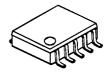


PRELIMINARY

2V Operation Clock-less Switching Driver for Class D Amplifier

GENERAL DESCRIPTION

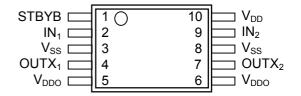

The NJU8710 is a 2V operation clock-less switching driver for a class D Amplifier with separated power supply between Input and Output.

The NJU8710 provides powerful drivability in both of sink and source without flow-through current. Therefore, it can be used to the buffer or the switch as a driver IC.

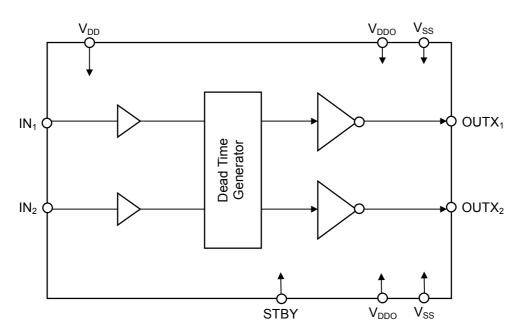
Furthermore it converts 1bit digital signal input, such as PWM or PDM signal, to analog signal output of the hi-fi audio level through a simple external LC low-pass filter.

The NJU8710 realizes very high power-efficiency because of the class D operation and low voltage operation. Therefore, it is suitable for battery powered applications and others.

PACKAGE OUTLINE



NJU8710R


FEATURES

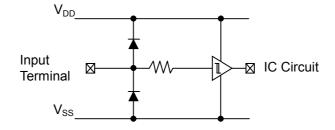
- 2-channel 1bit Digital Signal Input
- Standby(Hi-Z) Control function
- Operating Voltage : 1.7V to 2.7V : 1.7V to V_{DD}
- Driving Voltage
- CMOS Technology
- Package Outline
- : VSP10

PIN CONFIGURATION

BLOCK DIAGRAM

www.DataSheet4U.com

TERMINAL DESCRIPTION


No.	SYMBOL	I/O	Function
10	V _{DD}	-	Power Supply: V _{DD} =2V
5 6	V _{DDO}	-	Output Power Supply: V _{DDO} =2V
3 8	V _{SS}	-	Power GND and Output GND terminal: V _{SS} =0V
2 9	IN ₁ IN ₂	I	1-bit Data Input Terminal
4 7	OUTX ₁ OUTX ₂	0	Output Terminal OUTX ₁ terminal outputs the inverted signal of IN ₁ terminal, OUTX ₂ terminal outputs the inverted signal of IN ₂ terminal.
1	STBYB	I	Standby Control Terminal (L:Standby)

*V_{SS}(Terminal No.3,8) should be connected at a nearest point to the IC.

*V_{DDO}(Terminal No.5,6) should be connected at a nearest point to the IC.

*STBYB(Terminal No.1) must be connected to V_{DD}, when this function is not used.

■ INPUT TERMINAL STRUCTURE

■ FUNCTIONAL DESCRIPTION

(1) Signal Output (OUTX₁, OUTX₂ Terminal)

Output signal becomes a inverted input signal. A flow-through current at the signal polarity transition doesn't generate by optimized dead time control circuit. Output signal is converted to analog signal via external 2nd-order or higher LC filter.

A switching regulator with a high response against a voltage fluctuation is the best selection for the $V_{DDO,}$ which is the power supply for output drivers. To obtain better T.H.D. performance, the stabilization of the power is required.

(2) Standby Control Function

By setting the STBYB terminal to "L", the NJU8710 becomes standby condition. During standby condition, $OUTX_1$ and $OUTX_2$ are in Hi-Z.

New Japan Radio Co., Ltd.

■ ABSOLUTE MAXIMUM RATINGS

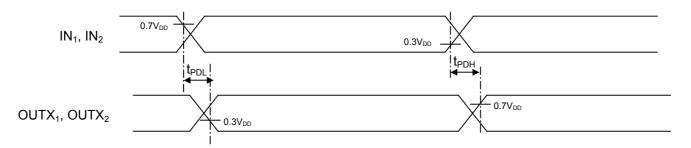
				(Ta=25°C)		
PARAMETER		SYMBOL	RATING	UNIT		
Supply Voltage		V _{DD}	-0.3 to +4.0	V		
Supply Vollage		V _{DDO}	-0.3 to +2.7			
Input Voltage		Vin	-0.3 to V _{DD} +0.3	V		
Operating Temperature		Topr	-40 to +85	°C		
Storage Temperature	e	Tstg	-40 to +125	٥C		
Power Dissipation	VSP10	P _D	450*	mW		
Power Supply Voltage Condition		-	$V_{DD} \ge V_{DDO}$	V		
* Mounted on two lower board of board on the JEDEO						

* : Mounted on two-layer board of based on the JEDEC.

