

PI74ALVCHT16245

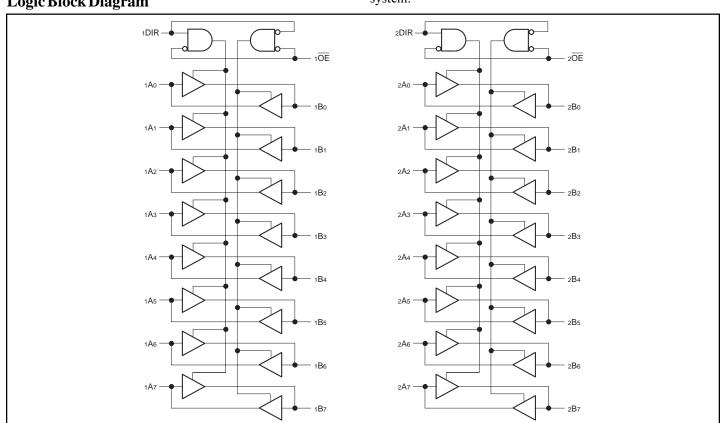
3.3V 16-Bit Bidirectional Transceiver with 3-State Output

Product Features

- PI74ALVCHT16245 is designed for low voltage operation
- $V_{CC}=2.3V \text{ to } 3.6V$
- 5V I/O Tolerant
- Hysteresis on all inputs
- Typical VOLP (Output Ground Bounce) $< 0.8 \text{V} \text{ at V}_{\text{CC}} = 3.3 \text{V}, \text{T}_{\text{A}} = 25^{\circ} \text{C}$
- Typical VOHV (Output VOH Undershoot) $< 2.0 \text{V} \text{ at V}_{\text{CC}} = 3.3 \text{V}, \text{T}_{\text{A}} = 25 ^{\circ} \text{C}$
- Bus Hold retains last active bus state during 3-state eliminating the need for external pull-up resistors
- Industrial operation at -40°C to +85°C
- Packages available:
 - -48-pin 240-mil wide plastic TSSOP(A)
 - -48-pin 300-mil wide plastic SSOP (V)

Product Description

Pericom Semiconductor's PI74ALVCH series of logic circuits are produced in the Company's advanced 0.5 micron CMOS technology, achieving industry leading speed grades.


The PI74ALVCHT16245 is a 16-bit bidirectional transceiver designed for asynchronous two-way communication between data buses. The direction control input pin (xDIR) determines the direction of data flow through the bidirectional transceiver. The Direction and Output Enable controls are designed to operate this device as either two independent 8-bit transceivers or one 16-bit transceiver. The output enable (OE) input, when HIGH, disables both A and B ports by placing them in HIGH Z condition.

To ensure the high-impedance state during power up or power down, OE should be tied to Vcc through a pull-up resistor; the minimum value of the resistor is determined by the current sinking ability of the driver.

The PI74ALVCHT16245 has "Bus Hold" which retains the data input's last state whenever the data input goes to high-impedance preventing "floating" inputs and eliminating the need for pullup/ down resistors.

The PI74ALVCHT16245 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3/5.0V system.

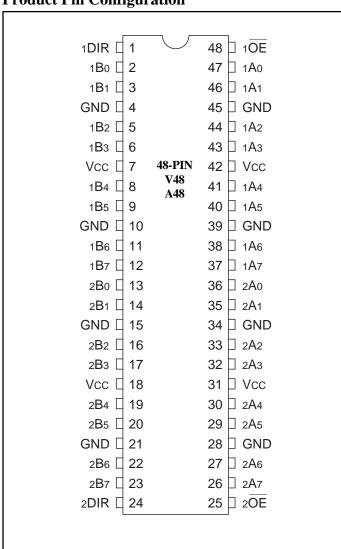
Logic Block Diagram

1

PS8308 07/30/98

Product Pin Description

Pin Name	Description
xOE	3-State Output Enable Inputs (Active LOW)
xDIR	Direction Control Input
xAx	Side A Inputs or 3-State Inputs
xBx	Side B Outputs or 3-State Outputs
GND	Ground
Vcc	Power


Truth Table(1)

Inpu	ıts ⁽¹⁾	Outputs ⁽¹⁾			
xOE	xDIR	Outputs			
L	L	Bus B Data to Bus A			
L	Н	Bus A Data to Bus B			
Н	X	Z			

Note:

H = High Voltage Level, X = Don't Care,
 L = Low Voltage Level, Z = High Impedance

Product Pin Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied40°C to +85°C
Input Voltage Range, VIN0.5V to +6.0V
Output Voltage Range, VOUT0.5V to +6.0V
DC Input Voltage
DC Output Current
Power Dissipation

Note:

2

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PS8308 07/30/98

DC Electrical Characteristics (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 3.3V \pm 10\%$)

