16-bit Proprietary Microcontroller

CMOS

FMC-16LX MB90800 Series

MB90803/F804/V800

■ DESCRIPTION

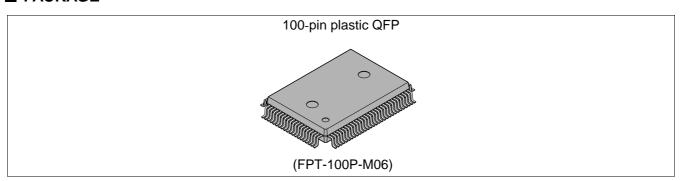
The MB90800 series is a general-purpose 16-bit microcontroller that has been developed for high-speed real-time processing required for industrial and office automation equipment and process control, etc. The LCD controller of 48 segment four common is built into.

Instruction set has taken over the same AT architecture as in the F²MC*-8L and F²MC 16L, and is further enhanced to support high level languages, extend addressing mode, enhanced divide/multiply instructions with sign and enrichment of bit processing. In addition, long word processing is now available by introducing a 32-bit accumulator.

*: F2MC, an abbreviation for FUJITSU Flexible Microcontroller, is a registered trademark of FUJITSU Ltd.

■ FEATURES

Clock


- Built-in PLL clock frequency multiplication circuit
- Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or 1 to 4 times the oscillation (at oscillation of 6.25 MHz, 6.25 MHz to 25 MHz).
- Minimum instruction execution time of 40.0 ns (at oscillation of 6.25 MHz, four times the PLL clock, operation at Vcc = 3.3 V)

• The maximum memory space:16 MB

- 24-bit internal addressing
- · Bank addressing

(Continued)

■ PACKAGE

(Continued)

• Optimized instruction set for controller applications

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- High code efficiency
- Enhanced high-precision computing with 32-bit accumulator
- Enhanced Multiply/Divide instructions with sign and the RETI instruction

• Instruction system compatible with high-level language (C language) and multitask

- Employing system stack pointer
- Instruction set has symmetry and barrel shift instructions

• Program Patch Function (2 address pointer)

• 4-byte instruction queue

• Interrupt function

- The priority level can be set to programmable.
- · Interrupt function with 32 factors

Data transfer function

• Expanded intelligent I/O service function (EI 2 OS): Maximum of 16 channels]

• Low Power Consumption Mode

- Sleep mode (a mode that helts CPU operating clock)
- Time-base timer mode (a mode that operates oscillation clock and time-base timer)
- Watch timer mode (mode in which only the subclock and watch timers operate)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking operation mode (operating CPU at each set cycle)

Package

• LQFP-120P (FPT-100P-M06:0.65 mm pin pitch)

Process : CMOS technology

■ BUILT-IN PERIPHERAL FUNCTION (RESOURCE)

• I/O port: 68 or less (sub-clocking 70 unused)

Time-base timer : 1channel
Watchdog timer : 1 channel
Watch timer : 1channel

LCD Controller48SEG 4COM

• 8/10-bit A/D converter : 12 channels

• 8-bit resolution or 10-bit resolution can be set.

• 16-bit reload timer: 3 channels

Multi-functional timer

• 16-bit free run timer: 1 channel

• 16-bit Output Compare: 2 channels

An interrupt request can be output when the count value of the 16-bit free-run timer and the setting value in the compare register match.

• Input capture : 2 channels

Upon detecting a valid edge of the signal input from the external input pin, the count value of the 16-bit freerun timer is loaded into the input capture data register and an interrupt request can be output.

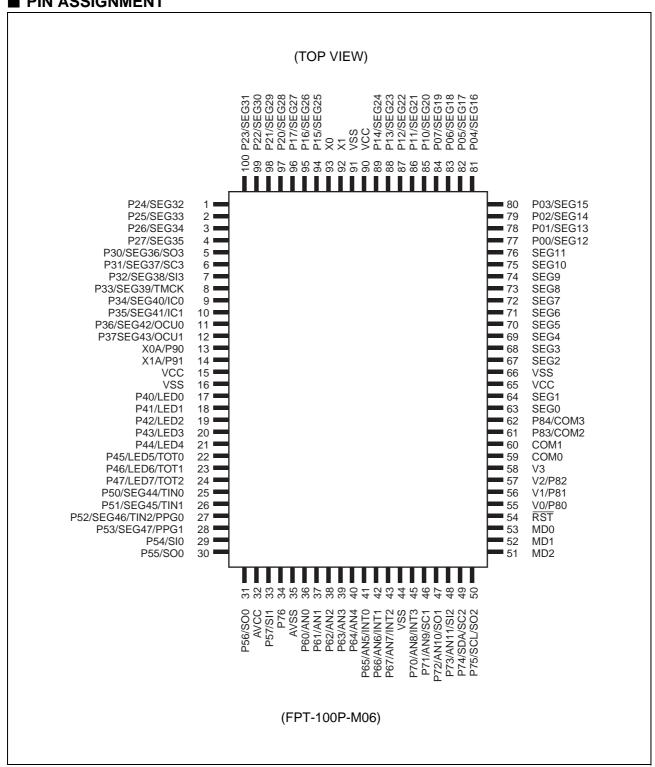
16-bit PPG timer : 2 channels16-bit reload timer : 3 channels

• UART: 2 channels

• Extended I/O serial interface : 2 channels

• DTP/External interrupt circuit: 4 channels

- Activate the extended intelligent I/O service by external interrupt input
- Interrupt output by external interrupt input
- Timer clock output circuit
- Delay interrupt output module
 - · Output an interrupt request for task switching


• I²C Interface : 1 channel

■ PRODUCT LINEUP

1. MB90800 Series

Pa	art number	MB90V800 MB90F804-101/201 MB90803/S					
Туре		For evaluation	FLASH MEMORY	Mask ROM			
1,700			built-in type	built-in type			
		On-chip PLL clock multiplication method(\times 1, \times 2, \times 3, \times 4, 1/2 when PLL stops)					
System clock		Minimum instruction execution time of 40.0 ns (at oscillation of 6.25 MHz, four times the PLL clock)					
ROM capacity		No No	256 Kbytes	128 Kbytes			
RAM capac	-	28 Kbytes	16 Kbytes	4 Kbytes			
INAIVI Capat	oity	Number of basic instruction	1	4 Noytes			
			tion time : 40.0 ns/6.25 MHz	oscillator			
				is used : machine clock			
CPU function	ons		25 MHz, Power su	pply voltage: $3.3 \text{ V} \pm 0.3 \text{ V}$			
		Addressing type: 23 types					
		Program Patch Function : 2					
		The maximum memory spa					
Ports		not used)	shared with resources), (70	ports when the subclock is			
LCD contro	oller/driver	Segment driver that can driver 48 SEG × 4	ve the LCD panel (liquid cry	rstal display) directly, and			
	16-bit free-run	1 channel					
16-bit	timer	Overflow interrupt					
input/	Output compare	2 channels					
output	(OCU)	Pin input factor: matching of the compare register					
timer	Input capture	2 channels					
	(ICU)	Rewriting a register value upon a pin input (rising edge, falling edge, or both edges)					
40 5% 5 1		16-bit reload timer operation (toggle output, single shot output selectable)					
16-Bit Relo	oad Timer	The event count function is optional. The event count function is optional. Three channels are built in.					
			•				
16-bit PPG	timer	Output pin × 2 ports Operating clock frequency: fcp, fcp/22, fcp/24, fcp/26					
		Two channels are built in.					
T' l l		Clock with a frequency of external input clock divided by 16/32/64/128 can be					
i imer clock	coutput circuit	output externally.					
I ² C bus		I ² C Interface. 1 channel is b	ouilt-in.				
		12 channels (input multiple					
8/10-bit A/E	O converter	The 8-bit resolution or 10-bit resolution can be set.					
		Conversion time: 5.9 µs (When machine clock 16.8 MHz works).					
LIADT		Full-duplex double buffer	a transmit (with atart/atan hit	a) are supported			
UART		Asynchronous/synchronous transmit (with start/stop bits) are supported. Two channels are built in.					
Extended I/O serial interface		Two channels are built in.					
Interrupt delay interrupt		Four channel independence (A/D input and using combinedly)					
		Interrupt causes: "L"→"H" edge/"H"→"L" edge/"L" level/"H" level selectable 8 channels (The 8 channels include with the shared A/D input)					
	nal interrupt	Interrupt causes: "L"→"H" edge/"H"→"L" edge/"L" level/"H" level selectable					
	Consumption Mode	Sleep mode/Timebase time	er mode/Watch mode/Stop m	ode/CPU intermittent mode			
Process			CMOS				
Operating \	voltage	2.7 V to 3.6 V					

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin No.	Pin Name	Circuit	Status/function	Description		
QFP	7 m Name	Type*	at reset	Description		
92, 93	X0, X1	Α	Oscillation status	It is a terminal which connects the oscillator. When connecting an external clock, leave the x1 pin side unconnected.		
13, 14	X0A, X1A	В	Oscillation status	It is 32 kHz oscillation pin. (Dual-line model)		
13, 14	P90, P91	G	Port input (High-Z)	General purpose input/output port. (Single-line model)		
51	MD2	М	Mode Pins	Input pin for selecting operation mode. Connect directly to Vss.		
52, 53	MD1, MD0	L	Mode Pins	Input pin for selecting operation mode. Connect directly to Vcc.		
54	RST	K	Reset input	External reset input pin.		
63, 64, 67 to 72, 73 to 76	SEG0 to SEG11	D	LCD SEG output	A segment output terminal of the LCD controller/driver.		
77 to 84	SEG12 to SEG19	E		A segment output terminal of the LCD controller/driver.		
	P00 to P07			General purpose input/output port.		
85 to 89, 94 to 96	SEG20 to SEG27	E		A segment output terminal of the LCD controller/driver.		
94 10 90	P10 to P17			General purpose input/output port.		
97 to 100, 1 to 4	SEG28 to SEG35	Е		A segment output terminal of the LCD controller/driver.		
1104	P20 to P27			General purpose input/output port.		
	SEG36		Port input (High-Z)	A segment output terminal of the LCD controller/driver.		
5	P30	Е		General purpose input/output port.		
	SO3			Serial data output pin of serial I/O channel 3. Valid when serial data output of serial I/O channel 3 is enabled.		
	SEG37			A segment output terminal of the LCD controller/driver.		
6	P31	Е		General purpose input/output port.		
	SC3	C		Serial clock I/O pin of serial I/O channel 3. Valid when serial clock output of serial I/O channel 3 is enabled.		

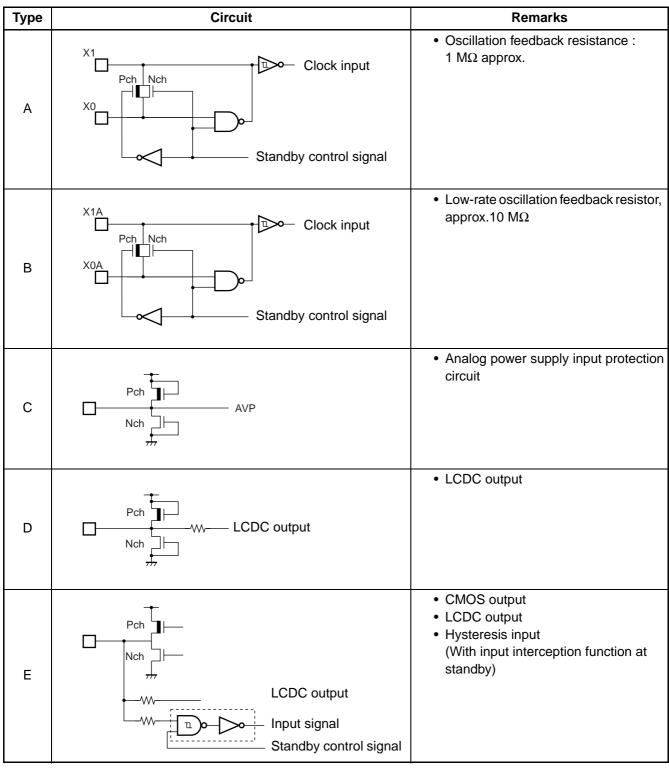
^{* :} For the circuit type, see section "■ I/O CIRCUIT TYPE".

Pin No.		Circuit	Status/function	ction	
QFP	Pin Name	Type*	at reset	Description	
	SEG38			A segment output terminal of the LCD controller/driver.	
	P32	_		General purpose input/output port.	
7	SI3	Е		Serial data input pin of serial I/O channel 3. This pin may be used at any time during serial I/O channel 3 in input mode, so do not use it as other pin function.	
	SEG39			A segment output terminal of the LCD controller/driver.	
8	P33	Е		General purpose input/output port.	
	TMCK			Timer clock output pin. It is effective when permitting the power output.	
	SEG40, SEG41			A segment output terminal of the LCD controller/driver.	
9, 10	P34, P35	E	Port input (High-Z)	General purpose input/output port.	
	IC0, IC1			External trigger input pin of input capture channel 0/channel 1.	
	SEG42, SEG43	E		A segment output terminal of the LCD controller/driver.	
11, 12	P36, P37			General purpose input/output port.	
	OCU0, OCU1			Output terminal for the Output Compares.	
17 to 21	LED0 to LED4	F		It is a output terminal for LED (lo _L = 15 mA).	
	P40 to P44			General purpose input/output port.	
	LED5 to LED7			It is a output terminal for LED (lo∟ = 15 mA).	
00.10.4	P45 to P47	F		General purpose input/output port.	
22 to 24	TOT0 to TOT2	F		External event output pin of reload timer channel 0 to chanel 2. It is effective when permitting the external event output.	
	SEG44 to SEG45			A segment output terminal of the LCD controller/driver.	
05.00	P50, P51	_		General purpose input/output port.	
25, 26	TINO, TIN1	E		External clock input pin of reload timer channel 0, channel 1. It is effective when permitting the external clock input.	

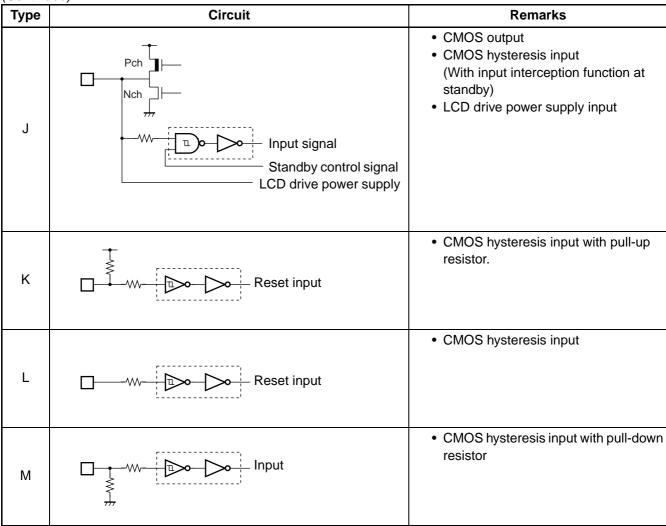
 $^{^{\}star}$: For the circuit type, see section " \blacksquare I/O CIRCUIT TYPE".

Pin No.	Din Nama	Circuit	Status/function	December 1	
QFP	Pin Name	Type*	at reset	Description	
	SEG46			A segment output terminal of the LCD controller/driver.	
	P52			General purpose input/output port.	
27	TIN2	E		External clock input pin of reload timer channel 2. It is effective when permitting the external clock input.	
	PPG0			PPG timer (ch0) output pin.	
	SEG47	_		A segment output terminal of the LCD controller/driver.	
28	P53	E		General purpose input/output port.	
	PPG1			PPG (ch1) timer output pin.	
29	SIO	G		Serial data input pin of UART channel 0. This pin may be used at any time during UART channel 0 in receiving mode, so do not use it as other pin function.	
	P54			General purpose input/output port.	
30	SC0	G	Port input (High-Z)	Serial clock input/output pin of UART channel 0. It is effective when permitting the serial clock output of UART channel 0.	
	P55			General purpose input/output port.	
31	SO0	G		Serial data output pin of UART channel 0. It is effective when permitting the serial clock output of UART channel 0.	
	P56			General purpose input/output port.	
33	SI1	G		Serial data input pin of UART channel 1. This pin may be used at any time during UART channel 1 in receiving mode, so do not use it as other pin function.	
	P57			General purpose input/output port.	
34	P76	G		General purpose input/output port.	
36 to 40	AN0 to AN4	ı		Analog input pin channel 0 to channel 4 of A/D converter. Enabled when analog input setting is " enabled "(set by ADER).	
	P60 to P64			General purpose input/output port.	

