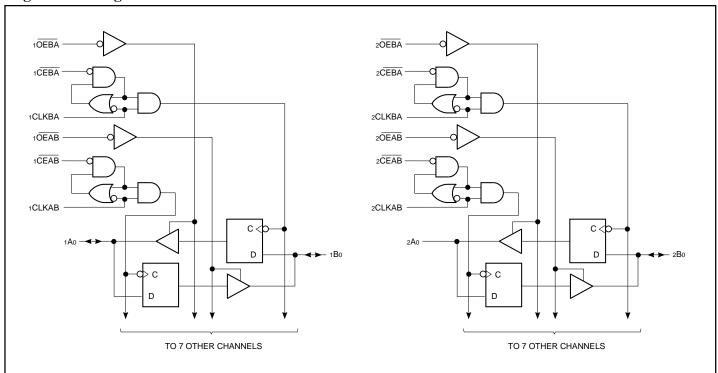


Fast CMOS 3.3V 16-Bit 16-Bit Registered Transceivers

Product Features

- Functionally compatible with FCT3, LVT, and 74 series 16952 families of products
- Tri-State outputs
- 5V Tolerant inputs and outputs
- 2.0V-3.6V Vcc supply operation
- Balanced sink and source output drives (24 mA)
- Low ground bounce outputs
- · Supports live insertion
- ESD Protection exceeds 2000V, Human Body Model 200V, Machine Model
- Packages available:
 - -56-pin 240-mil wide plastic TSSOP (A)
 - -56-pin 300-mil wide plastic SSOP (V)

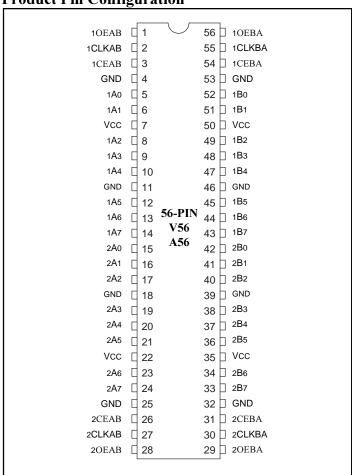

Product Description

Pericom Semiconductor's PI74LCX series of logic circuits are produced using the Company's advanced 0.6 micron CMOS technology, achieving industry leading speed grades.

The PI74LCX16952 is a 16-bit registered transceivers organized with two sets of eight D-type latches with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable (xCEAB) input must be LOW in order to enter data from xAx. The data present on the A port will be clocked on the B register when xCLKAB toggles from LOW-to-HIGH. The xOEAB control performs the output enable function on the B port. Control of data from B to A is similar, but uses the xCEAB, xCLKAB, and xOEAB inputs. By connecting the control pins of the two independent transceivers together, a full 16-bit operation can be achieved. The output buffers are designed with a Power-Off disable allowing "live insertion" of boards when used as backplane drivers.

The PI74LCX16952 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3/5.0V system.

Logic Block Diagram



Product Pin Description

Pin Name	Description
xŌEAB	A-to-B Output Enable Input (Active LOW)
xŌEBĀ	B-to-A Output Enable Input (Active LOW)
xCEAB	A-to-B Clock Enable Input (Active LOW)
xCEBA	B-to-A Clock Enable Input (Active LOW)
xCLKAB	A-to-B Clock Input
xCLKBA	B-to-A Clock Input
xAx	A-to-B Data Inputs or B-to-A 3-State Outputs
xBx	B-to-A Data Inputs or B-to-A 3-State Outputs
GND	Ground
Vcc	Power

Product Pin Configuration

Truth Table^(1,2)

	Inputs					
xCEAB	xCLKAB	xŌEAB	xAx	xBx		
Н	X	L	X	B ⁽³⁾		
X	L	L	X	B ⁽³⁾		
L	1	L	L	L		
L	1	L	Н	Н		
X	X	Н	X	High-Z		

Notes:

2

- 1. H = High Voltage Level
 - L = Low Voltage Level
 - X = Don't Care or Irrelevant
 - ↑ = LOW-to-HIGH Transition
 - Z = High Impedance
- 2. A-to-B data flow shown. B-to-A flow control is the same, except using xCEBA, xCLKBA, and xOEBA.
- 3. Level of B before the indicated steady-state input conditions were established.

