March 2009

TLI5012

GMR-Based Angular Sensor for Rotary Switches

Target Data Sheet

V 0.41

Sensors

Never stop thinking

Edition 2009-03

Published by Infineon Technologies AG 81726 München, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

TLI5012 GMR-Based Angular Sensor

Revision History: 2009-03, V 0.41

/ersion: V0.4
Subjects (major changes since last revision)
Correction of typing errors
Name of product type changed
Marking and Ordering Code added
Figure 4 updated
Figure 5 and figure 6 updated
Magnetic Induction reduced in Table 3; Storage Temperature reduced in Table 2; Note added
Calculation of the Junction Temperature added
Figure 7 updated
Angle Delay Time with Prediction in Table 7 added; Figure 8 updated
Figure 9 and Figure 10 updated
Table 14, Thermal resistance added

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?

Your feedback will help us to continuously improve the quality of this document.

Please send your proposal (including a reference to this document) to:

sensors@infineon.com

1 1.1 1.2 1.3	Product Description Overview Features Application Example	7 7 8 8
2 2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	Functional Description General Pin Configuration Pin Description 1 Block Diagram Functional Block Description 1 Internal Power Supply 0scillator and PLL 1 SD-ADC 1 Interfaces	9911222233
2.5.5 3	Interfaces 1 Specification 1	4
3.1		4
3.2	Absolute Maximum Ratings 1	5
3.3	Operating Range	5
3.4	Characteristics	7
3.4.1	Electrical Parameters	7
3.4.2	ESD Protection	7
3.4.3	Angle Performance	8
3.4.4	Signal Processing	8
3.5	Interfaces	0
3.5.1	Synchronous Serial Communication (SSC) Interface 2	0
3.5.1.1	SSC Timing Definition	1
3.5.1.2	SSC Data Transfer	2
3.5.1.3	Registers Chapter	5
3.5.1.3.1	TLI5012 Register	6
3.5.2	Pulse Width Modulation Interface 4	0
4	Package Information	2
4.1	Package Parameters	2
4.2	Package Outline	2
4.3	Footprint	3
4.4	Packing	3
4.5	Marking 4	3

Figure 1	Sensitive Bridges of the GMR Sensor	. 9
Figure 2	Ideal Output of the GMR Sensor Bridges	10
Figure 3	Pin Configuration (Top View)	11
Figure 4	TLI5012 Block Diagram	12
Figure 5	Application Circuit for TLI5012 with SSC and PWM Interface (using internal CLK)	14
Figure 6	Application Circuit for TLI5012 with only PWM Interface (using internal CLK)	14
Figure 7	TLI5012 Signal path	18
Figure 8	Delay of Sensor Output	19
Figure 9	SSC Configuration in Sensor-Slave Mode with Push-Pull Outputs (High Speed Application)	20
Figure 10	SSC Configuration in Sensor-Slave Mode and Open Drain (Safe Bus Systems)	20
Figure 11	SSC Timing.	21
Figure 12	SSC Data Transfer (Data Read Example)	22
Figure 13	SSC Data Transfer (Data Write Example)	22
Figure 14	SSC Bit Ordering (Read Example)	24
Figure 15	Fast CRC Polynomial Division Circuit.	24
Figure 16	Typical Example for a PWM Signal	41
Figure 17	PG-DSO-8 Package Dimension	42
Figure 18	Footprint PG-DSO-8	43
Figure 19	Tape and Reel	43

Table 1 Table 2	Pin Description	11 15
Table 3	Operating Range	15
Table 4	Electrical Parameters	17
Table 5	ESD Protection	17
Table 6	Angle Performance	18
Table 7	Signal Processing	18
Table 8	SSC Push-Pull Timing Specification	21
Table 9	SSC Open Drain Timing Specification	21
Table 10	Structure of the Command Word	23
Table 11	Structure of the Safety Word	23
Table 12	Registers Overview	25
Table 13	PWM Interface	41
Table 14	Package Parameters	42

TLI5012

1 **Product Description**

1.1 Overview

The TLI5012 is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by measuring sine and cosine angle components with monolithic integrated **G**iant **M**agneto **R**esistance (**iGMR**) elements.

An angle error smaller than 5° will be achieved over temperature.

Data communications are accomplished with a bi-directional SSC Interface that is SPI compatible.

The absolute angle value and other values are transmitted via SSC or via a Pulse-Width-Modulation (PWM) Protocol. Also the sine and cosine raw values can be read out. These raw signals are digitally processed internally to calculate the angle orientation of the magnetic field (magnet).

The TLI5012 is a precalibrated sensor. The calibration parameters are stored in laser fuses. At start-up the values of the fuses are written into Flip-Flops, where these values can be changed by the application specific parameters.

Product Type	Marking	Ordering Code	Package
TLI5012	15012	SP000634318	PG-DSO-8

Product Description

1.2 Features

- Giant Magneto Resistance (GMR)-based principle
- Integrated magnetic field sensing for angle measurement
- Full calibrated 0 360° angle measurement with revolution counter and angle speed measurement
- Two separate highly accurate single bit SD-ADC
- 15 bit representation of absolute angle value on the output (resolution of 0.01°)
- Bi-directional SSC Interface up to 8Mbit/s
- Interfaces: SSC, PWM
- 0.25 µm CMOS technology
- Temperature range: -40°C to 125°C (Junction Temperature)
- ESD > 2kV (HBM)
- Green package with lead-free (Pb-free) plating

1.3 Application Example

The TLI5012 GMR-Based Angular Sensor is designed for angular position sensing in industrial applications, such as:

- Rotary Switch
- General Angular Sensing

2.1 General

The GMR sensor is implemented using vertical integration. This means that the GMR sensitive areas are integrated above the logic portion of the TLI5012 device. These GMR elements change their resistance depending on the direction of the magnetic field.