^{* :} For the circuit type, see section "■ I/O CIRCUIT TYPE".


Pin No.	Pin Name	Circuit	Status/function	Deceriation		
QFP	Pin Name	Type*	at reset	Description		
	AN5 to AN7			Analog input pin channel 5 to channel 7 of A/D converter. Enabled when analog input setting is " enabled "(set by ADER).		
41 to 43	P65 to P67	I		General purpose input/output port.		
	INT0 to INT2		Analog input (High-Z)	Functions as an external interrupt ch0 to ch2 input pin.		
45	AN8	ı	- (□igii-∠)	Analog input pin channel 8 of A/D converter. Enabled when analog input setting is " enabled "(set by ADER).		
45	P70	1		General purpose input/output port.		
	INT3			Functions as an external interrupt ch3 input pin.		
	AN9	I		Analog input pin channel 9 of A/D converter. Enabled when analog input setting is " enabled "(set by ADER).		
46	P71			General purpose input/output port.		
	SC1			Serial clock input/output pin of UART channel 1. It is effective when permitting the serial clock output of UART channel 1.		
	AN10			Analog input pin channel 10 of A/D converter. Enabled when analog input setting is " enabled "(set by ADER).		
47	P72	I	Port input	General purpose input/output port.		
	SO1		(High-Z)	Serial data output pin of serial I/O channel 1. Valid when serial data output of serial I/O channel 1 is enabled.		
	AN11			Analog input pin channel 11 of A/D converter. Enabled when analog input setting is " enabled "(set by ADER).		
48	P73	ı		General purpose input/output port.		
	SI2	ı		Serial data input pin of serial I/O channel 2. This pin may be used at any time during serial I/O channel 2 in input mode, so do not use it as other pin function.		

^{* :} For the circuit type, see section "■ I/O CIRCUIT TYPE".


Pin No.	Din Nome	Circuit	Status/function	Description
QFP	Pin Name Type* at		at reset	Description
	SDA			Data input/output pin of I ² C Interface. This function is enabled when the operation of the I ² C interface is permitted. While the I ² C interface is running, the port must be set for input use.
49	P74	Н		General purpose input/output port. (N-ch open drain)
	SC2		Port input	Serial clock input pin of serial I/O channel 2. Valid when serial clock output of serial I/O channel 2 is enabled.
	SCL		(High-Z)	Clock input/output pin of I ² C Interface. This function is enabled when the operation of the I ² C interface is permitted. While the I ² C interface is running, the port must be set for input use.
50	P75	Н		General purpose input/output port. (N-ch open drain)
	SO2			Serial data output pin of serial I/O channel 2. Valid when serial data output of serial I/O channel 2 is enabled.
55 to 57	V0 to V2	J	LCD drive power	LCD controller/driver. Reference power terminals of LCD controller/driver.
	P80 to P82		supply input	General purpose input/output port.
59, 60	COM0, COM1	D	LCD COM output	A common output terminal of the LCD controller/driver.
	P83, P84		Port input	General purpose input/output port.
61, 62	COM2, COM3	E	(Hi-Z)	A common output terminal of the LCD controller/driver.
32	AVCC	С		A/D converter exclusive power supply input pin.
35	AVSS	С		A/D converter-exclusive GND power supply pin.
58	V3	J	Power supply	LCD controller/driver Reference power terminals of LCD controller/driver.
15, 65, 90	VCC			These are power supply input pins.
16, 44, 66, 91	VSS			GND power supply pin.

^{* :} For the circuit type, see section "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
F	Pch Nch Input signal Standby control signal	CMOS output (Heavy-current IoL =15 mA for LED drive) Hysteresis input (With input interception function at standby)
G	Pch Nch Input signal Standby control signal	CMOS output CMOS hysteresis input (With input interception function at standby) <note> Output of input/output port and built-in resource share one output buffer. Input of input/output port and built-in resource share one input buffer.</note>
н	Nch Nout Nout Input signal Standby control signal	Hysteresis input (With input interception function at standby) N-ch open drain output
I	Input signal Standby control signal A/D converter Analog input	CMOS output CMOS hysteresis input (With input interception function at standby) Analog input (If the bit of analog input enable register = 1, the analog input of A/D converter is enabled.) Note> Outp put of input/output port and built-in resource share one output buffer. Input of input/output port and built-in resource share one input buffer.

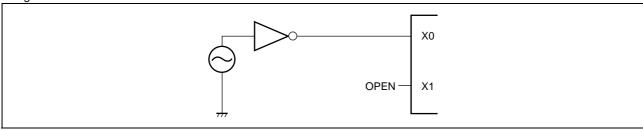
■ HANDLING DEVICES

1. Preventing Latchup, Turning on Power Supply

Latchup may occur on CMOSICs under the following conditions:

- If a voltage higher than Vcc or lower than Vss is applied to input and output pins,
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- If the AVcc power supply is turned on before the Vcc voltage.

Ensure that you apply a voltage to the analog power supply at the same time as Vcc or after you turn on the digital power supply (when you perform power-off, turn off the analog power supply first or at the same time as Vcc and the digital power supply).


When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using CMOSICs, take great care to prevent the occurrence of latchup.

2. Treatment of unused pins

Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down registor. If the A/D converter is not used, connect the pins under the following conditions: AVcc = Vcc and AVss = Vss.

3. About the attention when the external clock is used

· Using external clock

4. Treatment of power supply pins (Vcc/Vss)

To prevent malfunctions of strobe signals due to the rise in the ground level, lower the level of unnecessary electro-magnetic emission, and prevent latchup, and conform to the total current rating in designing devices if multiple $V_{\rm CC}$ or $V_{\rm SS}$ pins exist. Pay attention to connect a power supply to $V_{\rm CC}$ and $V_{\rm SS}$ of MB90800 series device in a lowest-possible impedance. In addition, near pins of MB90800 series device, connecting a bypass capacitor is recommended at 0.1 μ F across $V_{\rm CC}$ and $V_{\rm SS}$.

5. Crystal oscillators circuit

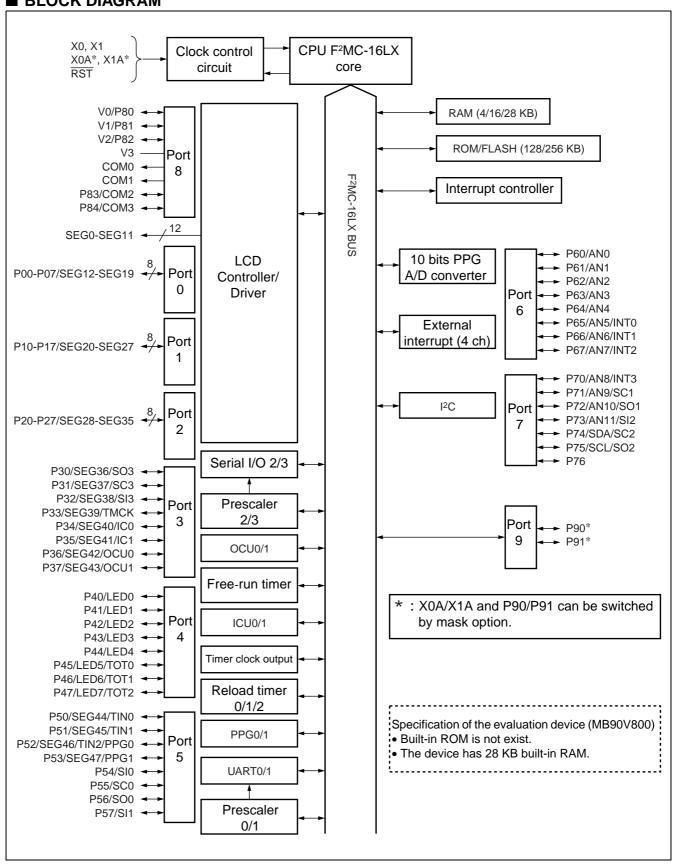
Noise near the X0/X1 and X0A/X1A pin may cause the device to malfunction. Design a print circuit so that X0/X1 and X0A/X1A, a crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to crossing each other as much as possible. It is highly recommended that you should use a printed circuit board artwork because you can expect stable operations from it.

6. Caution on Operations during PLL Clock Mode

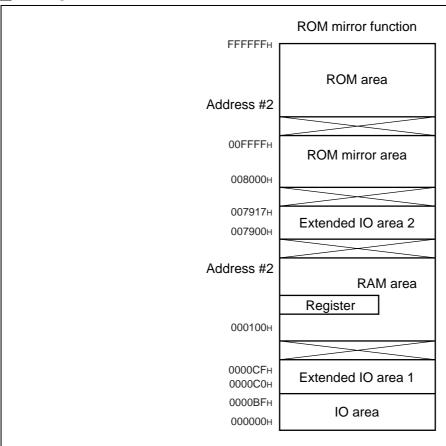
If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed. Performance of this operation, however, cannot be guaranteed.

7. Stabilization of Supply Power Supply

A sudden change in the supply voltage may cause the device to malfunction even within the $V_{\rm CC}$ supply voltage operating range. Therefore, the $V_{\rm CC}$ supply voltage should be stabilized. For reference, the supply voltage should be controlled so that $V_{\rm CC}$ ripple variations (peak- to-peak values) at commercial frequencies (50 MHz/60 Mhz) fall below 10% of the standard $V_{\rm CC}$ supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.


8. Note on Using the two-subsystem product as one-subsystem product

If you are using only one subsystem of the MB90800 series that come in one two-subsystem product, use it with X0A = VSS and X1A = OPEN.


9. Write to FLASH

Ensure that you must write to FLASH at the operating voltage Vcc = 3.13 V to 3.6 V. Ensure that you must normal write to FLASH at the operating voltage Vcc = 3.0 V to 3.6 V.

■ BLOCK DIAGRAM

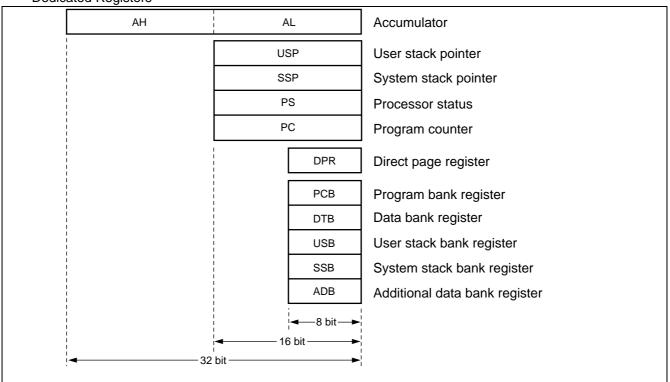
■ MEMORY MAP

Part number	Address #1	Address #2
MB90803	0010FFн	FE0000н
MB90F804	0040FFн	FC0000H
MB90V800	0070FFн	F80000 _H *

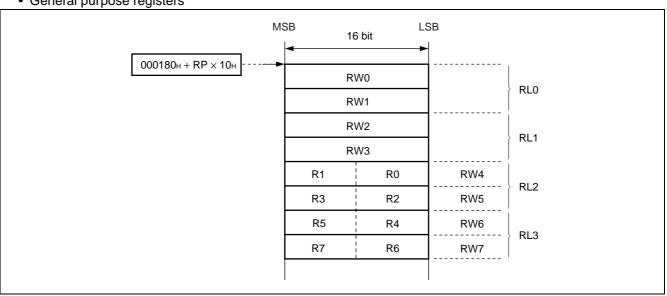
^{*:} ROM is not built into V products.

I must think ROM decipherment region on the tool side.

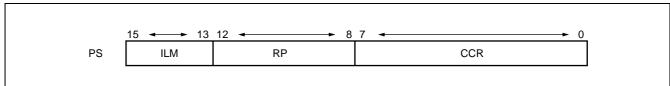
Memory Map of MB90800 Series


- Notes: When the ROM mirror function register has been set, the mirror image data at higher addresses ("FF4000H to FFFFFH") of bank FF is visible from the higher addresses ("008000H to 00FFFFH") of bank 00.
 - For setting of the ROM mirror function, see "■ PERIPHERAL RESOURCE 17. ROM Mirror Function Selection Module".

Reference:


- The ROM mirror function is for using the C compiler small model.
- The lower 16-bit addresses of bank FF are equivalent to those of bank 00. Note that because the ROM area
 of bank FF exceeds
 - 32 K bytes, all data in the ROM area cannot be shown in mirror image in bank 00.
- When the C compiler small model is used, the data table mirror image can be shown at " 008000H to 00FFFFH " by storing the data table at " FF8000H to FFFFFFH. Therefore, data tables in the ROM area can be referenced without declaring the far addressing with the pointer.

