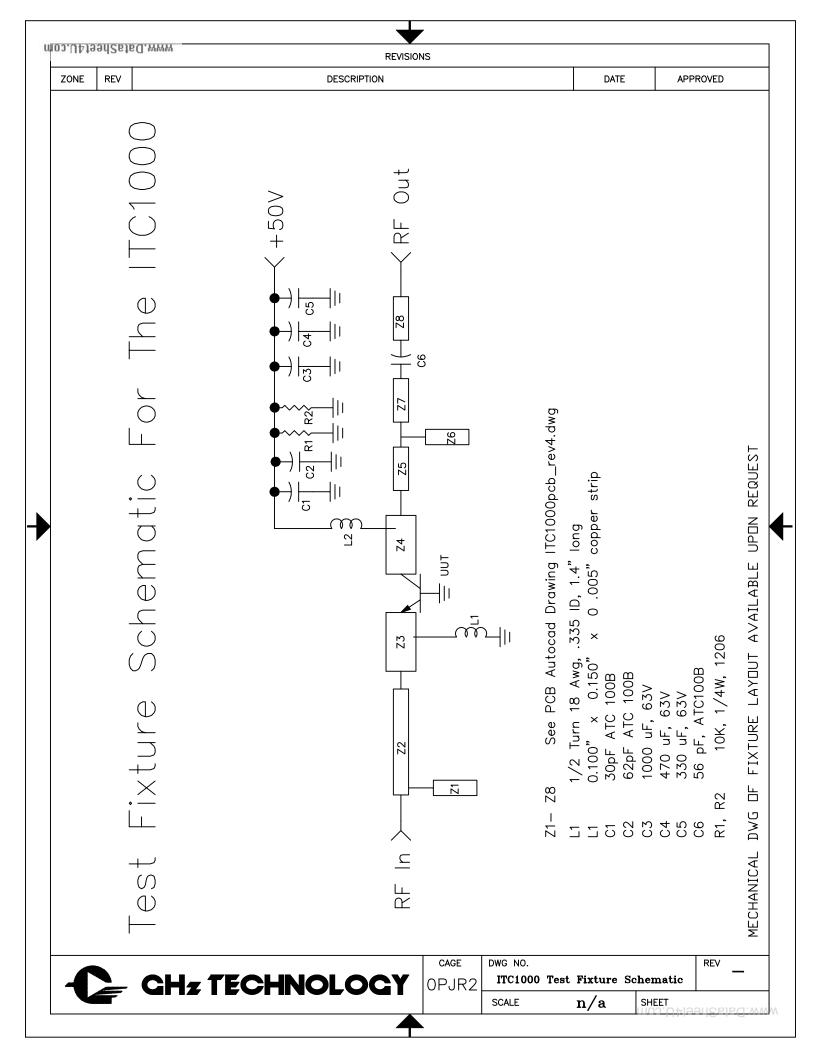
Collector-Base Voltage 65V Emitter-Base Voltage 3.5V Collector Current¹ 80A

Temperatures

Storage Temperature $-40 \text{ to } +150^{\circ}\text{C}$ Operating Junction Temperature $+200^{\circ}\text{C}$

ELECTRICAL CHARACTERISTICS @ 25°C

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
BVebo ²	Emitter-Base Breakdown(open)	Ie=50mA	3.5			V
BVces	Collector-Emitter Breakdown(shorted)	Ic=30mA	65			V
BVceo ²	Collector-Emitter Breakdown (open)	Ic=30mA	30			V
h _{FE} ²	DC Current Gain	Ic=5A, Vce=5V	20	45	80	β


FUNCTIONAL CHARACTERISTICS @ 25°C

G_{PB}	Common Base Power Gain	$V_{cc} = 50V, F = 1030MHz, P_{out} = 1000W, \\ PW = 1\mu S, DF = 1\%$	8.0	8.5		dB
$\eta_{ m c}$	Collector Efficiency	$V_{cc} = 50V, F = 1030MHz, P_{out}=1000W, \\ PW=1\mu S, DF=1\%$	35	45		%
t _r	Rise Time	$V_{cc} = 50V, F = 1030MHz, P_{out} = 1000W, \\ PW = 1\mu S, DF = 1\%$		50	80	nS
VSWR	Output Load Mismatch	$V_{cc} = 50V, F = 1030MHz, P_{out}=1000W, \\ PW=1\mu S, DF=1\%$			4:1	Ψ
$Z_{\rm in}$	Series Input Impedance (Circuit source impedance @ test cond.)	$V_{cc} = 50V, F = 1030MHz, P_{out} = 1000W, \\ PW = 1\mu S, DF = 1\%$	1.0-j2.0			Ω
Z_{out}	Series Output Impedance (Circuit load impedance @ test cond.)	$V_{cc} = 50V, F = 1030MHz, P_{out} = 1000W, \\ PW = 1\mu S, DF = 1\%$	0.6-j2.1			Ω

¹ At rated output power and pulse conditions

GHZ TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHZ RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.

² Contains input returns and cannot be measured Initial Issue May 1999