Parameters	Description	Description Test Condition ⁽¹⁾		$Typ^{(2)}$	Max.	Units	
Vcc	Supply Voltage		2.3		3.6		
V _{IH} ⁽³⁾	In A HIGH Wiles	$V_{CC} = 2.3V \text{ to } 2.7V$	1.7		5.5		
	Input HIGH Voltage	Vcc = 2.7V to 3.6V	2.0		5.5		
VIL ⁽³⁾	Innut I OW Valtage	$V_{CC} = 2.3 V \text{ to } 2.7 V$			0.7		
V IL'	Input LOW Voltage	$V_{CC} = 2.7V \text{ to } 3.6V$			0.8		
Vin ⁽³⁾	Input Voltage		0		5.5		
Vout ⁽³⁾	Output Voltage		0		5.5	V	
		$I_{OH} = -100 \mu A$, $V_{CC} = Min$. to Max.	Vcc -0.2				
		$V_{IH} = 1.7V$, $I_{OH} = -6mA$, $V_{CC} = 2.3V$	2.0				
Vон	Output HIGH Voltage	$V_{IH} = 1.7V$, $I_{OH} = -12mA$, $V_{CC} = 2.3V$	1.7				
VOH	Output HIGH Voltage	$V_{IH} = 2.0V$, $I_{OH} = -12mA$, $V_{CC} = 2.7V$	2.2				
		$V_{IH} = 2.0V$, $I_{OH} = -12mA$, $V_{CC} = 3.0V$	2.4				
		$V_{IH} = 2.0V$, $I_{OH} = -24$ mA, $V_{CC} = 3.0V$	2.0				
	Output LOW Voltage	$I_{OL} = 100 \mu A$, $V_{IL} = Min$. to Max.			0.2		
Vol		$V_{IL} = 0.7V$, $I_{OL} = 6mA$, $V_{CC} = 2.3V$			0.4		
		$V_{IL} = 0.7V$, $I_{OL} = 12mA$, $V_{CC} = 2.3V$			0.7		
		$V_{IL} = 0.8V$, $I_{OL} = 12mA$, $V_{CC} = 2.7V$			0.4		
		$V_{IL} = 0.8V$, $I_{OL} = 24mA$, $V_{CC} = 3.0V$			0.55		
	Output HIGH Current	$V_{CC} = 2.3V$			-12		
IOH ⁽³⁾		$V_{CC} = 2.7V$			-12		
		$V_{CC} = 3.0V$			-24	mA	
	Output LOW Current	$V_{CC} = 2.3V$			12		
$IoL^{(3)}$		$V_{CC} = 2.7V$			12	†	
		$V_{CC} = 3.0V$			24		
In	Input Current	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.6V$			±5		
	Input Hold Current	$V_{IN} = 0.8V, V_{CC} = 3.0V$	75				
In (hold)		$V_{IN} = 2.0V, V_{CC} = 3.0V$	-75				
		$V_{IN} = 0$ to 3.6V, $V_{CC} = 3.6V$			±500		
Ioz	Output Current (3-State Outputs)	$V_{OUT} = 5.5V$ or GND, $V_{CC} = 3.6V$			±10	μΑ	
Icc	Supply Current	$V_{CC} = 3.6V$, $I_{OUT} = 0\mu A$, $V_{IN} = GND$ or V_{CC}			40		
ΔΙcc	Supply Current per Input @ TTL HIGH	Vcc = 3.0V to 3.6V One Input at Vcc - 0.6V Other Inputs at Vcc or GND			750		
Сі	Control Inputs	$V_{IN} = V_{CC}$ or GND, $V_{CC} = 3.3V$		4		"E	
Сю	A or B Ports	$V_0 = V_{CC}$ or GND, $V_{CC} = 3.3V$		7		pF	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient and maximum loading.
- 3. Unused Control Inputs must be held HIGH or LOW to prevent them from floating.

3 PS8308 07/30/98

Switching Characteristics over Operating Range⁽¹⁾

	From (INPUT)	То	$V_{\rm CC} = 2.5V \pm 0.2V$		$V_{\rm CC} = 2.7V$		$V_{\rm CC} = 3.3V \pm 0.3V$		
Parameters		(OUTPUT)	Min. ⁽²⁾	Max.	Min.(2)	Max.	Min. ⁽²⁾	Max.	Units
t _{P D}	A or B	B or A	1.0	5.0		4.0	1.0	3.6	
t _{e n}	_OE	B or A	1.0	6.8		6.0	1.0	5.0	ns
$t_{ m D~IS}$	OE	B or A	1.0	6.0		5.2	1.0	5.0	
	Description								
$\Delta t/\Delta v^{(3)}$	Input Transition Rise or Fall		0	10	0	10	0	10	ns/V

Notes:

- 1. See test circuit and wave forms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Recommended operating condition.

Operating Characteristics, $T_A = 25^{\circ}C$

Parameters		Test Conditons	$\mathbf{V}_{\mathrm{CC}} = 2.5\mathbf{V} \pm 0.2\mathbf{V}$	$V_{\rm CC} = 3.3V \pm 0.3V$	Units	
		Test Conditions	Typical	Typical		
C _{PD} Power Dissipation Capacitance	Outputs Enabled	$C_L = 50 pF$,	22	29	"E	
	Outputs Disabled	f = 10 MHz	4	5	pF	

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com