■ F²MC-16L CPUProgramming model


• Dedicated Registers

• General purpose registers

Processor status

■ I/O MAP

1 (10(10(125)) 1 (11)(12(1))		Read/ Write	Resource name	Initial Value			
ОООООЗН PDR2 Port 2 data reg ОООООЗН PDR3 Port 3 data reg ОООООБН PDR4 Port 4 data reg ОООООБН PDR5 Port 5 data reg ОООООВН PDR6 Port 6 data reg ОООООВН PDR7 Port 7 data reg ОООООВН PDR8 Port 8 data reg ОООООВН PDR9 Port 9 data reg ОООООВН DDR0 Port 1 direction ОООООНН DDR1 Port 2 direction ОООО1Н DDR2 Port 2 direction ОООО1Н DDR3 Port 3 direction ОООО1Н DDR4 Port 4 direction ОООО1Н DDR5 Port 5 direction ОООО1БН DDR6 Port 6 direction ОООО1ВН DDR7 Port 7 direction ОООО1ВН DDR9 Port 8 direction ОООО1ВН DDR9 Port 9 direction ОООО1ВН ADER0 Analog input er ОООО2ВН SCR0 Control register ОООО2ВН SCR0	ster	R/W	Port 0	XXXXXXXX			
DO0003H PDR3 Port 3 data reg	ster	R/W	Port 1	XXXXXXXX			
000004H PDR4 Port 4 data reg 000005H PDR5 Port 5 data reg 000006H PDR6 Port 6 data reg 000007H PDR7 Port 7 data reg 000008H PDR8 Port 8 data reg 000009H PDR9 Port 9 data reg 000006H 000010H DDR0 Port 0 direction 000012H DDR2 Port 2 direction 000014H DDR3 Port 3 direction 000015H DDR4 Port 4 direction 000015H DDR5 Port 5 direction 000016H DDR6 Port 6 direction 000017H DDR7 Port 7 direction 000018H DDR8 Port 8 direction 000019H DDR9 Port 9 direction 000019H DDR9 Port 9 direction 000010H SCR0 Control register 000021H SCR0 Communication 000024H SSR0 Status register	ster	R/W	Port 2	XXXXXXXX			
000005нPDR5Port 5 data reg000006нPDR6Port 6 data reg000007нPDR7Port 7 data reg000008нPDR8Port 8 data reg000009нPDR9Port 9 data reg00000Aн toDDR0Port 0 direction000011нDDR1Port 1 direction000012нDDR2Port 2 direction000013нDDR3Port 3 direction000014нDDR4Port 4 direction000015нDDR5Port 5 direction000016нDDR6Port 6 direction000017нDDR7Port 7 direction000018нDDR8Port 8 direction000019нDDR9Port 9 direction00001DhO0001EhADER0Analog input er000020hSMR0Mode Register000021hSCR0Control register000022hS1DR0/ SODR0Input/output da000023hSSR0Status register000024hCDCR0Communication	ster	R/W	Port 3	XXXXXXXX			
ОООООБНPDR6Port 6 data regОООООТНPDR7Port 7 data regОООООВНPDR8Port 8 data regОООООВНPDR9Port 9 data regООООООБНDDR0Port 0 directionОООО1НDDR1Port 1 directionОООО12НDDR2Port 2 directionОООО13НDDR3Port 3 directionОООО14НDDR4Port 4 directionОООО15НDDR5Port 5 directionОООО16НDDR6Port 6 directionОООО17НDDR7Port 7 directionОООО18НDDR8Port 8 directionОООО19НDDR9Port 9 directionОООО14НADER0Analog input erОООО15НADER1Analog input erОООО16НSCR0Control registerОООО20НSMR0Mode RegisterОООО21НSCR0Control registerОООО22НS1DR0/SODR0Input/output daОООО23НSSR0Status registerОООО24НCDCR0Communication	ster	R/W	Port 4	XXXXXXXXB			
000007H PDR7 Port 7 data reg 000008H PDR8 Port 8 data reg 000009H PDR9 Port 9 data reg 00000AH to 000010H DDR0 Port 0 direction 000012H DDR1 Port 1 direction 000012H DDR2 Port 2 direction 000013H DDR3 Port 3 direction 000014H DDR4 Port 4 direction 000015H DDR5 Port 5 direction 000015H DDR7 Port 7 direction 000017H DDR7 Port 8 direction 000018H DDR8 Port 9 direction 000019H DDR9 Port 9 direction 00001AH to 00001AH Analog input er 00001EH ADER0 Analog input er 000026H SMR0 Mode Register 000021H SCR0 Control register 000024H SSR0 Status register 000024H CDCR0 Communication	ster	R/W	Port 5	XXXXXXXXB			
000008н PDR8 Port 8 data reg 000009н PDR9 Port 9 data reg 000000Fн 00000Fн Port 0 direction 000010н DDR0 Port 1 direction 000012н DDR2 Port 2 direction 000013н DDR3 Port 3 direction 000014н DDR4 Port 4 direction 000015н DDR5 Port 5 direction 000016н DDR6 Port 6 direction 000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Aн to Pont 9 direction 00001Aн ADER0 Analog input er 00001Bн ADER1 Analog input er 00002Dн SMR0 Mode Register 000021h SCR0 Control register 000022h S1DR0/ SODR0 Input/output da 000024h CDCR0 Communication	ster	R/W	Port 6	XXXXXXXXB			
000009н PDR9 Port 9 data reg 000000Fн 000000Fн DDR0 Port 0 direction 000010н DDR1 Port 1 direction 000012н DDR2 Port 2 direction 000013н DDR3 Port 3 direction 000014н DDR4 Port 4 direction 000015н DDR5 Port 5 direction 000016н DDR6 Port 6 direction 000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Aн to 00001Ah 00001Fh ADER0 Analog input er 000020h SMR0 Mode Register 000021h SCR0 Control register 000022h S1DR0/ SODR0 Input/output da 000024h SSR0 Status register 000024h CDCR0 Communication	ster	R/W	Port 7	- XXXXXXXB			
00000Ан to 00000FH 000010H DDR0 Port 0 direction 000012H DDR1 Port 1 direction 000012H DDR2 Port 2 direction 000013H DDR3 Port 3 direction 000014H DDR4 Port 4 direction 000015H DDR5 Port 5 direction 000016H DDR6 Port 6 direction 000018H DDR8 Port 8 direction 000019H DDR9 Port 9 direction 00001AH to 00001AH 00001BH ADER0 Analog input er 00001FH ADER1 Analog input er 000020H SMR0 Mode Register 000021H SCR0 Control register 000022H SSR0 Status register 000024H CDCR0 Communication	ster	R/W	Port 8	XXXXX _B			
to	ster	R/W	Port 9	XX _B			
00000Fн DDR0 Port 0 direction 000011н DDR1 Port 1 direction 000012н DDR2 Port 2 direction 000013н DDR3 Port 3 direction 000014н DDR4 Port 4 direction 000015н DDR5 Port 5 direction 000016н DDR6 Port 6 direction 000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Aн to 00001Ah 00001Bн ADER0 Analog input er 00001Bн ADER1 Analog input er 000020h SMR0 Mode Register 000021h SCR0 Control register 000022h SSR0 Status register 000024h CDCR0 Communication							
000010н DDR0 Port 0 direction 000011н DDR1 Port 1 direction 000012н DDR2 Port 2 direction 000013н DDR3 Port 3 direction 000014н DDR4 Port 4 direction 000015н DDR5 Port 5 direction 000016н DDR6 Port 6 direction 000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Aн to Analog input er 00001Aн ADER0 Analog input er 00001Fh ADER1 Analog input er 000020h SMR0 Mode Register 000021h SCR0 Control register 000022h SSR0 Status register 000024h CDCR0 Communication	Prohibited						
000011н DDR1 Port 1 direction 000012н DDR2 Port 2 direction 000013н DDR3 Port 3 direction 000014н DDR4 Port 4 direction 000015н DDR5 Port 5 direction 000016н DDR6 Port 6 direction 000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Dн DOR9 Port 9 direction 00001Dн ADER0 Analog input er 00001Dн ADER1 Analog input er 000020н SMR0 Mode Register 000021н SCR0 Control register 000022h SSR0 Status register 000024н CDCR0 Communication	register	R/W	Port 0	0 0 0 0 0 0 0 0в			
000012н DDR2 Port 2 direction 000013н DDR3 Port 3 direction 000014н DDR4 Port 4 direction 000015н DDR5 Port 5 direction 000016н DDR6 Port 6 direction 000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Aн to Analog input er 00001Pн ADER1 Analog input er 00002H SMR0 Mode Register 000021н SCR0 Control register 000022н S1DR0/ SODR0 Input/output da 000023н SSR0 Status register 000024н CDCR0 Communication		R/W	Port 1	00000000			
000013н DDR3 Port 3 direction 000014н DDR4 Port 4 direction 000015н DDR5 Port 5 direction 000016н DDR6 Port 6 direction 000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Dн DDR9 Port 9 direction 00001Dн ADER0 Analog input er 00001Dн ADER1 Analog input er 000020н SMR0 Mode Register 000021н SCR0 Control register 000022h SSR0 Status register 000024н CDCR0 Communication	<u> </u>	R/W	Port 2	00000000			
000014н DDR4 Port 4 direction 000015н DDR5 Port 5 direction 000016н DDR6 Port 6 direction 000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Aн to Analog input er 00001Dн ADER0 Analog input er 00001Fн ADER1 Analog input er 000020н SMR0 Mode Register 000021н SCR0 Control register 000022н S1DR0/ SODR0 Input/output da 000023н SSR0 Status register 000024н CDCR0 Communication		R/W	Port 3	00000000			
000016н DDR6 Port 6 direction 000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Aн to 00001Dh 00001Eн ADER0 Analog input er 00001Fн ADER1 Analog input er 000020H SMR0 Mode Register 000021H SCR0 Control register 000022H SSR0 Status register 000023H SSR0 Communication		R/W	Port 4	0 0 0 0 0 0 0 0в			
000017н DDR7 Port 7 direction 000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Aн to 00001DH 00001Eн ADER0 Analog input er 00002H SMR0 Mode Register 000021н SCR0 Control register 000022H SSR0 Status register 000023H SSR0 Status register 000025H CDCR0 Communication	register	R/W	Port 5	0 0 0 0 0 0 0 0в			
000018н DDR8 Port 8 direction 000019н DDR9 Port 9 direction 00001Aн to DDR9 Port 9 direction 00001Dн Analog input er 00001Eн ADER0 Analog input er 00002H SMR0 Mode Register 000021н SCR0 Control register 000022н S1DR0/SODR0 Input/output da 000023H SSR0 Status register 000024H CDCR0 Communication	register	R/W	Port 6	0 0 0 0 0 0 0 0в			
000019н DDR9 Port 9 direction 00001Ан to 00001Dн ADER0 Analog input er 00001Eн ADER1 Analog input er 000020н SMR0 Mode Register 000021н SCR0 Control register 000022н S1DR0/ SODR0 Input/output da 000023н SSR0 Status register 000024н CDCR0 Communication	register	R/W	Port 7	- 0 0 0 0 0 0 0в			
00001Ан to ADER0 Analog input er 00001Ен ADER1 Analog input er 00001Ен ADER1 Analog input er 000020н SMR0 Mode Register 000021н SCR0 Control register 000022н S1DR0/SODR0 Input/output da 000023н SSR0 Status register 000024н CDCR0 Communication	register	R/W	Port 8	ОООООВ			
to 00001DH 00001EH ADER0 Analog input er 00001FH ADER1 Analog input er 000020H SMR0 Mode Register 000021H SCR0 Control register 000022H S1DR0/SODR0 Input/output da 000023H SSR0 Status register 000024H 000025H CDCR0 Communication	register	R/W	Port 9	0 Ов			
00001FH ADER1 Analog input er 000020H SMR0 Mode Register 000021H SCR0 Control register 000022H S1DR0/ SODR0 Input/output da 000023H SSR0 Status register 000024H CDCR0 Communication	Prohibited						
000020н SMR0 Mode Register 000021н SCR0 Control register 000022н S1DR0/ SODR0 Input/output da 000023н SSR0 Status register 000024н CDCR0 Communication	able 0	R/W	Port 6, A/D	11111111			
000021н SCR0 Control register 000022н S1DR0/ SODR0 Input/output da 000023н SSR0 Status register 000024н CDCR0 Communication	able 1	R/W	Port 7, A/D	1111в			
000022H S1DR0/ SODR0 Input/output da 000023H SSR0 Status register 000024H	ch0	R/W		0 0 0 0 0 - 0 Ов			
O00022H SODR0 Input/output da 000023H SSR0 Status register 000024H CDCR0 Communication	ch0	R/W		0 0 0 0 0 1 0 0в			
000024н CDCR0 Communication	a register ch0	R/W	UART0	XXXXXXXXB			
000025u CDCR0 Communication	ch0	R/W		0 0 0 0 10 0 0в			
100007501 (10080)	Prohibited.						
register ch0	prescaler control	R/W	Prescaler 0	000000в			
000026н to 000027н	Prohibited						

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value		
000028н	SMR1	Mode Register ch1	R/W		0 0 0 0 0 - 0 Ов		
000029н	SCR1	Control register ch1	R/W		00000100в		
00002Ан	SIDR1/ SODR1	Input/output data register ch1	R/W	UART1	XXXXXXXXB		
00002Вн	SSR1	Status register ch1		00001000в			
00002Сн		Prohibite	ed				
00002Dн	CDCR1	Communication prescaler control register ch1	R/W	Prescaler 1	000000в		
00002Ен		Drobibite					
00002Fн		Prohibite	eu				
000030н	ENIR	External interrupt enable	R/W		0000В		
000031н	EIRR	External interrupt request	R/W	External interrupt	XXXXXXXX		
000032н	ELVR	External interrupt level (lower)	R/W		0 0 0 0 0 0 0 0в		
000033н		Prohibite	ed	1			
000034н	ADCS0	A/D control status register (lower)	R/W		00в		
000035н	ADCS1	A/D control status register (upper)	R/W	A /D	0 0 0 0 0 0 0 0 _B		
000036н	ADCR0	A/D data register (lower)	R	A/D converter	XXXXXXXX		
000037н	ADCR1	A/D data register (upper)	R/W		0 0 1 0 1 XXXв		
000038н		Prohibite					
000039н	ADMR	A/D conversion channel set register	R/W	A/D converter	00000000		
00003Ан	ODOL D	O	DAM		XXXXXXXX		
00003Вн	CPCLR	Compare clear register	R/W		XXXXXXXX		
00003Сн	TODT	T. D	D 44/	16-bit free-run	0 0 0 0 0 0 0 0в		
00003Dн	TCDT	Timer Data register	R/W	timer	0 0 0 0 0 0 0 0в		
00003Ен	TCCSL	Timer control status register (lower)	R/W		0 0 0 0 0 0 0 0 _B		
00003Fн	TCCSH	Timer control status register (upper)	R/W		0 0 0 0 0 0в		
000040н			•				
to 000043н		Prohibite	ed				
000044н	IPCP0	Input Capture register 0			XXXXXXXXB		
000045н	11 01 0	Imput Supture register o	R		XXXXXXXX		
000046н	IPCP1	Input Capture register 1		Input Capture 0/1	XXXXXXXXB		
000047н	IFCFT	Imput Capture register 1			XXXXXXXXB		
000048н	ICS01	Input capture control status 0/1	R/W		0 0 0 0 0 0 0 0в		
000049н	Prohibited						
00004Ан	OCCDO	Output Compare register 0	DAM	Output compare 0	XXXXXXXX		
00004Вн	OCCP0	Output Compare register 0	R/W	Output compare 0	XXXXXXXX		
00004Сн	000004	Output Compare register 4	DAM	Output compare 4	XXXXXXXX		
00004Dн	OCCP1	Output Compare register 1	R/W	Output compare 1	XXXXXXXX		
	L	1	I	I	(Continued)		

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value		
00004Ен	OCSL	Output compare control status (lower)	R/W	Output Compare	0 0 0 0 0 Ов		
00004Fн	OCSH	Output compare control status (upper)	R/W	0/1	00000		
000050н	TMCSR0L	Timer control status register 0 (lower)	R/W		0 0 0 0 0 0 0 0 0в		
000051н	TMCSR0H	Timer Control Status register 0 (upper)	R/W	16-bit reload	ООООВ		
000052н	TMR0/	Times register O/Delead register O	D/M	timer 0	XXXXXXXXB		
000053н	TMRLR0	Timer register 0/Reload register 0	R/W		XXXXXXXXB		
000054н	TMCSR1L	Timer control status register 1 (lower)	R/W		0 0 0 0 0 0 0 0 0в		
000055н	TMCSR1H	Timer control status register 1 (upper)	R/W	Reload timer 1	0000B		
000056н	TMR1/	Timer register 1/Poload register 1	R/W	Reload timer i	XXXXXXXXB		
000057н	TMRLR1	Timer register 1/Reload register 1	R/VV		XXXXXXXXB		
000058н	TMCSR2L	Timer control status register 2 (lower)	R/W		0 0 0 0 0 0 0 0 0в		
000059н	TMCSR2H	Timer control status register 2 (upper)	R/W	Reload timer 2	ООООВ		
00005Ан	TMR2/	Times register 2/Deleged register 2	R/W	Reload tiller 2	XXXXXXXXB		
00005Вн	TMRLR2	Timer register 2/Reload register 2	R/VV		XXXXXXXXB		
00005Сн	LCRL	LCDC control register (lower)	R/W	100 111	00010000в		
00005Дн	LCRH	LCDC control register (upper)	R/W	LCD controller/ driver	0 0 0 0 0 0 0 0 0в		
00005Ен	LCRR	LCDC range register R/W		0 0 0 0 0 0 0 0 0в			
00005Fн		Prohibite	d				
000060н	SMCS0	Serial mode control status register	R/W	SIO	ООООВ		
000061н	SIVICSU	(ch2)	FC/ VV	(Extended Serial	0000010в		
000062н	SDR0	Serial Data Register (ch2)	R/W	I/O)	XXXXXXXXB		
000063н	SDCR0	Control register of clock dividing frequency (ch2)	R/W	Communication prescaler (SIO)	0 0 0 0 0в		
000064н	SMCS1	Serial mode control status register	R/W	SIO	ООООВ		
000065н	SIVICST	(ch3)	IX/VV	(Extended Serial	0000010в		
000066н	SDR1	Serial Data Register (ch3)	R/W	I/O)	XXXXXXXXB		
000067н	SDCR1	Control register of clock dividing frequency (ch3)	R/W	Communication prescaler (SIO)	0 0 0 0 0в		
000068н	Duck it is a d						
000069н	Prohibited						
00006Ан	IBSR	I ² C bus status register	R		0 0 0 0 0 0 0 0в		
00006Вн	IBCR	I ² C bus control register	R/W]	0 0 0 0 0 0 0 0 0в		
00006Сн	ICCR	I ² C bus clock selection register	R/W	I ² C	0XXXXXB		
00006Dн	IADR	I ² C bus address register	R/W]	- XXXXXXXB		
00006Ен	IDAR	I ² C bus data register	R/W]	XXXXXXXXB		
00006Fн	ROMM	ROM mirror	W	ROM mirror	XXXXXXX1 _B		

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value			
000070н	PDCRL0	DDC0 down counter register	R		11111111			
000071н	PDCRH0	PPG0 down counter register	K		11111111			
000072н	PCSRL0	PPG0 cycle set register	W		XXXXXXXXB			
000073н	PCSRH0	rrou cycle set register	VV	16 bit	XXXXXXXXB			
000074н	PDUTL0	PPG0 duty setting register	W	PPG0	XXXXXXXXB			
000075н	PDUTH0	rroo daty setting register	VV		XXXXXXXXB			
000076н	PCNTL0	PPG0 control status register	R/W		000000			
000077н	PCNTH0	FFG0 control status register	IX/ V V		000000-в			
000078н	PDCRL1	PPG1 down counter register	R		11111111			
000079н	PDCRH1	FFG 1 down counter register			11111111			
00007Ан	PCSRL1	PPG1 cycle set register	W		XXXXXXXXB			
00007Вн	PCSRH1	FFG 1 cycle set register	VV	16 bit	XXXXXXXXB			
00007Сн	PDUTL1	PPG1 duty setting register	W	PPG1	XXXXXXXXB			
00007Dн	PDUTH1	rro i duty setting register	XXXXXXXXB					
00007Ен	PCNTL1	PPG1 control status register	R/W		000000			
00007Fн	PCNTH1	FFGT control status register	11/ 44		000000-в			
000080н								
to 000095н	(Reserved)							
000095н		Prohibit	and .					
000096н		(Reserve						
000097н		(Veseiv	eu)					
to		Prohibit	ed					
00009Дн								
00009Ен	PACSR	ROM correction control register	R/W	ROM Correction	00000000			
00009Fн	DIRR	Delayed interrupt/release	R/W	Delayed interrupt	Ов			
0000А0н	LPMCR	Low power consumption mode	R/W	Low power	00011000в			
0000А1н	CKSCR	Clock selector	R/W	consumption control circuit	1 1 1 1 1 1 0 Ов			
0000А2н								
to 0000A7н	Prohibited							
0000А7н	WDTC Watchdog control R/W Watchdog timer XXXXX 1 1 1 _B							
0000А9н	TBTC	Time-base timer control register	R/W	Time-base timer	1 0 0 1 0 0в			
0000ААн	WTC	WTC Watch timer control register R/W Watch timer (Sub clock) 1 X0 1 1 0 0 0 _B						
0000ABн to		Prohibit	od					
0000ADн		PIONIDIO	eu					
	<u> </u>				(Continued)			