Four individual GMR elements are connected to one Wheatstone Sensor Bridge. These GMR elements sense one of two components of the applied magnetic field:

- X component, V_x (cosine) or the
- Y component, V_v (sine)

The advantage of a full-bridge structure is that the amplitude of the GMR signal is doubled and temperature effects cancel out each other.

Figure 1 Sensitive Bridges of the GMR Sensor

Note: In **Figure 1**, the arrows in the resistors symbolize the direction of the Reference Layer, which is used for the further explanation.

The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are orientated orthogonally to each other to measure 360°.

With the trigonometric function ARCTAN, the true 360° angle value can be calulated which is represented by the relation of X and Y signals.

Because only the relative values influence the result, the absolute size of the two signals is of minor importance. Therefore, most influences to the amplitudes are compensated.

TLI5012

Functional Description

Figure 2 Ideal Output of the GMR Sensor Bridges

2.2 Pin Configuration

2.3 Pin Description

Table 1Pin Description

Pin No.	Symbol	In/Out	Function
1	CLK	1	External Clock (must be connected to GND for PWM output)
2	SCK	I	SSC Clock
3	CSQ	I	SSC Chip Select
4	DATA	I/O	SSC Data
5	IFA PWM	0	Interface A: PWM
6	V _{DD}	-	Supply Voltage
7	GND	-	Ground
8	IFB	0	Interface B: could be remain open or connected via resistor to GND

2.4 Block Diagram

Figure 4 TLI5012 Block Diagram

2.5 Functional Block Description

2.5.1 Internal Power Supply

The internal stages of the TLI5012 are supplied with different voltage regulators.

- GMR Voltage Regulator VRG
- Analog Voltage Regulator VRA
- Digital Voltage Regulator VRD (derived from VRA)

These regulators are directly connected to the supply voltage $\ensuremath{V_{\text{DD}}}$.

2.5.2 Oscillator and PLL

The internal frequency oscillator feeds the Phase Locked Loop (PLL). Also the external clock (CLK) can be used therefore.

2.5.3 SD-ADC

The SD-ADCs transform the analog GMR-voltages and temperature-voltage into the digital domain.

2.5.4 Digital Signal Processing Unit

The Digital Signal Processing Unit (DSPU) contains the:

- Capture Compare Unit (CCU), which is used to generate the PWM signal
- COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle calculation
- Fuses, which contain the calibration parameters

2.5.5 Interfaces

Different Interfaces can be selected:

- SSC Interface
- PWM

3.1 Application Circuit

The application circuit in Figure 5 and Figure 6 show the different communication possibilities of TLI5012.

Figure 5 Application Circuit for TLI5012 with SSC and PWM Interface (using internal CLK)

Figure 5 shows a basic block-diagram of the TLI5012 with PWM- Interface. This interface is selectable by connecting CLK to GND. Additionally to the PWM the SSC Interface could be used. Within the SSC- Interface the PWM mode is selectable between Push-Pull and Open Drain.

Figure 6 Application Circuit for TLI5012 with only PWM Interface (using internal CLK)

3.2 Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Voltage on V_{DD} pin respect to ground (V_{SS})	V _{DD}	-0.5	-	6.5	V	max 40 h/Lifetime
Voltage on any pin respect to ground (V _{SS})	V _{IN}	-0.5	-	6.5	V	additionally V _{DD} + 0.5 V may not be exceeded
Junction Temperature	Tj	-40	-	125	°C	
		-	-	125	°C	for 3000h not additive
Magnetic Field Induction	В	-	-	125	mT	max. 5 min @ t _A = 25°C
		-	-	100		max. 5 h @ t _A = 25°C
Storage Temperature	T _{ST}	-40	-	125	°C	

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device.

3.3 Operating Range

The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5012. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Supply Voltage	V _{DD}	3.0	5.0	5.5	V	1)
Output Current (DATA-Pad)	Ι _Q	-	-	-25	mA	PAD_DRV ='0x', sink current ²⁾
		-	-	-5		PAD_DRV ='10', sink current ²⁾
		-	-	-0.4		PAD_DRV ='11', sink current ²⁾
Output Current (IFA / IFB-Pad)	Ι _Q	-	-	-15	mA	PAD_DRV ='0x', sink current ²⁾
		-	-	-5		PAD_DRV ='1x', sink current ²⁾
Input Voltage	V _{IN}	-0.3	-	5.5	V	V _{DD} + 0.3 V may not be exceeded
Magnetic Induction	B _{XY}	30	-	50	mT	in X/Y direction ³⁾
Angle Range	Ang	0	-	360	0	

Table 3 Operating Range

Directly blocked with 100nF ceramic capacitor
 Max. current to GND over Open Drain Output

3) Values refer to an homogenous magnetic field (B_{xy}) without vertical magnetic induction ($B_7 = 0mT$).