PS2096A 02/12/97

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
Ambient Temperature with Power Applied –40°C to +85°C
Supply Voltage to Ground Potential (Inputs & Vcc Only)0.5V to +7.0V
Supply Voltage to Ground Potential (Outputs & D/O Only) –0.5V to +7.0V
DC Input Voltage0.5V to +7.0V
DC Output Current
Power Dissipation

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Symbol	Parameter		Min.	Max.	Units
Vcc	Supply Voltage	Operating	2.0	3.6	
		Data Retention	1.5	3.6	
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	Vcc	
		TRI-State	0	5.5	
Ioh/Iol	Output Current	Vcc = 3.0V-3.6V	_	±24	A
		Vcc = 2.7V	_	±12	mA
TA	Free-Air Operating Temperature		-40	+85	°C
$\Delta t/\Delta V$	Input Edge Rate	V = 0.8V-2.0V, $Vcc = 3.0V$	0	10	ns/V

3

PS2096A 02/12/97

DC Electrical Characteristics (Over the Operating Range, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 2.7\text{V}$ to 3.6V)

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ ⁽²⁾	Max.	Units
VIH	Input HIGH Voltage	Guaranteed Logic HIGH Level		2.0	_	_	
VIL	Input LOW Voltage	Guaranteed Logic LOW	Level	_	_	0.8	
Voh	Output HIGH Voltage	Vcc = 2.7-3.6	Іон = -0.1mA	Vcc-0.2	_	_	
		Vcc = 2.7	Iон = −12mA	2.2	_	_	
		Vcc = 3.0	Iон = −18mA	2.4	_	_	
			Iон = −24mA	2.2	_	_	V
Vol	Output LOW Voltage	Vcc = 2.7-3.6	Iol = 0.1 mA	_	_	0.2	
		Vcc = 2.7	IoL = 12mA	_	_	0.4	
		Vcc = 3.0	Iol = 16mA	_	_	0.4	
			IoL = 24mA		_	0.55	
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18mA		_	-0.7	-1.2	
Iı	Input Leakage Current	$0 \le V_I \le 5.5V$	Vcc = 2.7-3.6	_	_	±5	
Ioz	Tri-State Output Leakage	$0 \le V_O \le 5.5V$ $V_{CC} = 2.7-3.6$ $V_{CC} = V_{CC} = 2.7-3.6$		_	_	±5	
Ioff	Power Down Disable	Vcc = 0V, Vin or Vout ≤ 5.5V		_	_	10	
Icc	Quiescent Power Supply Current	$V_{CC} = Max.$ $V_{IN} = GND \text{ or } V_{CC}$		_	0.1	10	μΑ
ΔIcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max.	$V_{\rm IN} = V_{\rm CC} - 0.6V^{(3)}$	_	_	500	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $+25^{\circ}C$ ambient.
- 3. Per TTL driven input; all other inputs at Vcc or GND.

Capacitance

Parameters	Description	Test Conditions	Тур.	Units
Cin	Input Capacitance	Vcc = Open, Vi = 0V or Vcc	7	
Соит	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
Срд	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $F = 10$ MHz	20	

4

PS2096A 02/12/97

Switching Characteristics over Operating Range

			Vcc = 3.3	$3V \pm 0.3V$	Vcc =	= 2.7V	
Parameters	Description	Conditions	Min.	Max.	Min.	Max.	Units
tplh tphl	Propagation Delay xCLKAB, xCLKBA to xBx, xAx	$C_{L} = 50pF$ $R_{L} = 500\Omega$	2.0	6.3	2.0	7.6	
tpzh tpzl	Output Enable Time xOEAB, xOEBA to xAx, xBx		1.5	7.0	1.5	8.4	
tphz tplz	Output Disable Time xOEAB, xOEBA to xAx, xBx		1.5	6.5	1.5	7.8	
tsu	Setup Time HIGH or LOW xAx, xBx to xCLKAB, xCLKB		2.5	_	2.5	_	
tн	Hold Time HIGH or LOW, xAx, xBx to xCLKAB, xCLKBA		2.0		2.0	_	ns
tsu	Setup Time HIGH or LOW xCEAB, xCEBA to xCLKAB, xCLKBA		3.0	_	3.0	_	
tн	Hold Time HIGH or LOW, xCEAB, xCEBA to xCLKAB, xCLKBA		2.0	_	2.0	_	
tw	Pulse Width HIGH or LOW xCLKAB or CLKBA		3.0	_	3.0	_	
tsk(o)	Output Skew ⁽¹⁾			1.0	_	_	

Note:

Dynamic Switching Characteristics (TA = +25°C)

Parameters	Description	Test Conditions ⁽¹⁾	Тур.	Units
VOLP	Dynamic LOW Peak Voltage	Vcc = 3.3V, CL = 50pF Vih = 3.3V, Vil = 0V	0.0	V
Volv	Dynamic LOW Valley Voltage	Vcc = 3.3V, CL = 50pF Vih = 3.3V, Vil = 0V	0.8	V

Note:

1. Measured with n-1 outputs switching from High-to-Low or Low-to-High. The remaining output is measured in the LOW state.

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com

^{1.} Skew between any two outputs, of the same package, switching in the same direction.