(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000АЕн	FMCS	Flash control register	R/W	Flash I/F	0 0 0 Х 0 0 0 0в
0000АГн	TMCS	Timer clock output control register	R/W	Timer clock devide	XXXXX 0 0 0 _B
0000В0н	ICR00	Interrupt control register 00	R/W		00000111в
0000В1н	ICR01	Interrupt control register 01	R/W		00000111в
0000В2н	ICR02	Interrupt control register 02	R/W		00000111в
0000ВЗн	ICR03	Interrupt control register 03	R/W		00000111в
0000В4н	ICR04	Interrupt control register 04	R/W		00000111в
0000В5н	ICR05	Interrupt control register 05	R/W		00000111в
0000В6н	ICR06	Interrupt control register 06	R/W		00000111в
0000В7н	ICR07	Interrupt control register 07	R/W	Interrupt	00000111в
0000В8н	ICR08	Interrupt control register 08	controller	00000111в	
0000В9н	ICR09	Interrupt control register 09	R/W		00000111в
0000ВАн	ICR10	Interrupt control register 10	R/W		00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12	R/W		00000111в
0000ВДн	ICR13	Interrupt control register 13	R/W		00000111в
0000ВЕн	ICR14	Interrupt control register 14	R/W		00000111в
0000ВFн	ICR15	Interrupt control register 15	R/W		00000111в
001FF0н			R/W		XXXXXXXXB
001FF1н	PADR0	Program address detection register 0	R/W		XXXXXXXXB
001FF2н			R/W	Address matching	XXXXXXXXB
001FF3н			R/W	detection function	XXXXXXXXB
001FF4н	PADR1	Program address detection register 1	R/W		XXXXXXXXB
001FF5н			R/W]	XXXXXXXXB
007900н to 007917н	VRAM	LCD display RAM	R/W	LCD controller/ driver	XXXXXXX

• Read/Write

R/W Readable and Writable

- R Read only
- W Write only
- Initial values
 - 0 Initial Value is "0".
 - 1 Initial Value is "1".
 - X Initial Value is Indeterminate.

■ INTERRUPT SOURCES, INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTERS

Intervent course	El ² OS	Int	errupt	vector	Interrupt of	Priority	
Interrupt source	readiness	Num	ber*	Address	ICR	Address	Priority
Reset	×	#08	08н	FFFFDCH	_	_	High
INT 9 instruction	×	#09	09н	FFFFD8 _H	_	_	
Exceptional treatment	×	#10	0Ан	FFFFD4 _H	_	_	1 1
DTP/External interrupt ch0	0	#11	0Вн	FFFFD0 _H	ICR00	0000В0н	
DTP/External interrupt ch1	0	#13	0Дн	FFFFC8 _H	ICR01	0000В1н	
Serial I/O ch2	×	#15	0Гн	FFFFC0 _H	ICR02	0000В2н	
DTP/External interrupt ch2/3	0	#16	10н	FFFFBCH	ICRUZ	0000Б2н	
Serial I/O ch3	×	#17	11н	FFFFB8 _H	ICR03	0000ВЗн	
16-bit free-run timer	0	#18	12н	FFFFB4 _H	ICKUS	0000B3H	
Watch timer	×	#19	13н	FFFFB0 _H	ICR04	0000В4н	
16-Bit Reload Timer ch2	0	#21	15н	FFFFA8 _H	ICR05	0000В5н	
16-Bit Reload Timer ch0	Δ	#23	17н	FFFFA0 _H	ICR06	0000В6н	
16-Bit Reload Timer ch1	Δ	#24	18н	FFFF9C _H	ICKU	ООООБОН	
Input capture ch0	Δ	#25	19н	FFFF98 _H	ICR07	0000В7н	
Input capture ch1	Δ	#26	1Ан	FFFF94 _H	ICKUI	0000Б7н	
PPG timer ch0 counter-borrow	0	#27	1Вн	FFFF90 _H	ICR08	0000В8н	
Output compare match	0	#29	1Dн	FFFF88 _H	ICR09	0000В9н	
PPG timer ch1 counter-borrow	0	#31	1Fн	FFFF80 _H	ICR10	0000ВАн	
Time-base timer	×	#33	21н	FFFF78 _H	ICR11	0000ВВн	
UART0 reception end	0	#35	23н	FFFF70 _H	ICR12	0000ВСн	
UART0 transmission end	Δ	#36	24н	FFFF6C _H	ICKIZ	ООООВСН	
A/D converter conversion termination	0	#37	25н	FFFF68 _H	ICR13	0000ВДн	
I ² C Interface	×	#38	26н	FFFF64 _H	ICKIS	UUUUDDH	
UART1 : Reception	0	#39	27н	FFFF60 _H	ICR14	0000ВЕн]
UART1 : Transmission	Δ	#40	28н	FFFF5C _H	ICK14	UUUUDEH	
Flash memory status	×	#41	29н	FFFF58 _H	ICR15	0000ВFн	▼
Delayed interrupt output module	×	#42	2Ан	FFFF54 _H	ICK 13	UUUUDFH	Low

○ : Available

× : Unavailable

⊚ : Available El²OS function is provided.

 \triangle : Available when a cause of interrupt sharing a same ICR is not used.

- *: When interrupts of the same level are output at the same time, the interrupt with the smallest interrupt vector number has the priority.
 - When there are two interrupt causes in the same interrupt control register (ICR) and use of IIOS is enabled, IIOS is started upon detection of one of the interrupt causes. As interrupts other than the start cause are masked during IIOS start, masking one of the interrupt requests is recommended when using IIOS.
 - For a resource that has two interrupt causes in the same interrupt control register (ICR), the interrupt flag is cleared by an IIOS interrupt clear signal.

■ PERIPHERAL RESOURCES

1. I/O port

The I/O ports function to output data from the CPU to I/O pins via their port data register (PDR) and send signals input to I/O pins to the CPU. In addition, the port can randomly set the direction of the input/output of the I/O pin in bit by the port direction register (DDR).

The MB90800 series has 68 (70 ports when the subclock is not used) input/output pins. Port0 to port8 (port0 to port9 when the subclock is not used) are input/output port.

(1) Port data register

(1) Port data register										
PDR0	7	6	5	4	3	2	1	0	Initial Value	Access
Address : 000000н	P07	P06	P05	P04	P03	P02	P01	P00	Indeterminate	R/W*
PDR1	15	14	13	12	11	10	9	8		
Address : 000001н	P17	P16	P15	P14	P13	P12	P11	P10	Indeterminate	R/W*
PDR2	7	6	5	4	3	2	1	0		
Address : 000002н	P27	P26	P25	P24	P23	P22	P21	P20	Indeterminate	R/W*
PDR3	15	14	13	12	11	10	9	8		
Address : 000003н	P37	P36	P35	P34	P33	P32	P31	P30	Indeterminate	R/W*
PDR4	7	6	5	4	3	2	1	0		
Address : 000004н	P47	P46	P45	P44	P43	P42	P41	P40	Indeterminate	R/W*
PDR5	15	14	13	12	11	10	9	8		
Address: 000005 _H	P57	P56	P55	P54	P53	P52	P51	P50	Indeterminate	R/W*
PDR6	7	6	5	4	3	2	1	0		
Address : 000006н	P67	P66	P65	P64	P63	P62	P61	P60	Indeterminate	R/W*
PDR7	15	14	13	12	11	10	9	8		
Address : 000007н	—	P76	P75	P74	P73	P72	P71	P70	Indeterminate	R/W*
PDR8	7	6	5	4		2	4			
Address : 000008 _H		<u> </u>	<u> </u>	4 P84	3 P83	P82	1 P81	0 P80	Indeterminate	R/W*
PDR9	4.5	4.4	40	40	4.4	40				
Address : 000009н	15 	14	13	12	11	10	9 P91	8 P90	Indeterminate	R/W*
				<u> </u>						

When reading: Read the corresponding pin level.
When writing: Write into the latch for the input/output.

• Output mode

When reading : Read the value of the data register latch.

When writing : Write into the corresponding pin.

(2) Port direction register

2) Port direction regis	ster									
DDR0	7	6	5	4	3	2	1	0	Initial Value	Access
Address: 000010 _H	D07	D06	D05	D04	D03	D02	D01	D 00	0000000В	R/W
DDR1	15	14	13	12	11	10	9	8		
Address : 000011 _H	D17	D16	D15	D14	D13	D12	D11	D10	0000000В	R/W
DDR2	7	6	5	4	3	2	1	0		
Address: 000012H	D27	D26	D25	D24	D23	D22	D21	D20	0000000В	R/W
DDR3	15	14	13	12	11	10	9	8		
Address: 000013 _H	D37	D36	D35	D34	D33	D32	D31	D30	0000000В	R/W
DDR4	7	6	5	4	3	2	1	0		
Address: 000014H	D47	D46	D45	D44	D43	D42	D41	D40	0000000в	R/W
DDR5	15	14	13	12	11	10	9	8		
Address : 000015 _H	D57	D56	D55	D54	D53	D52	D51	D50	0000000в	R/W
DDR6	7	6	5	4	3	2	1	0		
Address : 000016н	D67	D66	D65	D64	D63	D62	D61	D60	0000000В	R/W
DDR7	15	14	13	12	11	10	9	8		
Address : 000017 _H		D76	D75	D74	D73	D72	D71	D70	- 0000000в	R/W
DDR8				4	2	2	4			
Address : 000018 _H	7	6	5 —	4 D84	3 D83	2 D82	1 D81	0 D80	00000в	R/W
DDR9	45	4.4	40	40	4.4	40				
Address : 000019 _H	15 —	14	13	12	11	10	9 D91	8 D90	00в	R/W
			<u> </u>							

[•] When each terminal functions as a port, each correspondent pin are controlled to following;

Note: When accessing this register by using the instruction of the read modify write system (instructions such as bit set) is mode, the bit targeted by an instruction becomes the defined value, while the content of the output register set with the other. Therefore, be sure to write an expected value into PDR firstly, and then set DDR and finally change to the output when changing the input pin to the output pin is made.

^{0 :} Input mode

^{1 :} Output mode This bit becomes "0" after a reset.

(3) Analog Input Enable register

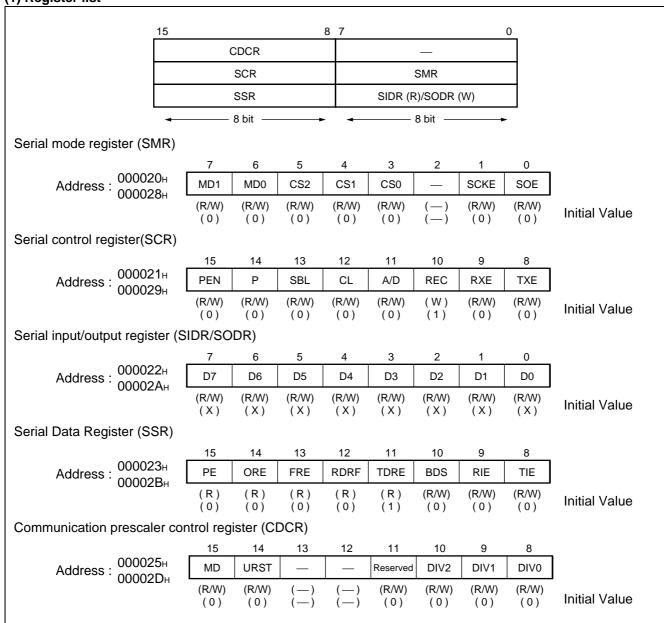
ADER0 Address : 00001E _H	7 ADE7	6 ADE6	5 ADE5	4 ADE4	3 ADE3	2 ADE2	1 ADE1	0 ADE0	Initial Value	Access R/W
ADER1	15	14	13	12	11	10	9	8		
Address : 00001F _H	_		1	_	ADE11	ADE10	ADE9	ADE8	1111в	R/W

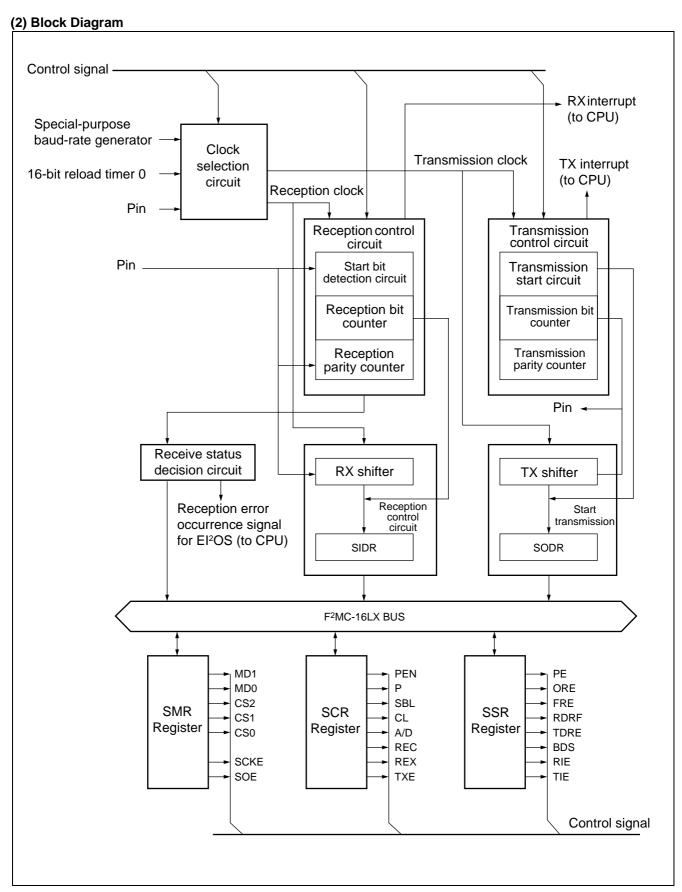
Control each pin of Port 6 as follows.

0 : Port input/output mode.

1 : Analog input mode. This bit becomes "1" after a reset.

2. UART

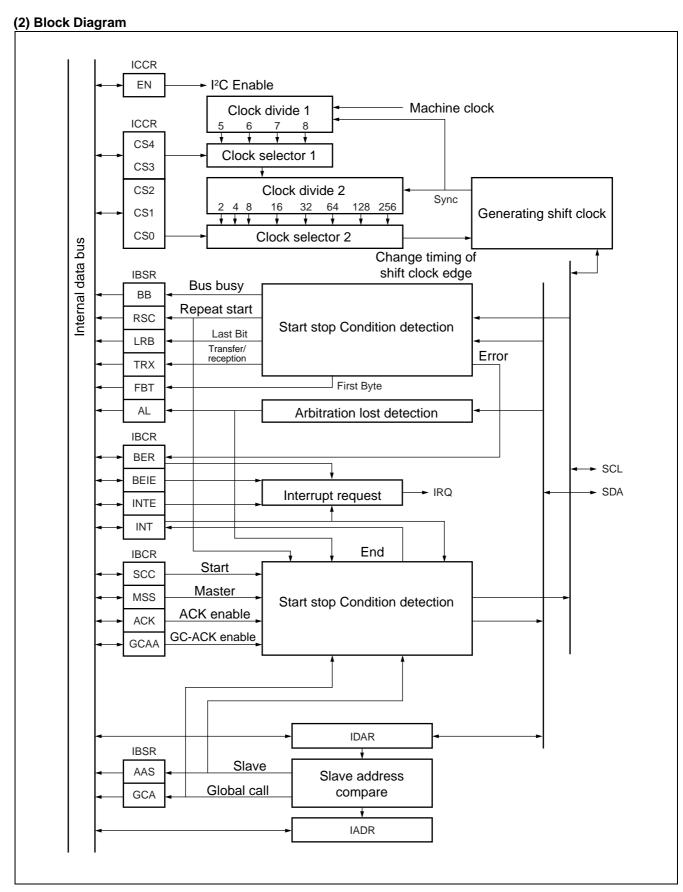

UART is a serial I/O port for asynchronous (start-stop synchronization) communication or CLK synchronous communications.