Note: The thermal resistances listed in **Table 14 "Package Parameters" on Page 42** must be used to calculate the corresponding ambient temperature. **Table 3** is valid for -40° C < T_{J} < 125° C.

Calculation of the Junction Temperature

The total power dissipation P_{TOT} of the chip increases its temperature above the ambient temperature.

The power multiplied by the total thermal resistance R_{thJA} (Junction to Ambient) leads to the final junction temperature. R_{thJA} is the sum of the addition of the values of the two components *Junction to Case* and *Case to Ambient*.

$$\begin{aligned} R_{thJA} &= R_{thJC} + R_{thCA} \\ T_J &= T_A + \Delta T \\ \Delta T &= R_{thJA} \times P_{TOT} = R_{thJA} \times (V_{DD} \times I_{DD} + V_{OUT} \times I_{OUT} \quad (I_{DD}, I_{OUT} > 0, \text{ if direction is into IC}) \end{aligned}$$
(1)

Example (assuming no load on V_{out}):

$$V_{DD} = 5V$$

$$I_{DD} = 12mA$$

$$\Delta T = 150 \left[\frac{K}{W}\right] \times 5[V] \times 0.012[A] + 0[VA] = 9K$$
(2)

For moulded sensors, the calculation with R_{thJC} is more adequate.

3.4 Characteristics

3.4.1 Electrical Parameters

The indicated electrical parameters apply to the full operating range, unless otherwise specified. The typical values correspond to a supply voltage V_{DD} = 5.0 V and 25 °C, unless individually specified. All other values correspond to -40 °C < T_J < 125°C.

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply Current	I _{DD}	-	12	13	mA		
POR Level	V _{POR}	2.0	-	2.9	V	Power On Reset	
POR Hysteresis	V_{PORhy}	-	30	-	mV		
Power On Time	t _{Pon}	-	4	5	ms	$V_{DD} > V_{DDmin}^{(1)}$	
Input Signal Low Level	VL	-	-	$0.3 V_{DD}$	V		
Input Signal High Level	V _H	0.7 V _{DD}	-	-	V		
Pull-Up Current	I _{PU}	-10	-	-225	μA	CSQ	
		-10	-	-150		DATA	
Pull-Down Current	I _{PD}	10	-	225	μA	SCK	
		10	-	150	μA	CLK, IFA, IFB	
Output Signal Low Level	V _{OL}	-	-	1	V	DATA; I _Q = - 25 mA (PAD_DRV='0x'), I _Q = - 5 mA (PAD_DRV='10'), I _Q = - 0.4 mA (PAD_DRV='11')	
		-	-	1		IFA,IFB; I _Q = - 15 mA (PAD_DRV='0x'), I _Q = - 5 mA (PAD_DRV='1x')	

Table 4Electrical Parameters

1) Within "Power On Time" write access is not permitted

3.4.2 ESD Protection

Table 5ESD Protection

Parameter	Symbol	Values		Unit	Notes	
		min.	max.			
ESD Voltage	V _{HBM}	-	±2.0	kV	Human Body Model ¹⁾	
	V_{SDM}	-	±0.5	kV	Socketed Device Model ²⁾	

1) Human Body Model (HBM) according to: JEDEC EIA/JESD22-A114-B

2) Socketed Device Model (SDM) according to: ESD ASS.STD.DS5.3-93

3.4.3 Angle Performance

After internal calculation the sensor has a remaining error, as shown in **Table 6**. The error value refers to $B_z = 0mT$ and the operating conditions given in **Table 3** "**Operating Range**" on **Page 15**.

The overall angle error represents the relative angle error. This error describes the deviation to the reference line after zero angle definition.

Table 6 Angle Performance

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Overall Angle Error	α_{Err}	-	0.7 ¹⁾	5.0	0	including temperature drift ²⁾³⁾

1) At 25°C, B =30 mT

2) Including hysteresis error, caused by revolution direction change.

3) With magnetic setup in chip production (Fused Calibration Parameters); Relative error after zero angle definition.

3.4.4 Signal Processing

The signal path of the TLI5012 is depicted in **Figure 7**. It consists of the GMR-bridge, ADC, filter and angle calculation. Depending on the filter configuration a different total delay time is achieved. Additional to this delay time, the delay time of the interface has to be considered. The delay time leads to an additional angle error at higher speeds. With enabling the prediction, the signal delay time will be reduced (**Figure 8**).

Figure 7 TLI5012 Signal path

At FIR_MD = 0 only raw values can be read out, due to the more time consuming angle calculation.

Table 7Signal Processing

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Update Rate at Interface	t _{upd}	-	21.3	-	μs	FIR_MD = 0 (only raw values) ¹⁾²⁾
		-	42.7	-		FIR_MD = 1 ¹⁾²⁾
		-	85.3	-		FIR_MD = 2 (default) ¹⁾²⁾
		-	170.6	-		FIR_MD = 3 ¹⁾²⁾