Note 1) All voltage values are specified as V_{SS} =0V.

Note 2) If the LSI is used on condition beyond the absolute maximum rating, the LSI may be destroyed. Using LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electrical characteristics conditions will cause malfunction and poor reliability.

Note 3) De-coupling capacitors should be connected between V_{DD} - V_{SS} and V_{DDO} - V_{SS} due to the stabilized operation.


■ ELECTRICAL CHARACTERISTICS

		(Ta=25°C, V _{DD} =	V _{DDO} =2.0V, \	/ _{ss} =0.0V, unle	ess otherwise	e noted)
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{DD} Supply Voltage	V _{DD}		1.7	2.0	2.7	V
V _{DDO} Supply Voltage	V _{DDO}		1.7	2.0	V_{DD}	V
Output Driver High side Resistance	R _H	V _{OUT} =V _{DDO} -0.1V	-	1.5	2	Ω
Output Driver Low side Resistance	RL	V _{OUT} =0.1V	-	1.5	2	Ω
Operating Current at Hi-Z Output	I _{ST}	IN ₁ , IN ₂ , STBYB="L"	-	-	1	μA
Operating Current at no input signal	I _{DD}	No-load operating,	-	0.05	T.B.D	mA
	I _{DDO}	$IN_1=IN_2=1.4MHz$	-	0.6	T.B.D	ШA
	V _{IH}		$0.7V_{DD}$	-	V _{DD}	V
Input Voltage	VIL		0	-	0.3V _{DD}	V
Input Leakage Current	I _{LK}		-	-	±1	μA

www.DataSheet4U.com

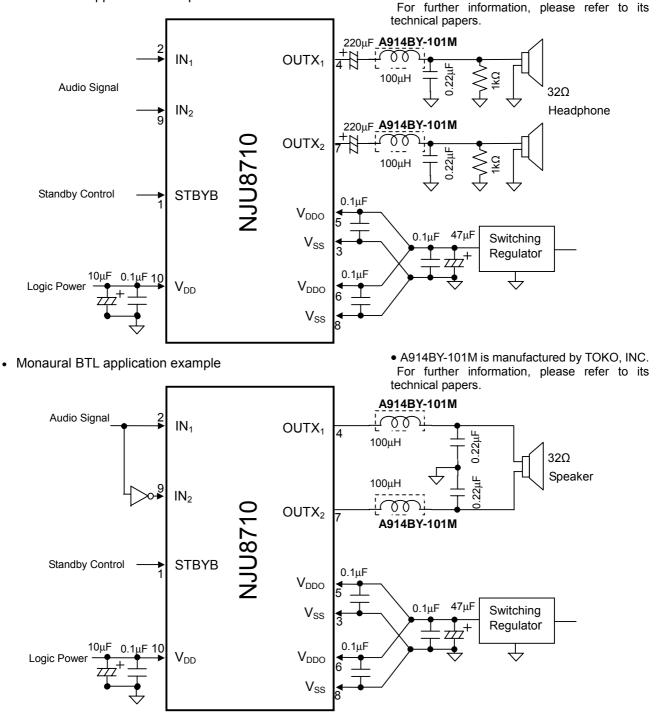
TIMING CHARACTERISTICS

Signal Spread Characteristics

		(la=25°C, V _{DD} =	×V _{DDO} =2.0V, ۱	∕ _{ss} =0.0V unle	ess otherwise	e noted)
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Maximum Operating Frequency	f _{Max}		-	-	25	MHz
Signal Spread Time $(H \rightarrow L)$	t _{PDL}		-	-	20	ns
Signal Spread Time $(L \rightarrow H)$	t _{PDH}		-	-	20	ns

• Output Control Signal Input (STBYB)

(Ta=25°C, V_{DD} =V_{DDO}=2.0V, V_{SS} =0.0V unless otherwise noted)


PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Rise Time	t _{UP}		-	-	50	ns
Fall Time	t _{DN}		-	-	50	ns

• A914BY-101M is manufactured by TOKO, INC.

www.DataSheet4U.com

■ APPLICATION CIRCUIT (Analog Signal Output)

Stereo OTL application example

Note 4) De-coupling capacitors must be connected between each power supply terminal and GND terminal.

- Note 5) The power supply for V_{DDO} requires fast driving response performance such as a switching regulator for T.H.D..
- Note 6) The bigger capacitor value of external AC-coupling capacitors realize better low frequency response characteristics. In addition, ESR(Equivalent Series Resistance) should be low.
- Note 7) The above circuit shows only application example and does not guarantee the any electrical characteristics. Therefore, please consider and check the circuit carefully to fit your application.

www.DataSheet4U.com

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co.,Ltd.