- With full-duplex double buffer
- Clock asynchronous (start-stop synchronization) , CLK synchronous communications (no start-bit/stop-bit) can be used.
- Supports multi-processor mode
- Built-in dedicated baud rate generator

Asynchronous : 120192/60096/30048/15024/781.25 K/390.625 Kbps CLK synchronous : 25 M/12.5 M/6.25 M/3.125 M/1.5627 M/781.25 Kbps

- Variable baud rate can be set by an external clock.
- 7-bits data length (only asynchronous normal mode) /8-bits length
- Master/slave type communication function (at multiprocessor mode): The communication between one (master) to n (slave) can be operating.
- Error detection functions(parity, framing, overrun)
- Transmission signal format is NRZ

(1) Register list

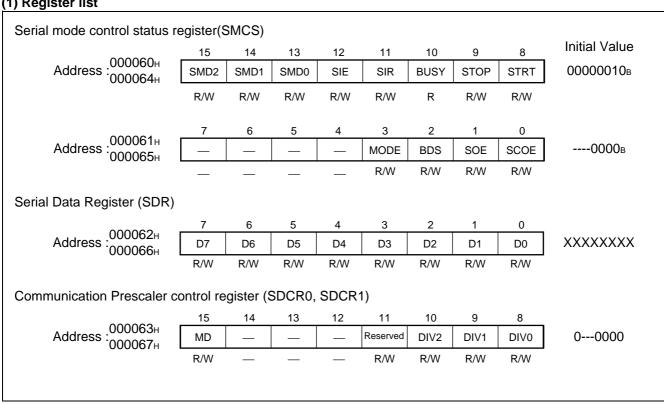

3. I²C Interface

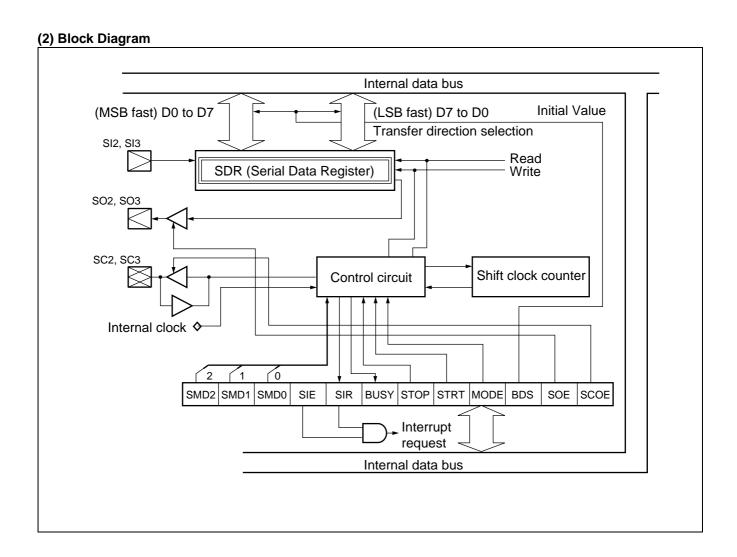
I²C interface is the serial input/output port that support Inter IC BUS and functions as the master/slave device on the I²C bus. MB90800 series have 1 channel of the built-in I²C interface.

It has the features of I²C interface below.

- Master/slave sending and receiving
- Arbitration function
- Clock synchronization function
- Slave address and general call address detection function
- Detecting transmitting direction function
- Repeat generating and detecting function of the start conditions
- Bus error detection function
- The forwarding rate can be supported to 100 Kbps.

(1) Register list									
12C atatus variator (IDCD)									
I ² C status register (IBSR)									
Address :00006AH	7	6	5	4	3	2	1	0	00000000B
	BB	RSC	AL	LRB	TRX	AAS	GCA	FBT	
	R	R	R	R	R	R	R	R	
I ² C control register (IBCR)									
Address :00006B⊦⊢ ।	15	14	13	12	11	10	9	8	0000000в
Address .00000DH	BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT	ОООООООВ
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
I ² C clock control register (IC	CCR)								
Address :00006CH	7	6	5	4	3	2	1	0	XX0XXXXX _B
Address .00000CH		_	EN	CS4	CS3	CS2	CS1	CS0	XXUXXXXXB
	_	_	R/W	R/W	R/W	R/W	R/W	R/W	
I ² C data register(IDAR)									
Address :00006Ен	15	14	13	12	11	10	9	8	1 XXXXXXXX в
Address .00000EH	D7	D6	D5	D4	D3	D2	D1	D0	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
I ² C address register (IADR)									
Address :00006DH	7	6	5	4	3	2	1	0	VVVVVV ₋
Address .00000DH		A6	A5	A4	АЗ	A2	A1	A0	XXXXXXX
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	


4. Extended I/O serial interface


The extended I/O serial interface is a serial I/O interface that can transfer data through the adoption of 8 bit \times 2 channel configured clock synchronization scheme. The extended I/O serial interface also has two alternatives in data transfer called LSB first and MSB sirst.

The serial I/O interface operates in two modes:

- Internal shift clock mode: Transfer data in sync with the internal clock.
- External shift clock mode: Transfers data in sync with the clock input through an external pin (SCK). In this mode, transfer operation performed by the CPU instruction is also available by operating the general-use port sharing an external pin (SCK).

(1) Register list

5. 8/10-bit A/D converter

A/D converter converts an analog input voltage into digital value. The feature of A/D converter is shown as follows.

• conversion time: 3.1 µs minimum per 1 channel

(78 machine cycle/at machine clock 25 MHz/including the sampling time)

• Sampling time: 2.0 μs minimum per 1channel

(50 machine cycle/at machine clock 25 MHz)

- Uses RC-type successive approximation conversion method with a sample & hold circuit
- 8-bit resolution or 10-bit resolution can be select.
- 12 channel program-selectable analog inputs.

Single conversion mode : Convert 1 specified channel

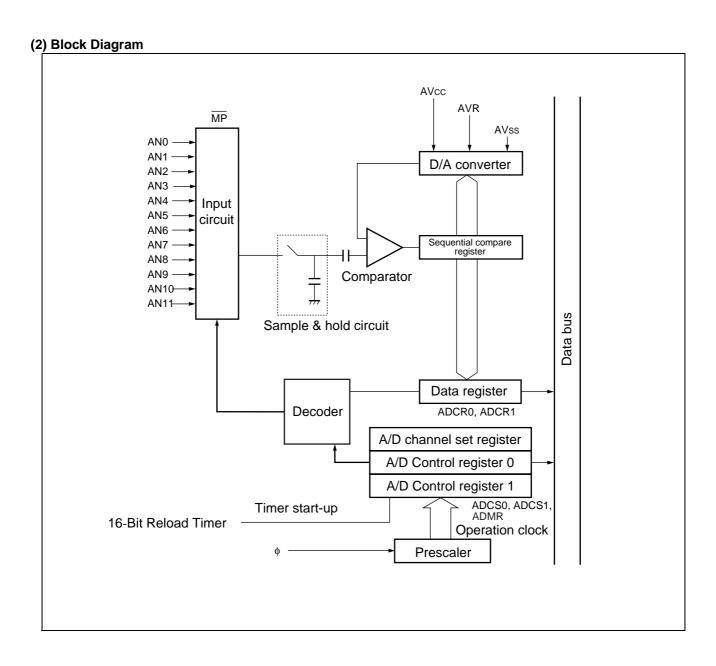
Scan conversion mode : Continuous plural channels (maximum 12 channels can be programmed) are

converted.

Continuous conversion mode: Selected channel converted continuously.

Stop conversion time : Perform conversion for one channel, then wait for the next activation trigger

(synchronizes the conversion start timing)


• El²OS can be activated by outputting the interrupt request when the A/D conversion completes.

 If the A/D conversion is performed under the condition of the interrupt enable, the converting data will be protected.

• Selectable conversion activation trigger: Software, or reload timer (rising edge)

(1) Register list

i <u>)</u> Register list										
ADCS1, ADCS0 (Control status register)										
ADCS0		7	6	5	4	3	2	1	0	
Address	: 000034н	MD1	MD0	_	_	_	_	_	_	←Initial Value
		0 R/W	0 R/W	_	_	_	_	_	_	←hit
ADCS1	bit	15	14	13	12	11	10	9	8	
Address	: 000035н	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	Reserved	←Initial Value
		0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 W	0 R/W	←initial value ←bit
ADCR1, ADC	CR0 (data re	egister)								
ADCR0	bit	7	6	5	4	3	2	1	0	
Address	: 000036н	D7	D6	D5	D4	D3	D2	D1	D0	. Initial Value
		X R	X R	X R	X R	X R	X R	X R	X R	←Initial Value ←bit
ADCR1	bit	15	14	13	12	11	10	9	8	
Address	: 000037н	S10	ST1	ST0	CT1	СТО	_	D9	D8	(Initial Value
		0 W	0 W	1 W	0 W	1 W		X R	X R	←Initial Value ←bit
L										

6. 16 bits PPG

The PPG timer consists of the prescaler, one 16-bit down-counter, one 16-bit data register with a cycle setting buffer, a 16-bit compare register with a duty setting buffer, and the pin control unit.

The PPG timer can output pulses synchronized to the software trigger.

The period and duty of the output pulse can be changed freely by updating two 16-bit register values.

PWM function

The PPG timer can output pulses programmably by updating the values of the registers described above in synchronization to the trigger.

Can also be used as a D/A converter by an external circuit.

· Single shot function

By detecting an edge of the trigger input, a single pulse can be output.

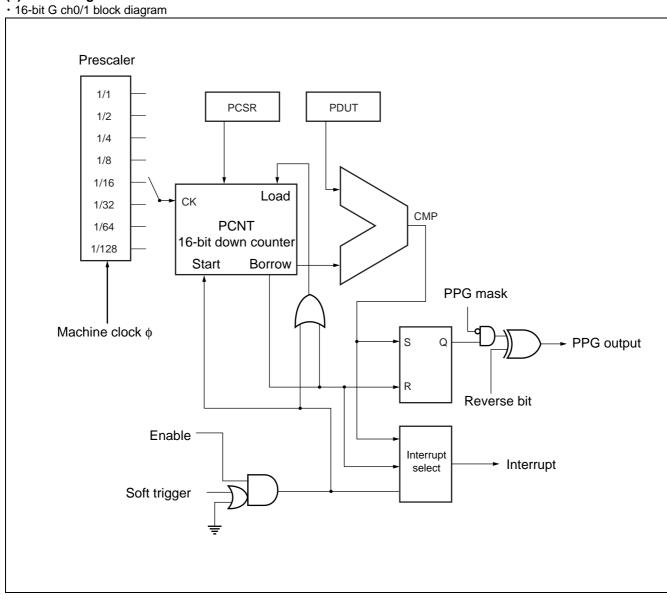
• 16-bit down counter

The counter operation clock comes from eight kinds optional. There are eight kinds of internal clocks.

 $(\phi, \phi 2, \phi 4, \phi 8, \phi 16, \phi 32, \phi 64, \phi 128) \phi$: machine clock

The counter is initialized to "FFFFH" at a reset or counter borrow.

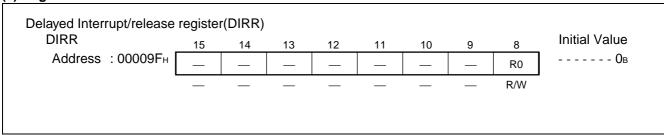
• Interrupt request

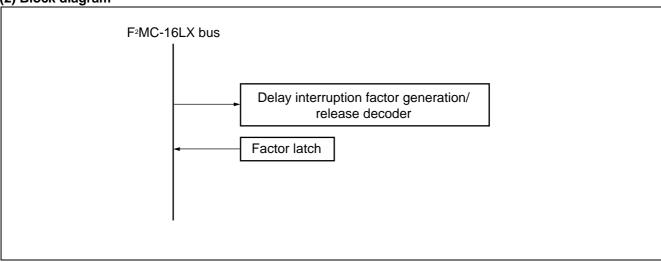

The PPG timer generates an interrupt request when:

Timer start-up/counter borrow occurs (cycle match) /duty match occurs/counter borrow occurs (cycle match) , or duty match occurs.

(1) Register list

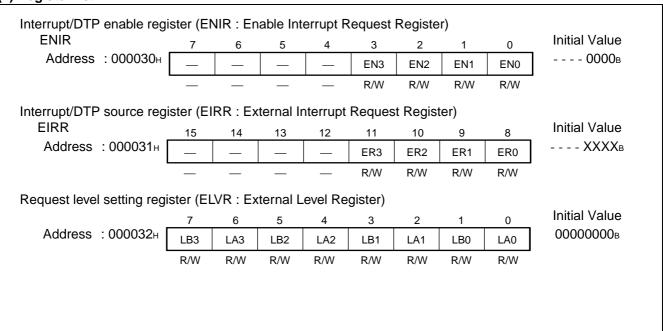
000077н	15	14	13	12	11	10	9	8	
000077н 00007Fн	CNTE	STGR	MDSE	RTRG	CSK2	CSK1	CSK0	PGMS	
	(R/W) (0)	(R/W) (X)	Read/Write Initial Value						
PCNTL (PCN	TL0/1 C	ontrol S	tatus re	gister)					
000076н	7	6	5	4	3	2	1	0	
00007Ен		_	IREN	IRQF	IRS1	IRS0	POEN	OSEL	
	(—) (—)	(—) (—)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	Read/Write Initial Value
PDCRH (PDC	RH0/1 F	PPG Do			gister)				
000071н	15	14	13	12	11	10	9	8	
000079н	DC15	DC14	DC13	DC12	DC11	DC10	DC09	DC08	D = = 1/1/4/24
	(R) (1)	Read/Write Initial Value							
PDCRL (PDC						` '	` '	` /	iiilai valuo
•	7	6	5	4	3	2	1	0	
000070н 000078н	DC07	DC06	DC05	DC04	DC03	DC02	DC01	DC00	
000010n	(R) (1)	Read/Write Initial Value							
PCSRH (PCS	RH0/1 F	PPG cyc	ele set re	egister)					
000073н	15	14	13	12	11	10	9	8	Read/Write
00007Вн	CS15	CS14	CS13	CS12	CS11	CS10	CS09	CS08	Initial Value
	(W) (X)	(W) (X)	(W) (X)	(W) (X)	(W) (X)	(W) (X)	(W) (X)	(W) (X)	
PCSRL (PCS	RH0/1 F	PG cyc	le set re	egister)					
000072н	7	6	5	4	3	2	1	0	
00007Ан	CS07	CS06	CS05	CS04	CS03	CS02	CS01	CS00	
	(W) (X)	(W) (X)	(W) (X)	(W) (X)	(W) (X)	(W) (X)	(W) (X)	(W) (X)	Read/Write Initial Value
PDUTH (PDU	TH0/1 F	PPG dut	y set re	gister)					
000075н	15	14	13	12	11	10	9	8	
000075н 00007Dн	DU15	DU14	DU13	DU12	DU11	DU10	DU09	DU08	
	(W) (X)	Read/Write Initial Value							
PDUTL (PDU	TL0/1 P	PG duty	set reg	ister)					
000074	7	6	5	4	3	2	1	0	
000074н	D1107	DU06	DU05	DU04	DU03	DU02	DU01	DU00	
000074н 00007Сн	DU07			1					Read/Write

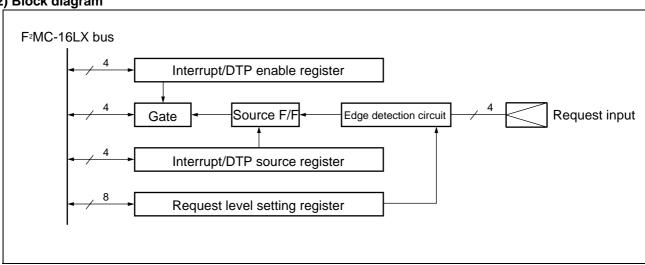

(2) Block Diagram


7. Delay interrupt generator module

The delayed interrupt generation module outputs an interrupt request for task switching. When the delayed interrupt generation module is used, software is allowed to output and clear task switching interrupts for the MB90800 Series CPU.