Table 7Signal Processing

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
Angle Delay Time ³⁾	t _{del}	-	60	70	μs	FIR_MD = 1 ¹⁾²⁾
		-	80	95		FIR_MD = 2 ¹⁾²⁾
		-	120	140		FIR_MD = 3 ¹⁾²⁾
Angle Delay Time with Prediction ³⁾	t _{del}	-	20	30	μs	FIR_MD = 1; PREDICT = 1
		-	5	20		FIR_MD = 2; PREDICT = 1
		-	-40	-20		FIR_MD = 3; PREDICT = 1
Angle Noise	N _{Angle}	-	0.11	-	0	FIR_MD = 0, (1 Sigma) ²⁾
		-	0.08	-		FIR_MD = 1, (1 Sigma) ²⁾
		-	0.05	-		FIR_MD = 2, (1 Sigma) ²⁾ (default)
		-	0.04	-		FIR_MD = 3, (1 Sigma) ²⁾

1) depends on internal oscillator frequency variation

2) guaranteed by laboratory characterization

3) valid at constant rotation speed

Figure 8 Delay of Sensor Output

3.5 Interfaces

3.5.1 Synchronous Serial Communication (SSC) Interface

The 3-pin SSC Interface has a bi-directional push-pull data line, serial clock signal and chip select. The SSC Interface is designed to communicate with a microcontroller pear to pear for fast applications.

Figure 9 SSC Configuration in Sensor-Slave Mode with Push-Pull Outputs (High Speed Application)

Another possibility is a 3-pin SSC Interface with bidirectional open-drain data line, serial clock signal and chip select. This setup is designed to communicate with a microcontroller in a bus system, together with other SSC slaves (e.g. two TLI5012 for redundancy reasons). This mode can be activated using bit SSC_OD.

Figure 10 SSC Configuration in Sensor-Slave Mode and Open Drain (Safe Bus Systems)

3.5.1.1 SSC Timing Definition

SSC Inactive Time (CS_{off})

The SSC inactive time defines the delay time after a transfer before the TLE5012 can be selected again.

Parameter	Symbol		Values			Note / Test Condition
		Min.	Тур.	Max.		
SSC Baud Rate	f _{SSC}	-	8.0	-	Mbit/s	
CSQ Setup Time	t _{CSs}	105	-	-	ns	
CSQ Hold Time	t _{CSh}	105	-	-	ns	
CSQ off	t _{CSoff}	600	-	-	ns	SSC inactive time
SCK Period	t _{SCKp}	120	125	-	ns	
SCK High	t _{SCKh}	40	-	-	ns	
SCK Low	t _{scкı}	30	-	-	ns	
DATA Setup Time	t _{DATAs}	25	-	-	ns	
DATA Hold Time	t _{DATAh}	40	-	-	ns	
Write Read Delay	t _{wr_delay}	130	-	-	ns	

Table 8 SSC Push-Pull Timing Specification

Table 9	SSC Open	Drain Timing	Specification
	000 000	Brain rinning	opoomoution

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
SSC Baud Rate	f _{SSC}	-	2.0	-	Mbit/s	Pull-up Resistor = $1k\Omega$	
CSQ Setup Time	t _{CSs}	300	-	-	ns		
CSQ Hold Time	t _{CSh}	400	-	-	ns		
CSQ off	t _{CSoff}	600	-	-	ns	SSC inactive time	
SCK Period	t _{SCKp}	500	-	-	ns		
SCK High	t _{SCKh}	-	190	-	ns		

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
SCK Low	t _{sскі}	-	190	-	ns	
DATA Setup Time	t _{DATAs}	25	-	-	ns	
DATA Hold Time	t _{DATAh}	40	-	-	ns	
Write Read Delay	t _{wr delav}	130	-	-	ns	

Table 9 SSC Open Drain Timing Specification (cont'd)

3.5.1.2 SSC Data Transfer

The SSC data transfer is word aligned. The following transfer words are possible:

- Command word (to access and change operating modes of the TLI5012)
- Data words (any data transferred in any direction)
- Safety word (confirms the data transfer and provide status information)

Figure 12 SSC Data Transfer (Data Read Example)

Figure 13 SSC Data Transfer (Data Write Example)

Command Word

TheTLI5012 is controlled by a command word. It is sent first at every data transmission.

Name	Bits	Description
RW	[15]	Read - Write 0:Write 1:Read
Lock	[1411]	4 bit Lock Value 0x00: Default Operating Access 0x02: Config- Access
UPD	[10]	Update-Register Access 0: Access to current values 1: Access to updated values
ADDR	[94]	6 bit Address
ND	[30]	4 bit Number of Data-Words

Table 10 Structure of the Command Word

Safety Word

The safety word contains following bits:

Name	Bits	Description
STAT	Chip and I	nterface Status
	[15]	Indication of Chip-Reset (resets after readout) via SSC 0: No reset 1: Reset occurred Reset: 0 _B
	[14]	System Error (e.g. Overvoltage; Undervoltage; V _{DD} -, GND- off; ROM;) 0: No error 1: Error occurred (S_VR; S_DSPU; S_OV; S_XYOL: S_MAGOL; S_ADCM)
	[13]	Interface Access Error (access to wrong address; wrong lock) 0: No error 1: Error occurred
	[12]	Valid Angle Value (no system error; no interface error; NO_GMR_A = '0'; NO_GMR_XY='0') 0: Angle value valid 1: Angle value invalid
RESP	[118]	Sensor Number Response Indicator The sensor no. bit is pulled low and the other bits are high.
CRC	[70]	Cyclic Redundancy Check (CRC)

Table 11 Structure of the Safety Word

Data Communication via SSC

Figure 14 SSC Bit Ordering (Read Example)

The data communication via SSC interface has the following characteristic:

- The data transmission order is "Most Significant Bit (MSB) first".
- Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK.
- The SSC Interface is word-aligned. All functions are activated after each transmitted word.
- A "high" condition on the negated Chip Select pin (CSQ) of the selected TLE5012 interrupts the transfer immediately. The CRC calculator is automatically reset.
- After changing the data direction, a delay (t_{wr_delay}) has to be considered before continuing the data transfer. This is necessary for internal register access.
- Every access to the TLI5012 with the number of data (ND) ≥ 1 is performed with address auto-increment.
- At an overflow at address 3F_H the transfer continuous at address 00_H.
- With ND = 0 no auto-increment is done and a continuously readout of the same address can be realized. Afterwards no Safety Word is send and the transfer ends with high condition on CSQ.
- After every data transfer with ND \geq 1 the 16 bit Safety Word will be appended by the selected TLI5012.
- At a rising edge of CSQ without data transfer before (no SCK-pulse), the update-registers are updated with according values.
- After sending the Safety Word the transfer ends. To start another data transfer, the CSQ has to be deselected once for t_{CSoff}.
- The SSC is default Push-Pull. The Push-Pull driver is only active, if the TLI5012 has to send data, otherwise the Push-Pull is disabled for receiving data from the microcontroller.

Cyclic Redundancy Check (CRC)

- This CRC is according to the J1850 Bus-Specification.
- Every new transfer resets the CRC generation.
- Every Byte of a transfer will be taken into account to generate the CRC (also the sent command(s)).
- Generator-Polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast-CRC generation circuit is used (see Figure 15)
- The remainder of the fast CRC circuit is initial set to '11111111_B'.
- Remainder is inverted before transmission.

Figure 15 Fast CRC Polynomial Division Circuit

3.5.1.3 Registers Chapter

This chapter defines the registers of the TLI5012 . It also defines the read/write access rights of the specific registers. Table 12 identifies the values with symbols. Access to the registers is accomplished via the SSC Interface.

Register Short Name	Register Long Name	Offset Address	Page Number				
Registers Chapter, TLI5012 Register							
STAT	Status Register	00 _H	26				
ACSTAT	Activation Status Register	01 _H	28				
AVAL	Angle Value Register	02 _H	29				
ASPD	Angle Speed Register	03 _H	30				
AREV	Angle Revolution Register	04 _H	30				
FSYNC	Frame Synchronization Register	05 _H	31				
MOD_1	Interface Mode1 Register	06 _H	32				
SIL	SIL Register	07 _H	33				
MOD_2	Interface Mode2 Register	08 _H	34				
MOD_3	Interface Mode3 Register	09 _H	35				
OFFX	Offset X	0A _H	36				
OFFY	Offset Y	0B _H	36				
SYNCH	Synchronicity	0C _H	37				
IFAB	IFAB Register	0D _H	37				
MOD_4	Interface Mode4 Register	0E _H	38				
тсо_ү	Temperature Coeffizient Register	0F _H	39				
ADC_X	X-raw value	10 _H	39				
ADC_Y	Y-raw value	11 _H	40				

Table 12Registers Overview

The register is addressed wordwise.

3.5.1.3.1 TLI5012 Register

Status Register

STAT Offset				Reset Value			
Status Register			0	0 _H		8001 _H	
15	14	13	12	11	10	9	8

RD_ST	s_	NR	NO_GMR_ A	NO_GMR_ XY	S_ROM	S_ADCT	Res
r	1	r	r	r	r	r	
7	6	5	4	3	2	1	0
S_MAGOL	S_XYOL	s_ov	S_DSPU	S_FUSE	S_VR	S_WD	S_RST
r	r	r	r	r	r	r	r

Field	Bits	Туре	Description
RD_ST	15	r	Read Status 0_B after readout 1_B status values changedReset: 1_B
S_NR	14:13	r	Slave Number Reset: 00 _B
NO_GMR_A	12	r	No GMR Angle Value 0_B valid GMR angle value on the interface 1_B no valid GMR angle value on the interfaceReset: 0_B
NO_GMR_XY	11	r	No GMR XY Values 0_B valid GMR_XY values on the interface 1_B no valid GMR_XY values on the interfaceReset: 0_B
S_ROM	10	r	Status ROM 0_B after readout, CRC ok 1_B CRC fail or runningReset: 0_B
S_ADCT	9	r	Status ADC-Test 0_B after readout 1_B Test vectors out of limitReset: 0_B
S_MAGOL	7	r	Status Magnitude Out of Limit 0_B after readout 1_B GMR-magnitude out of limit (>23230 digits)Reset: 0_B

Field	Bits	Туре	Description
S_XYOL	6	r	Status X,Y Data Out of Limit 0_B after readout 1_B X,Y data out of limit (>23230 digits)Reset: 0_B
S_OV	5	r	Status Overflow 0_B after readout 1_B DSPU overflow occurredReset: 0_B
S_DSPU	4	r	Status Digital Signal Processing Unit 0_B after readout 1_B DSPU self test not ok, or selftest is runningReset: 0_B
S_FUSE	3	r	Status Fuse CRC 0_B after readout, Fuse CRC ok 1_B Fuse CRC failReset: 0_B
S_VR	2	r	$\begin{array}{llllllllllllllllllllllllllllllllllll$
S_WD	1	r	Status Watchdog 0_B after chip reset 1_B watchdog counter expiredReset: 0_B
S_RST	0	r	Status Reset 0 _B after readout 1 _B indication of power-up, short power-break or active reset Reset: 1 _B

TLI5012

Specification

Activation Status Register

ACSTAT Activation St	atus Register		Offset 01 _H				Reset Value 5CEE _H
15				-	10	9	8
	1	R	es	1	1	AS_ADCT	Res
				1	L	rw	
7	6	5	4	3	2	1	0
AS_VEC_ MAG	AS_VEC_ XY	AS_OV	AS_DSPU	AS_FUSE	AS_VR	AS_WD	AS_RST
rw	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
Res	15:10		Reserved Reset: 010111 _B
AS_ADCT	9	rw	Enable GMR Vector check Reset: 0 _B
AS_VEC_MAG	7	rw	Activation of ADC-Redundancy-BIST 0_B after execution 1_B activation of redundancy BISTReset: 1_B
AS_VEC_XY	6	rw	Activation of ADC-BIST 0_B after execution 1_B activation of BISTReset: 1_B
AS_OV	5	rw	Enable of DSPU Overflow Check Reset: 1 _B
AS_DSPU	4	rw	Activation DSPU BIST 0_B after execution 1_B activation of DSPU BISTReset: 0_B
AS_FUSE	3	rw	Activation Fuse CRC 0_B after execution 1_B activation of Fuse CRCReset: 1_B
AS_VR	2	rw	Enable Voltage Regulator Check Reset: 1 _B
AS_WD	1	rw	Enable DSPU Watchdog-HW-Reset Reset: 1 _B

Field	Bits	Туре	Description
AS_RST	0	rw	Activation of Hardware ResetActivation occurs after CSQ switches from '0' to '1' afterSSC transfer. 0_B after execution 1_B activation of HW ResetReset: 0_B

Angle Value Register

AVAL		Offset	Reset Value
Angle Value	Register	02 _H	8000 _H
15	14		8
RD_AV		ANG_VAL	
r		r	· · · · ·
7			0
		ANG_VAL	
L	1	r	

Field	Bits	Туре	Description
RD_AV	15	r	Read Status, Angle Value 0_B after readout 1_B new angle value (ANG_VAL) presentReset: 1_B
ANG_VAL	14:0	r	Calculated Angle Value $(ANG_RANGE = 0x080)$ $4000_H - 180^\circ$ $0000_H 0^\circ$ $3FFF_H + 179.99^\circ$ Reset: 0_H

Angle Speed Register

ASPD		Offset	Reset Value		
Angle Speed	l Register	03 _H	8000 _H		
15	14	· · · · · · · · · · · · · · · · · · ·	8		
RD_AS		ANG_SPD			
r		r	·		
7			0		
		ANG_SPD			
·		r			

Field	Bits	Туре	Description		
RD_AS	15	r	Read Status, Angle Speed 0_B after readout 1_B new angle speed value (ANG_SPD) presentReset: 1_B		
ANG_SPD	14:0	r	Calculated Angle Speed Difference between two consecutive angle values. Reset: 0 _H		

Angle Revolution Register

AREV Angle Revolution Register		er		Offset 04 _H	Reset Value 8000 _H		
15	14					9	8
RD_REV				FCNT			REVOL
r				rw			r
7							0
	1	1	1	REVOL	I	,	1
				r			

Field	Bits	Туре	Description
RD_REV	15	r	Read Status, Revolution 0_B after readout 1_B new value (REVOL) presentReset: 1_B
FCNT	14:9	rw	Frame Counter (unsigned 6 bit value) Counts every new angle value Reset: 0 _H
REVOL	8:0	r	Number of Revolutions (signed 9 bit value) Reset: 0 _H

Frame Synchronization Register

FSYNC Frame Synchronization Register		Offse 05 _H	¥	Reset Value 0000 _H		
15				9	8	
		FSYNC			Res	
		rw		I		
7					0	
	· · ·	Res	· · · · · ·	I	1	

Field	Bits	Туре	Description
FSYNC	15:9	rw	Frame Synchronization Counter Value Sub counter within one frame. Reset: 0 _H

Interface Mode1 Register

MOD_1 Interface Mode1 Register			Off 00	set วิ _н			Reset Value 8001 _H
15	14	13	1		1		8
FIR	_MD			R	es		
r	W						
7		5	4	3	2	1	0
	Res	1	CLK_SEL	SSC_OD	DSPU_HO LD	R	es
			rw	rw	rw		

Field	Bits	Туре	Description
FIR_MD	15:14	rw	Filter Decimation Setting 00_B 21.3µs 01_B 42.7µs 10_B 85.3µs 11_B 170.6µsReset: 10_B
CLK_SEL	4	rw	Clock Source Select 0_B internal oscillator 1_B external 4MHz clockReset: 0_B
SSC_OD	3	rw	SSC-Interface 0_B Push-Pull 1_B Open DrainReset: 0_B
DSPU_HOLD	2	rw	Hold DSPU Operation 0_B DSPU in normal schedule operation 1_B DSPU is on holdReset: 0_B
Res	1:0		Reserved Reset: 01 _B