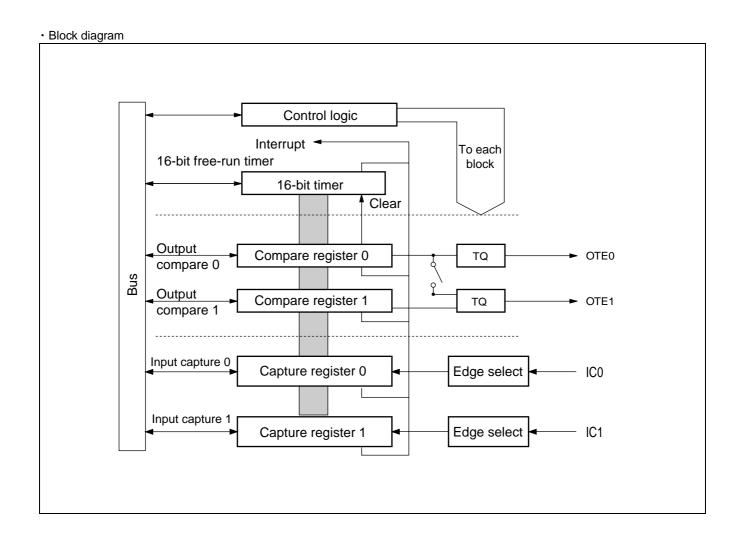
(1) Register list


(2) Block diagram


8. DTP/External interrupt

DTP (Data Transfer Peripheral)/External interrupt circuit detects the interrupt request input from the external interrupt input terminal, and outputs the interrupt request.

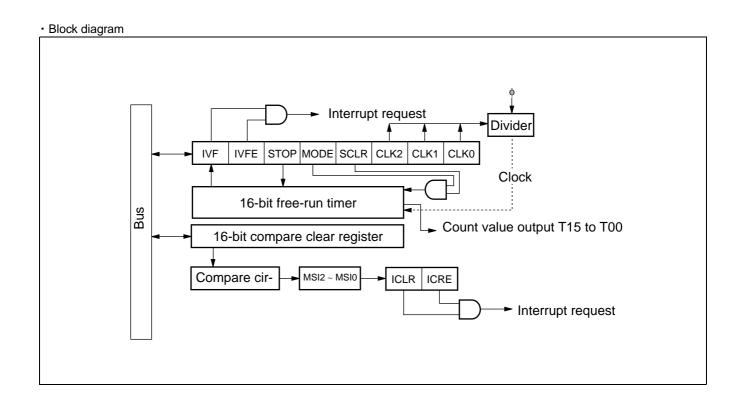
(1) Register list


(2) Block diagram

9. 16-bit input/output timer

The 16-bit I/O timer consists of one 16-bit free-run timer, two output compare and two input capture modules. This function enables six independent waveforms to be output based on the 16-bit free-run timer, and input pulse widths and external clock frequencies to be measured.

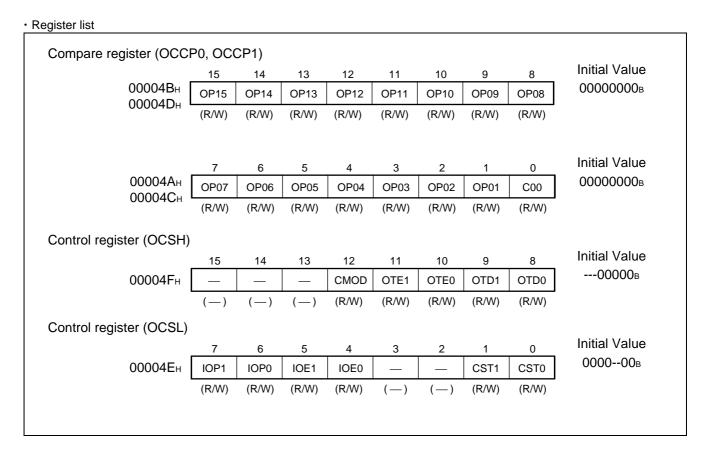
· Register list · 16-bit free-run timer 00003В/3Ан **CPCLR** Compare clear register Timer counter data register 00003D/3CH TCDT Timer counter 00003F/3EH **TCCS** control status register · 16-bit Output Compare 00004AH/00004BH/ Compare register OCCP0 ~ OCCP1 00004CH/00004DH Control status register 00004FH/00004EH **OCSH OCSL** · 16-bit Input Capture 15 000044H/000045H/ Data register IPCP0, IPCP1 000046н/000047н Control status register 000048н ICS01

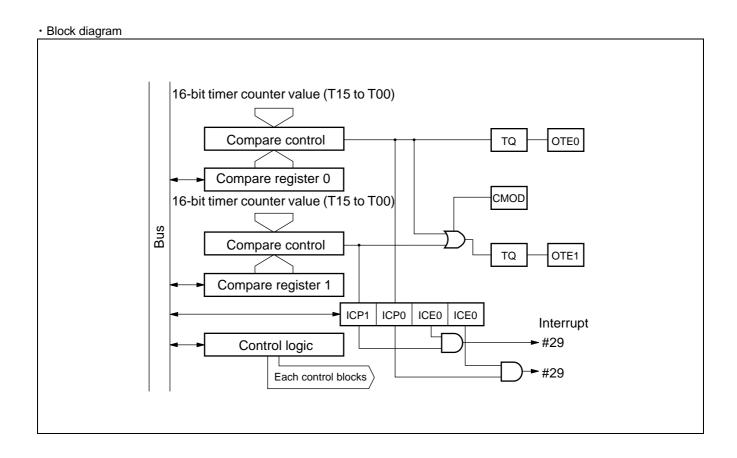

(1) 16-bit free-run timer

The 16-bit free-run timer consists of a 16-bit up-down counter and control status register.

Counter value of 16-bit free-run timer is available as base timer for input capture and output compare.

- Clock for the counter operation can be selected from eight types.
- The counter overflow interruption can be generated.
- Setting the mode enables initialization of the counter through compare-match operation with the value of the compare clear register in the output compare.

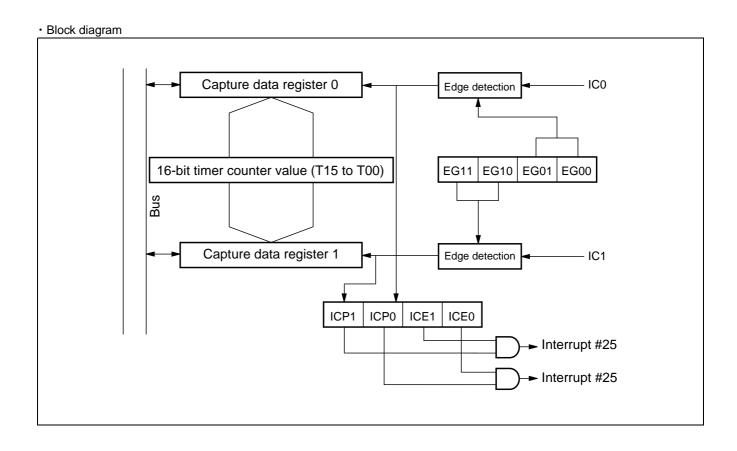

Compare clear register ((CPCLR)							
000000	15	14	13	12	11	10	9	8	Initial Value
00003Вн	CL15	CL14	CL13	CL12	CL11	CL10	CL09	CL08	XXXXXXX
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	
									Initial Value
00003Ан	7	6	5	4	3	2	1	0	XXXXXXXXX
00003AH	CL07	CL06	CL05	CL04	CL03	CL02	CL01	CL00	
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	
Timer counter data regis	ster (TCI	OT)							1.20-11/-1
000000	15	14	13	12	11	10	9	8	Initial Value
00003Dн	T15	T14	T13	T12	T11	T10	T09	T08	0000000В
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	
	7	6	5	4	3	2	1	0	Initial Value
00003Сн	T07	T06	T05	T04	T03	T02	T01	T00	0000000В
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	
Fimer counter control/st	atus red	ister (T0	CCS)						
	15	14	13	12	11	10	9	8	Initial Value
00003Fн	ECKE	_	_	MSI2	MSI1	MSI0	ICLR	ICRE	000000в
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	
	-		F	,	•	0		0	Initial Value
00003Ен	7	6	5	4 MODE	3	2	1	0	00000000
	IVF	IVFE	STOP	MODE	SCLR	CLK2	CLK1	CLK0	
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	



(2) Output compare

The output compare consists of 16-bit compare registers, compare output pin part and a control register. It can reverse the output level for the pin and at the same time, generate an interrupt when the 16-bit free-run timer value matches a value set in one of the 16-bit compare registers of this module.

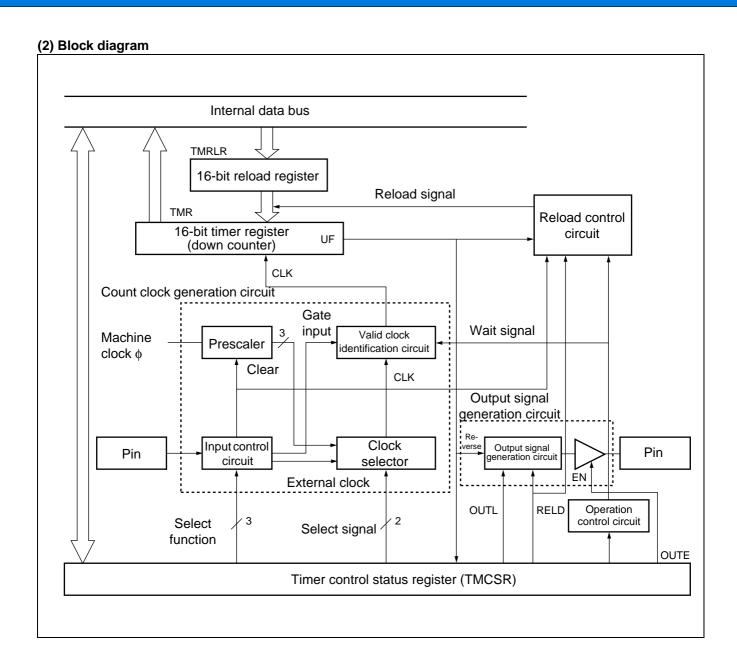
- It has a total of six compare registers that can operate independently. In addition, the output can be set to be controlled by using two compare registers.
- An interrupt can be set by a comparing match.


(3) Input capture

This module has a function that detects a rising edge, falling edge or both edges and holds a value of the 16-bit free-run timer in a register at the time of detection. It can also generate an interrupt when detecting an edge.

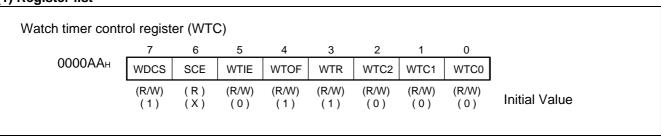
The input capture consists of input capture and control registers. Each input capture has its corresponding external input pin.

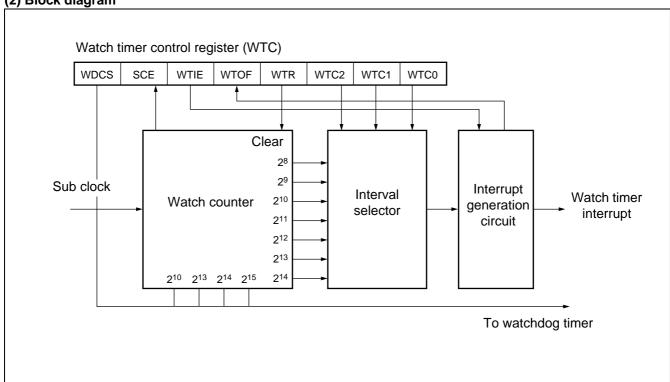

- The detection edge of an external input can be selected from among three types. Rising edge/falling edge/both edges.
- It can generate an interrupt when it detects the valid edge of the external input.


· Register list Input capture data register (IPCP0, IPCP1) Initial Value 15 14 13 12 11 10 9 8 XXXXXXXXB 000045н CP15 CP14 CP13 CP12 CP11 CP10 CP09 CP08 000047н (R) (R) (R) (R) (R) (R) (R) (R) Initial Value 7 6 5 4 3 2 1 0 XXXXXXXX_B 000044н CP06 CP05 CP04 CP03 CP02 CP01 CP07 CP00 000046н (R) (R) (R) (R) (R) (R) (R) (R) Control status register (ICS01) Initial Value 2 6 5 4 3 1 0 0000000В 000048н ICP0 ICP1 ICE1 ICE0 EG11 EG10 EG01 EG00 (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

10. 16-bit reload timer

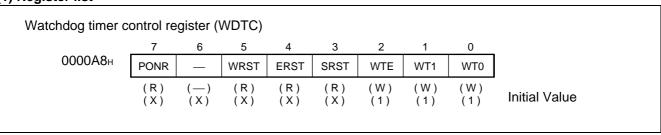
The 16-bit reload timer provides two functions either one which can be selected, the internal clock the performs the count down by synchronizing with 3-type internal clocks and the event count mode that performs the count down by detecting the arbitration. This timer defines an underflow as a transition of the count value from 0000H to FFFF_H. Therefore, when the equation (counted value = reload register setting value+1) holds, an underflow occurs. Either mode can be selected for the count operation from the reload mode which repeats the count by reloading the count setting value at the underflow occurrence or the one-shot mode which stops the count at the underflow occurrence. The interrupt can be generated at the counter underflow occurrence so as to correspond to the DTC.

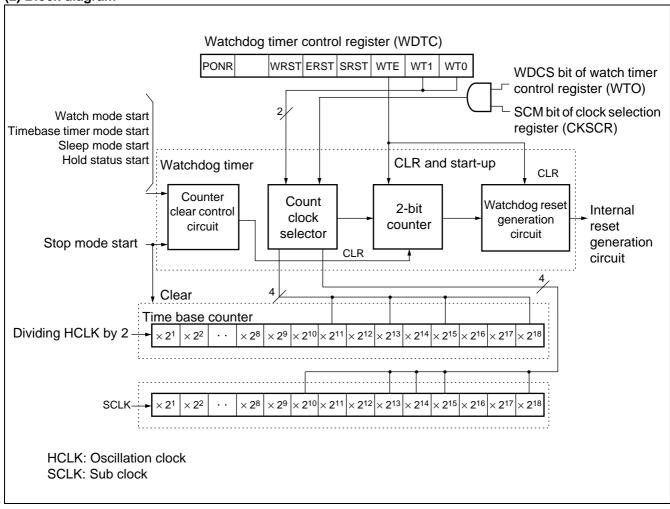



11. Watch timer

The watch timer is a 15-bit timer using the subclock. It can generate interval interrupts. The watch timer can also be used as the clock source of the watchdog timer by setting so.

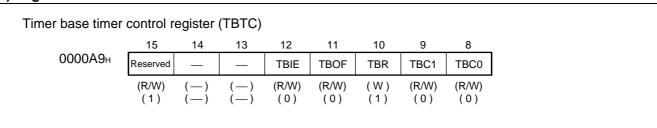
(1) Register list

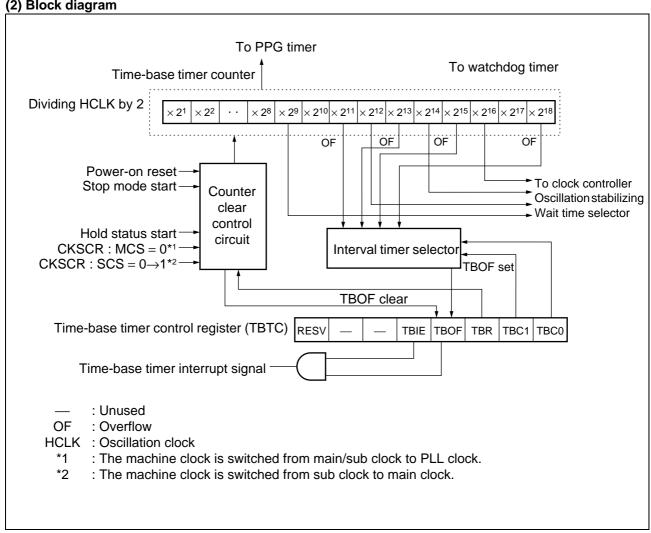



12. Watchdog timer

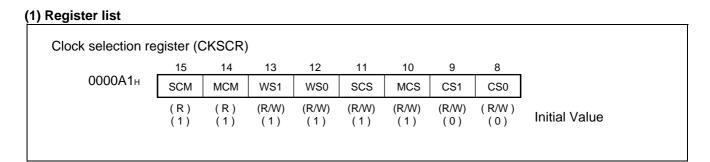
The watchdog timer is a 2-bit counter operating with an output of the timebase timer or watch timer and resets the CPU when the counter is not cleared for a preset period of time.