SIL Register

SIL SIL Register			Off 0	fset 7 _H			Reset Value 0000 _H
15	14	13		11	10	9	8
FILT_PA R	FILT_IN V		Res	1	FUSE_RE L	R	es
rw	rw	•		•	rw		
7	6	5		3	2		0
Res	ADCTV_E N		ADCTV_Y			ADCTV_X	
	rw		rw			rw	

Field	Bits	Туре	Description
FILT_PAR	15	rw	Filter Parallel 0_B filter parallel disabled 1_B filter parallel enabled (source: X-value)Reset: 0_B
FILT_INV	14	rw	Filter Inverted 0_B filter inverted disabled 1_B filter inverted enabledReset: 0_B
FUSE_REL	10	rw	Fuse Reload 0 _B fuse reload disabled 1 _B fuse parameters reloaded to DSPU at next cycle start Reset: 0 _B
ADCTV_EN	6	rw	ADC-Test vectors 0_B ADC-Test vectors disabled 1_B ADC-Test vectors enabledReset: 0_B
ADCTV_Y	5:3	rw	Test vector Y 000_B $0V$ 001_B $+70\%$ 010_B $+100\%$ 011_B $+Overflow$ 101_B -70% 110_B -100% 111_B $-Overflow$ Reset: 000_B

TLI5012

Specification

Field	Bits	Туре	Description
ADCTV_X	2:0	rw	Test vector X 000_B $0V$ 001_B $+70\%$ 010_B $+100\%$ 011_B $+OV$ 101_B -70% 110_B -100%
			111 _B -OV Reset: 000 _B

Interface Mode2 Register

MOD_2 Interface Mode2 Register		Of (Offset 08 _H				
15	14					8	
Res			ANG_RANGE				
			rw		1		
7	1	4	3	2		0	
	ANG_RANGE	1	ANG_DIR		Res		
	rw	·	rw		·		

Field	Bits	Туре	Description
ANG_RANGE	14:4	rw	Angle Range Angle Range [°] = $360^{\circ} * (2^7 / ANG_RANGE)$ 200_H represents 90° 080_H represents 360° Reset: 080_H
ANG_DIR	3	rw	Angle Direction 0_B counterclockwise rotation of magnet° 1_B clockwise rotation of magnetReset: 0_B

Interface Mode3 Register

MOD_3 Interface Mode3 Regi	ster		Offset 09 _H			Reset Value 0000 _H
15						8
		AN	G_BASE			
	I		rw			I
7		4	3	2	1	0
A	NG_BASE		SPIKEF	Res	PAD_	_DRV
	rw	1	rw		ŗ	W
Field	Bits	Туре	Description			
ANG_BASE	15:4	rw	Angle Base 800 _H -180° 000 _H 0° 001 _H 0.00879° 7FF _H +179.912 Reset: 0 _H	2°		
SPIKEF	3	rw	Analog Spike 0_B spike filte 1_B spike filteReset: 0_B	Filters of Inp er disabled er enabled	ut Pads	
PAD_DRV	1:0	rw	$\begin{array}{c c} \textbf{Configuration} \\ 00_{B} & IFA/IFB: \\ edge \\ 01_{B} & IFA/IFB: \\ edge \\ 10_{B} & IFA/IFB: \\ edge \\ 11_{B} & IFA/IFB: \\ edge \\ Reset: 00_{B} \end{array}$	of Pad-Drive strong driver, strong driver, weak driver, I weak driver, I	r DATA: strong DATA: strong DATA: mediun DATA: weak d	driver, fast driver, slow n driver, fast river, slow

Offset X Register

OFFX Offset X	Offset 0A _H				Reset Value 0000 _H
15		1			8
		X_OF	FSET		
LI		r	w	I	I
7		4	3		0
	X_OFFSET	1		Res	
L	rw	•	· · · · · ·	I	

 Field
 Bits
 Type
 Description

 X_OFFSET
 15:4
 rw
 Offset Correction of X-value Reset: 0_H

Offset Y Register

OFFY		Offset Reset V				
Offset Y		0B _H				
15					8	
		'	· · ·	I	I	
		Y_O	FFSET			
		ł	rw	L		
7		4	3		0	
	Y_OFFSE	T		Res		
	rw					

Field	Bits	Туре	Description
Y_OFFSET	15:4	rw	Offset Correction of Y-value Reset: 0 _H

Synchronicity Register

SYNCH Synchronicity		Off 00	Offset 0C _H		
15					8
		SYN	ИСН		
	I	n	∧		
7	1	4	3		0
	SYNCH			Res	
	rw		I I		I

Field	Bits	Туре	Description
SYNCH	15:4	rw	Amplitude Synchronicity $+2047_D$ 112.494% 0_D 100% -2047_D 87.500% Reset: 0_H

IFAB Register

IFAB IFAB Register		Of 0	fset D _H	Reset Value 0004 _H				
15						8		
		OR	ORTHO					
L		r	w			I		
7		4	3	2	1	0		
	ORTHO	1	Res	IFAB_OD	R	es		
	rw			rw				

Field	Bits	Туре	Description
ORTHO	15:4	rw	Orthogonality Correction of X and Y Components $+2047_D 11.2445^\circ$ $0_D 0^\circ$ $-2047_D -11.2500^\circ$ Reset: 0_H

Field	Bits	Туре	Description
IFAB_OD	2	rw	IFA & IFB Open Drain 0_B Push-Pull 1_B Open DrainReset: 1_B

Interface Mode4 Register

MOD_4 Interface Mo	de4 Register		Ofi 0	fset E _H					
15			1			9	8		
			тсо_х_т	1			Res		
<u></u>			rw						
7		5	4	3	2		0		
	Res		IFAB_RES			1			
			r	w	rw				

Field	Bits	Туре	Description
TCO_X_T	15:9	rw	Offset Temperature Coefficient for X-Component Reset: 0 _H
IFAB_RES	4:3	rw	IFAB Resolution 00_B 12bit = 0.088° (244Hz) 01_B 11bit = 0.176° (488Hz) 10_B 10bit = 0.352° (977Hz) 11_B 9bit = 0.703° (1953Hz) Reset: 10_B
IF_MD	2:0	rw	Interface Mode PWM if CLK is connected to GND at startup. <i>Note: Not mentioned combinations are not allowed</i> 001 _B SSC mode; PWM Reset: 001 _B

Temperature Coeffizient Register

TCO_Y Temperatu	ter		Of 0	fset F _H				Reset Va 00	alue 100 _H	
15	- T - T - T		9	8	7	1	1	1 1		0
	TCO_Y_T	·		Res			CRC	_PAR		
	rw	I	1	1		1		rw		
Field		Dita	Τ		Deceri	ntion				

Field	Bits	Туре	Description
TCO_Y_T	15:9	rw	Offset Temperature Coefficient for Y-Component Reset: 0 _H
CRC_PAR	7:0	rw	CRC of Parameters CRC of parameters from address $08_{\rm H}$ to $0F_{\rm H}$ Reset: $0_{\rm H}$

X-raw Value Register

ADC_ X-raw	X valu	ie		Offset 10 _H						Re	eset Value 0000 _H		
15	1		 									 	0
							ADC_X	Σ.					
L		1	 I				r	I	1	1	I	 	I

Field	Bits	Туре	Description
ADC_X	15:0	r	ADC value of X-GMR Read out of this register will update ADC_Y Reset: 0 _H

Y-raw Value Register

ADC_Y						Offset						Reset Value					
Y-raw	value						1	1 _H							0000 _H		
15	1	1	1	1	T	1	I	1	1	I	1	T	1		0		
	ADC_Y																
			1	1		1		r	1	1	1		1		I]		

Field	Bits	Туре	Description
ADC_Y	15:0	r	ADC value of Y-GMR Updated when ADC_X or ADC_y is read. Reset: 0 _H

3.5.2 Pulse Width Modulation Interface

The **P**ulse **W**idth **M**odulation (**PWM**) update rate can be programmed within the register $0E_H$ (IFAB_RES) in following steps:

- 0.25 kHz with 12 bit resolution
- 0.5 kHz with 11 bit resolution
- 1.0 kHz with 10 bit resolution (default)
- 2.0 kHz with 9 bit resolution

PWM uses a square wave with constant frequency whose duty cycle is modulated resulting in an average value of the waveform.

Figure 16 shows the principle behavior of a PWM with different duty cycles and the definition of timing values. The duty cycle of a PWM is defined by following general formulas:

Duty Cycle =
$$\frac{t_{on}}{t_{PWM}}$$

 $t_{PWM} = t_{on} + t_{off}$
 $f_{PWM} = \frac{1}{t_{PWM}}$

(3)

The range between 0 - 6.25% and 93.75 - 100% is used only for diagnostic purposes. More details are given in **Table 13**.

Specification

Figure 16 Typical Example for a PWM Signal

Table 13PWM Interface

Parameter	Symbol		Valu	ies	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
PWM Output Frequency	f _{PWM}	244	-	1953	Hz	selectable by IFAB_RES ¹⁾	
Output Duty Cycle Range	DY _{PWM}	6.25	-	93.75	%	Absolute Angle	
		-	2	-	%	Electrical Error (S_RST; S_VR)	
		-	98	-	%	System Error (S_FUSE; S_OV; S_XYOL; S_MAGOL; S_ADCT)	
		0	-	1	%	Short to GND	
		99	-	100	%	Short to V _{DD} , Power-Loss	
PWM Period Variation	t _{PWMvar}	-5	-	5	%	2)	

1) $f_{PWM} = (f_{DIG} * 2^{IFAB_{RES}}) / (24 * 4096)$

2) depends on internal oscillator frequency variation

4 Package Information

4.1 Package Parameters

Table 14 Package Parameters

Parameter	Symbol	Limit Values			Unit	Notes
		min.	typ.	max.		
Thermal Resistance	R _{thJA}	-	150	200	K/W	Junction to Air ¹⁾
	R _{thJC}	-	-	75	K/W	Junction to Case
	R _{thJL}	-	-	85	K/W	Junction to Lead
Soldering Moisture Level				MSL 3	8	260°C
Lead Frame	Cu					
Plating	Sn 100%					> 7 µm

1) according to Jedec JESD51-7

4.2 Package Outline

Figure 17 PG-DSO-8 Package Dimension

Package Information

4.3 Footprint

Figure 18 Footprint PG-DSO-8

4.4 Packing

Figure 19 Tape and Reel

4.5 Marking

Position	Marking	Description
1st Line	I5012xx	See ordering table on page 7
2nd Line	xxx	Lot code
3rd Line	Gxxxx	Ggreen, 4-digitdate code

Processing

Note: For processing recommendations, please refer to Infineon's Notes on processing

www.infineon.com