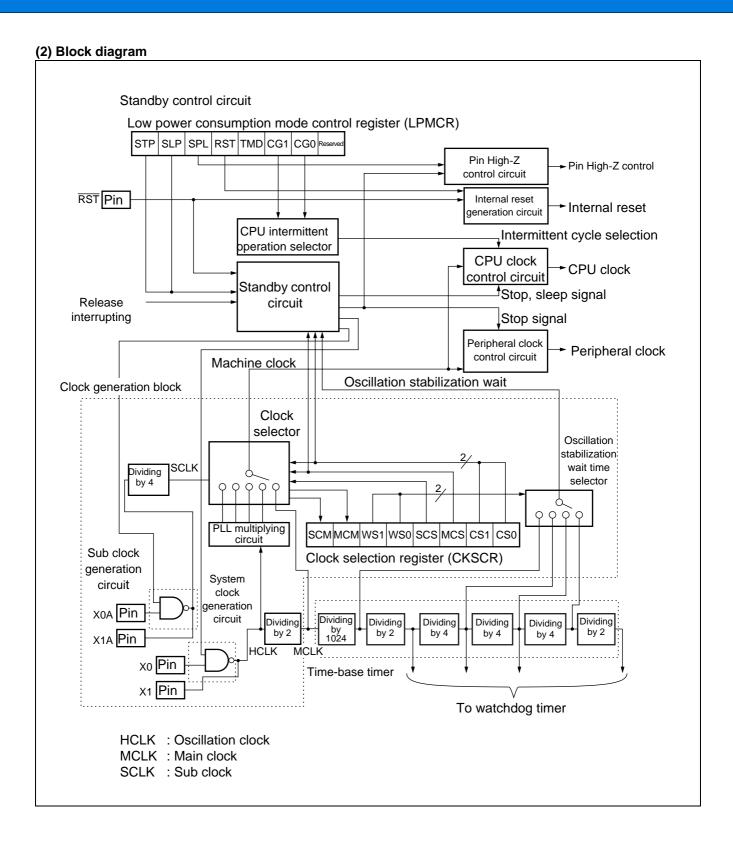
(1) Register list

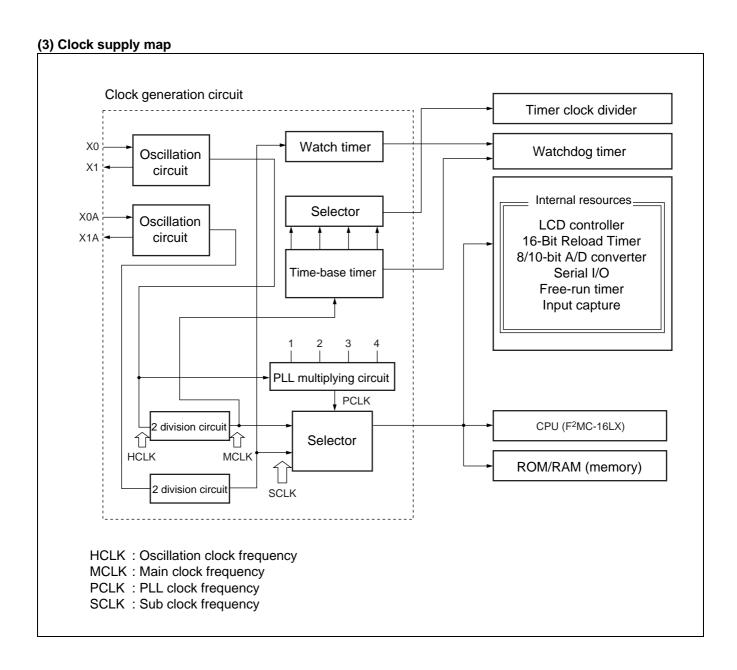



13. Time-base timer

The time-base timer has a function that enables a selection of four interval times using 18-bit free-run counter (time-base counter) with synchronizing to the internal count clock (two division of original oscillation). Furthermore, the function of timer output of oscillation stabilization wait or function supplying operation clocks for watchdog timer are provided.

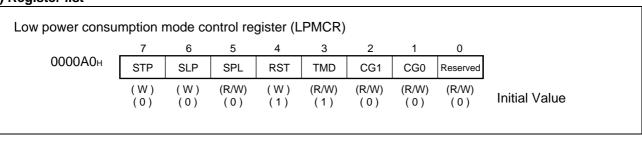


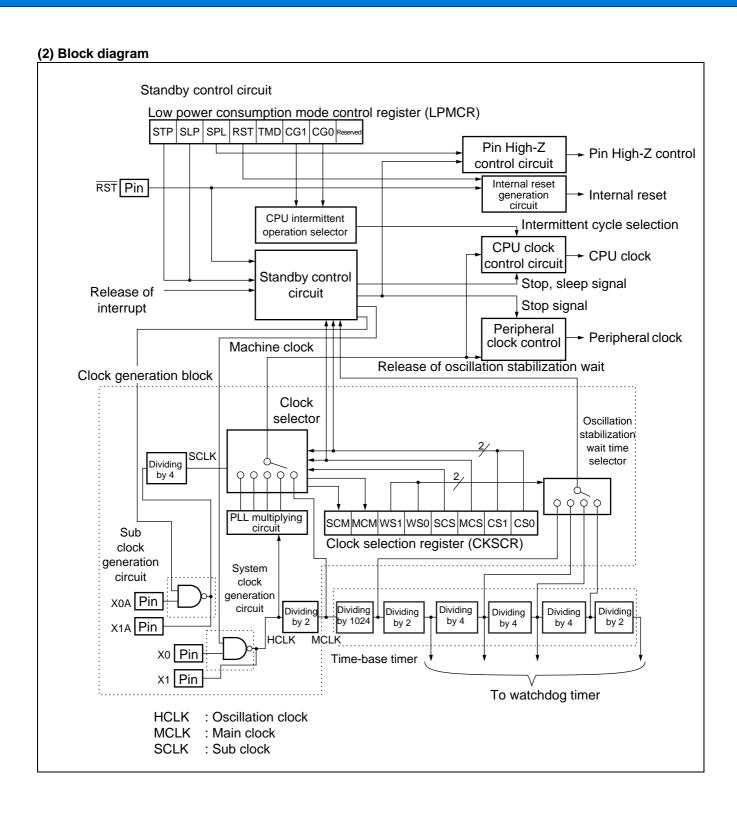

(2) Block diagram



14. Clock

The clock generator controls operation of the internal clock which is the operation clock for the CPU and peripheral devices. This internal clock is referred to as machine clock and its one cycle as machine cycle. In addition, the clock generated by original oscillation is referred to as oscillation clock and that by internal PLL oscillation as PLL clock.



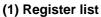

15. Low power consumption mode

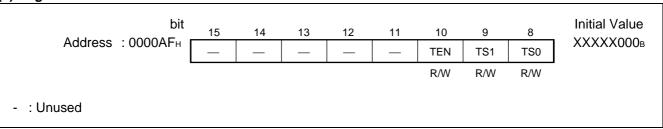
The MB90800 Series have the following CPU operation modes by selecting the operation clock and operating the control of the clock.

- Clock mode
 - (PLL clock mode, main clock mode and sub clock mode)
- CPU intermittent operation mode
 (PLL clock intermittent operation mode, main clock intermittent operation mode and subclock intermittent operation mode)
- Standby mode (Sleep mode, time base timer mode, stop mode and watch mode)

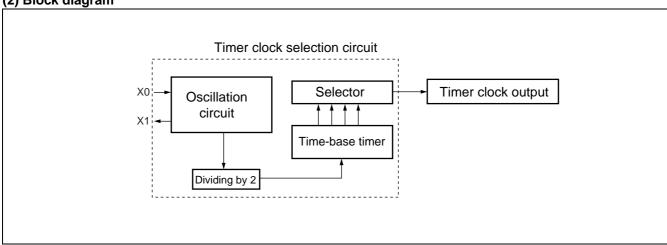
(1) Register list

(3) Figure of status transition External reset, watchdog timer reset, software reset, Power supply Reset SCS = 0Power-on reset SCS = 1 MCS = 0SCS = 0End of oscillation PLL clock mode Main clock mode Sub clock mode stabilization wait SCS = 1 MCS = 1 SLP SLP = 1 SLP = Interrupt Interrupt Interrupt PLL sleep mode Sub sleep mode (Main sleep mode TMD = 0TMD = 0Interrupt TMD = 0Interrupt Interrupt Timebase Timebase Watch mode timer mode timer mode STP = 1 STP = 1 STP = 1 PLL stop mode Sub stop mode Main stop mode End of oscillation stabilization wait End of oscillation End of oscillation stabilization wait Interrupt Interrupt Interrupt stabilization wait Sub clock Oscillation Main clock Oscillation Main clock Oscillation stabilization wait stabilization wait stabilization wait

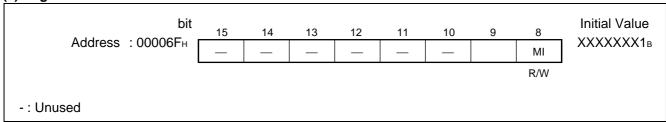

16. Timer clock output

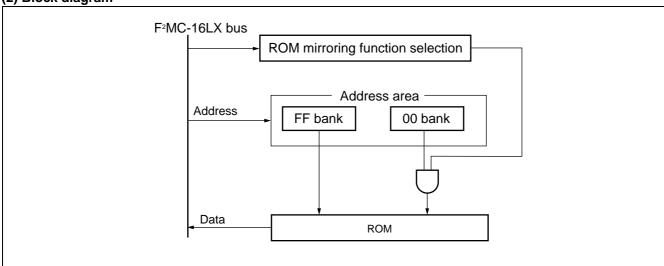

The timer clock output circuit divides the oscillation clock by the time-base timer and generates and outputs the set division clock. Selectable from 32/64/128/256 division of the oscillation clock.

The timer clock output circuit is inactive in reset or stop mode. Normally, it is active in run, sleep, or pseudo-timer mode.


	PLL_Run	Main_Run	Sleep	Pseudo clock	STOP	Reset
Operation status	0	0	0	0	×	×

Note: When the time-base timer is cleared while using the timer clock output circuit, the clock is not correctly output. For detail of the timebase timer's clear condition, see the section of timebase timer in Hardware Manual.

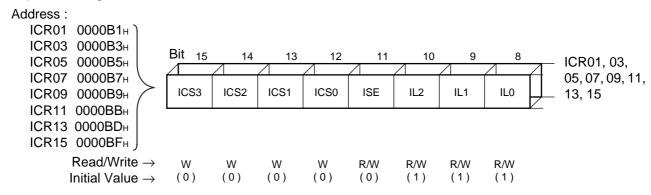



17. ROM mirrorring function selection module

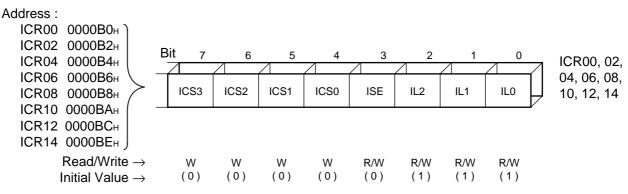
ROM mirrorring function selection module can select that FF bank where ROM is located look into 00 bank among the settings of the register.

(1) Register list

(2) Block diagram

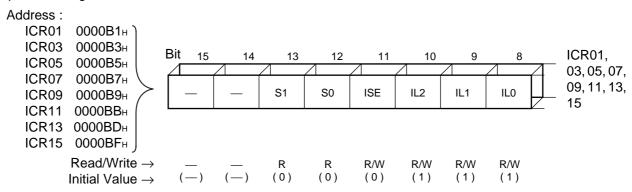

Note: Do not access to this register in the middle of the operation of the address 008000H to 00FFFFH.

18. Interrupt controller

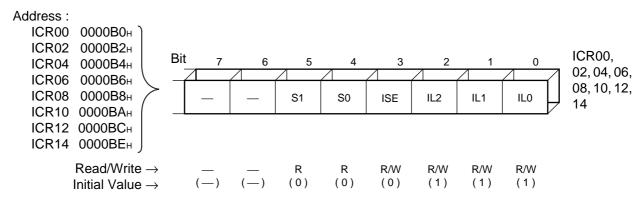

Interrupt control register is in the interrupt controller. The register corresponds to all I/O of interrupt function. The register has following functions;

- Setting of Interrupt level at correspondent peripheral circuit.
- (1) Register list (at writing)

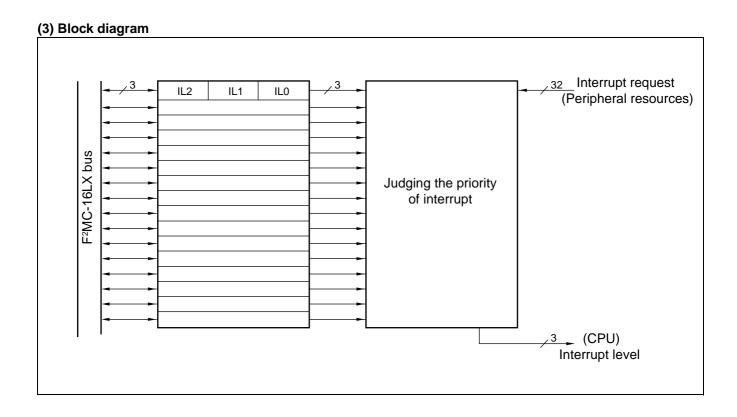
Interrupt control register



Interrupt control register



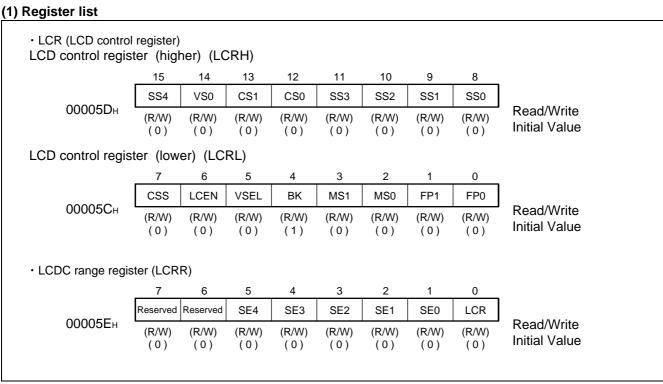
(2)Register list (at reading)

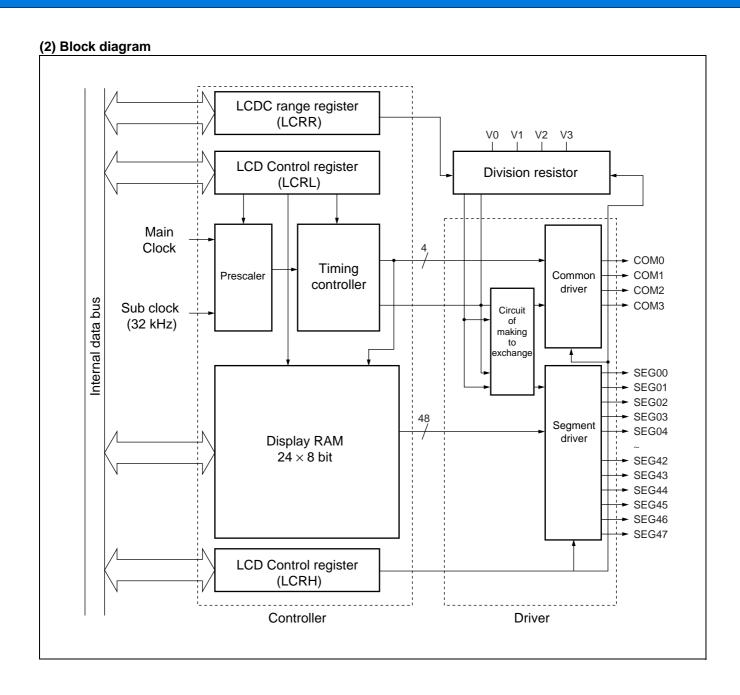

Interrupt control register

Interrupt control register

Note: Do not access using the read modify write instruction because it causes a malfunction.

19. LCD controller/driver


The LCD controller/driver contains 24 × 8-bit display data memory and controls the LCD display with four common output lines and 48 segment output lines. Three duty outputs can be selected to directly drive the LCD panel (liquid crystal display).


- Contains an LCD driving voltage split resistor. Moreover, the external division resistance can be connected.
- A maximum of four common output lines (COM0 to COM3) and 48 segment output lines (SEG0 to SEG47) are available.
- Contains 24-byte display data memory (display RAM).
- For the duty, 1/2, 1/3, or 1/4 can be selected (restricted by bias setting).
- The LCD can directly be driven.

Bias	1/2 duty	1/3 duty	1/4 duty
1/2 bias	0	×	×
1/3 bias	×	0	0

○ : Recommended mode

x: Disable

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rat	ing	Unit	Remarks
Farameter	Syllibol	Min	Max	Ollit	Remarks
Power supply voltage	Vcc	Vss - 0.3	Vss + 4.0	V	
Fower supply voltage	AVcc	Vss - 0.3	Vss + 4.0	V	Vcc ≥ AVcc*1
		Vss - 0.3	Vss + 4.0	V	*2
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V	N-ch O.D (5 V withstand voltagel/O)
Output voltage	Vo	Vss - 0.3	Vss + 4.0	V	*2
"L" level maximum output current	lol11	_	10	mA	Other than P74, P75, P40 to P47*3
L level maximum output current	lOL12	_	30	mA	P74, P75, P40 to P47 (Heavy-current output port) *3
"L" level average output current	lolav1	_	3	mA	Other than P74, P75, P40 to P47*4
L level average output current	lolav2	_	15	mA	P74, P75, P40 to P47 (Heavy-current output port) *4
"L" level maximum total output current	ΣΙοι	_	120	mA	
"L" level average total output current	Σ lolav	_	60	mA	*5
"H" level maximum output current	І ОН11	_	- 10	mA	Other than P74, P75, P40 to P47*3
Tr levermaximum output current	І ОН12	—	- 12	mA	P40 to P47 (Heavy-current output port) *3
"H" level average output current	І онаv	_	- 3	mA	*4
"H" level maximum total output current	ΣІон	—	- 120	mA	
"H" level average total output current	Σ lohav	_	- 60	mA	*5
Power consumption	Pd	_	351	mW	
Operating temperature	TA	- 40	+ 85	°C	
Storage temperature	Tstg	- 55	+ 150	°C	

The Absolute Maximum Ratings is based on Vss = AVss = 0.0 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*1 :} AVcc should not be exceeding Vcc at power-on etc.

^{*2 :} V_I, V_O, should not exceed Vcc + 0.3 V.

^{*3 :} A peak value of an applicable one pin is specified as a maximum output current.

^{*4 :} An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)

^{*5 :} An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

2. Recommended Operating Conditions

Parameter	Symbol	Va	lue	Unit	Remarks			
Farameter	Syllibol	Min	Max	Ollic	Keillaiks			
Power supply voltage	Vcc	2.7	3.6	V	At normal operating			
r ower supply voltage	VCC	1.8	3.6	V	Stop operation state maintenance			
	Vін	0.7 Vcc	Vcc + 0.3	V	CMOS input pin			
"H" level input voltage	Vihs	0.8 Vcc	Vcc + 0.3	V	CMOS hysteresis input pin (Resisting pressure of 5 V is Vcc = 5.0 V)			
	Vінм	Vcc - 0.3	Vcc + 0.3	V	MD pin input			
	VıL	Vss - 0.3	0.3 Vcc	V	CMOS input pin			
"L" level input voltage	VILS	Vss - 0.3	0.2 Vcc	V	CMOS hysteresis input pin			
	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input			
Operating temperature	Та	- 40	+ 85	°C				

The Recommended Operating Conditions is based on Vss = AVss = 0.0 V.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(Vcc = AVcc = 3.3 V \pm 0.3 V, T_A = - 40 to + 85 °C)

Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
"H" level output voltage	Vон	Output pins other than P40 to P47, P74, P75	$I_{OH} = -4.0 \text{ mA}$	Vcc - 0.5	_	Vcc	V	
	V _{OH1}	P40 to P47	$I_{OH} = -8.0 \text{ mA}$	Vcc - 0.5	_	Vcc	V	Heavy-current output port
"L" level output voltage	Vol	Output pins other than P40 to P47, P74, P75	I _{OL} = 4.0 mA	Vss	_	Vss + 0.4	V	
	V _{OL1}	P40 to P47	loL = 15.0 mA	Vss		Vss + 0.6	V	Heavy-current output port
	V _{OL2}	P74, P75	lo _L = 15.0 mA	_	0.5	Vss + 0.8	V	Open-drain pin
Open-drain output application voltage	V _{D1}	P74, P75	_	Vss - 0.3	_	Vss + 5.5	V	
Input leak current	lıL	All output pin	Vcc = 3.3 V, Vss < Vı < Vcc	- 10		10	μΑ	
Pull-up resistor	Rup	RST	Vcc = 3.3 V, $T_A = +25 °C$	25	50	100	kΩ	
Pull-down resistor	RDOWN	MD2	Vcc = 3.3 V, $T_A = +25 °C$	25	50	100	kΩ	Except FLASH products
Open drain output current	leak	P74, P75	_	_	0.1	10	μΑ	

The DC Characteristics is based on $V_{SS} = AV_{SS} = 0.0 \text{ V}$.

(Continued)

(Vcc = AVcc = 3.3 V \pm 0.3 V, T_A = - 40 to + 85 °C)

D	Sym-	D'	· ·		Value			D
Parameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
			Vcc = 3.3 V, Internal frequency 25 MHz At normal operating	—	48	60	mA	
	Icc		Vcc = 3.3 V, Internal frequency 25 MHz At Flash writing	_	60	75	mA	FLASH products
			Vcc = 3.3 V, Internal frequency 25 MHz At Flash erasing	_	60	75	mA	FLASH products
	Iccs		Vcc = 3.3 V, Internal frequency 25 MHz at sleep mode	_	22.5	30	mA	
Power supply	Ісстѕ	Vcc	Vcc = 3.3 V, Internal frequency 3 MHz at timer mode	_	0.75	7	mA	
current	Iccl		Vcc = 3.3 V, Internal frequency 8 kHz	_	15	140	μА	MASK products
	ICCL		at subclock operation, $(T_A = + 25 \text{ °C})$	_	0.5	0.9	mA	FLASH products
	Iccls		$V_{\text{CC}} = 3.3 \text{ V},$ Internal frequency 8 kHz at subclock sleep operation, $(T_{\text{A}} = +25 ^{\circ}\text{C})$		23	40	μΑ	
	Ісст		Vcc = 3.3 V, Internal frequency 8 kHz at watch mode (T _A = + 25 °C)	_	1.8	40	μΑ	
	Іссн		At Stop mode, $(T_A = +25 ^{\circ}C)$	_	0.8	40	μА	
		Vcc – V3	At LCR = 0 setting	100	200	400		
		Vcc – V3	At LCR = 1 setting	12.5	25	50		
LCD division resistance	RLCD	V0 – V1, V1 – V2, V2 – V3	At LCR = 0 setting	50	100	200	kΩ	*
		V0 – V1, V1 – V2, V2 – V3	At LCR = 1 setting	6.25	12.5	25		
COM0 to COM3 output impedance	Rусом	COM0 to COM3	V1 to V3 = 3.3 V	_		2.5	kΩ	
SEG00 to SEG47 output impedance	Rvseg	SEG00 to SEG47	V 1 10 V3 = 3.3 V			15	kΩ	

The DC Characteristics is based on $V_{SS} = AV_{SS} = 0.0 \text{ V}$.

(Continued)

(Continued)

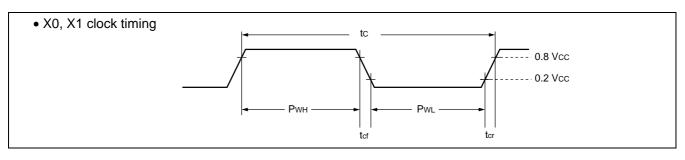
(Vcc = AVcc = 3.3 V \pm 0.3 V, T_A = - 40 to + 85 °C)

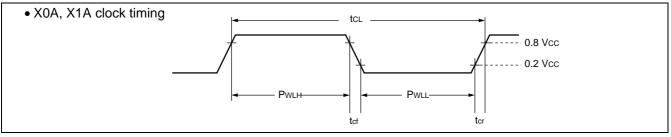
Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
Parameter	bol	Fili liailie	Conditions	Min	Тур	Max	Oilit	Nemarks
LCD leak current	ILCDC	V0 to V3, COM0 to COM3, SEG00 to SEG47		- 5		5	μΑ	

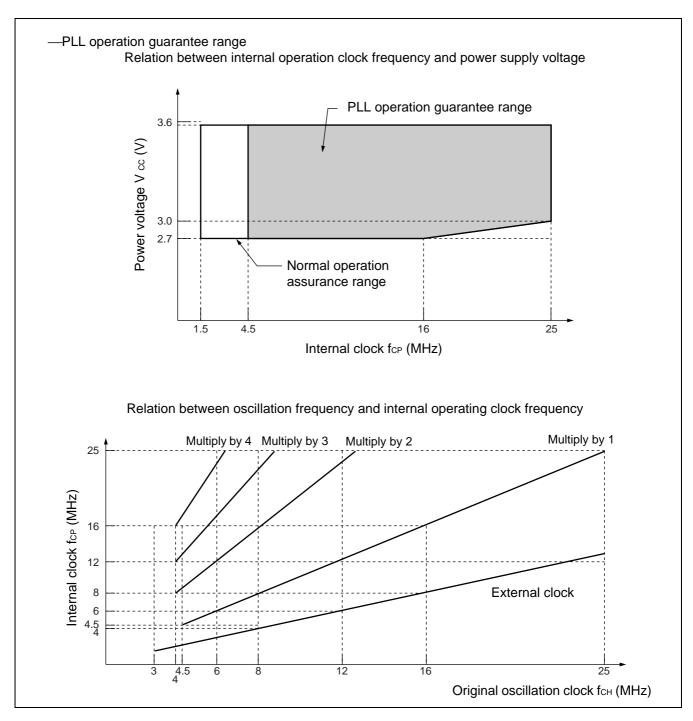
The DC Characteristics is based on $V_{SS} = AV_{SS} = 0.0 \text{ V}$.

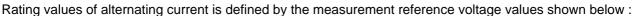
^{*:} LCD internal diveded resistor can be select two type resistor by LCR (internal diveded resistor selecting bit) of LCRR (LCDC range register) .

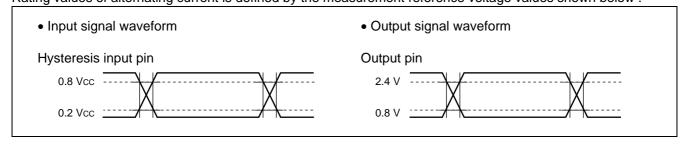
4. AC Characteristics

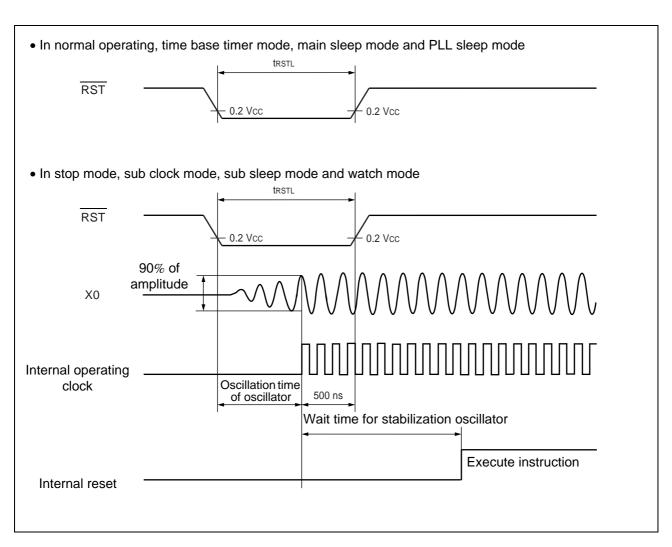

(1) Clock timing


(Vcc = AVcc = 3.3 V
$$\pm$$
 0.3 V, Ta = $-$ 40 to + 85 °C)


Parameter	Sym	Pin name	Condi-		Value		Unit	Remarks
Farameter	bol	riii iiaiiie	tions	Min	Тур	Max	Oilit	Nemaiks
	fсн	X0, X1		3	_	16	MHz	External crystal oscillation
		X0, X1		3	_	25		At external clock*
Clock fraguency				4.5	_	25		Multiply by 1
Clock frequency	fсн			4	_	12.5	MHz	Multiply by 2
				4	_	8.33		Multiply by 3
				4		6.25		Multiply by 4
	fcL	X0A, X1A		_	32.768	_	kHz	
Clock cycle time	t HCYL	X0, X1		40	_	333	ns	
Olock cycle time	t LCYL	X0A, X1A		_	30.5		μs	
Input clock pulse width	Pwh PwL	X0		5	_		ns	Set Duty ratio $50\% \pm 3\%$
input clock pulse width	Pwlh Pwll	X0A			15.2		μs	Set duty ratio at 30% to 70% as a guideline.
Input clock rise time and fall time	tcr tcf	X0		_		5	ns	At external clock
Internal operating clock	fсР	_		1.5		25	MHz	When main clock is used
frequency	f _{CP1}	_		_	8.192	_	kHz	When sub clock is used
Internal operating clock cycle time	t CP	_		40	_	666	ns	When main clock is used
	t CP1				122.1		μs	When sub clock is used


The Clock timing is based on Vss = AVss = 0.0 V.


^{*:} When selecting the PLL clock, the range of clock frequency is limited. Use this product within range as mentioned in "Base oscillator frequency vs. Internal operating clock frequency".


(2) Reset input timing

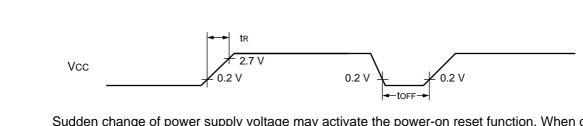
$$(Vcc = AVcc = 3.3 V \pm 0.3 V, Ta = -40 to + 85 °C)$$

Parameter	Sym-	Pin name	Condi-	Value		Unit	Remarks	
rarameter	bol	Finitianie	tions	Min	Max	Oilit	itemarks	
Reset input time	toor	RST		500	_	ns	At normal operating, at time base timer mode, at main leep mode, at PLL sleep mode	
Reset input time	t RSTL	KOT		Oscillation time of oscillator*+ 500 ns	_	μs	At stop mode, at sub clock mode, at sub sleep mode, at watch mode	

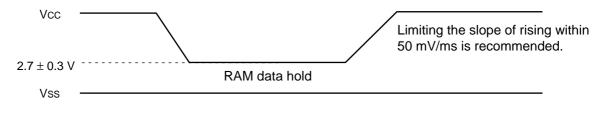
The Reset input timing is based on Vss = AVss = 0.0 V.

* : Oscillation time of oscillator is time until oscillation reaches 90% of amplitude. It takes several milliseconds to several dozens of milliseconds on a crystal oscillator, several hundreds of microseconds to several milliseconds on a FAR/ceramic oscillator, and 0 milliseconds on an external clock.

(3) Power-on reset


 $(Vcc = AVcc = 3.3 V \pm 0.3 V, Ta = -40 to +85 °C)$

Parameter	Symbol	Pin name	Condi-	Va	lue	Unit	Remarks	
raiametei	Syllibol	riii iiaiiie	tions	Min	Max	Oilit	ivellial va	
Power supply rising time	t R	Vcc		_	30	ms	At normal operating	
Power supply shutdown time	toff	Vcc	_	1	_	ms	For repeated operation	

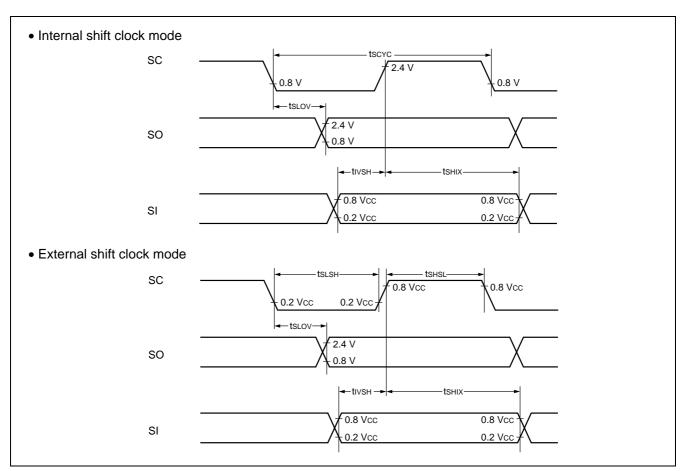

The Power-on reset is based on $V_{SS} = AV_{SS} = 0.0 \text{ V}$.

Notes: • Vcc should be set under 0.2 V before power-on rising up.

- These value are for power-on reset.
- In the device, there are internal registers which is initialized only by a power-on reset. If these initialization is executing, power-on prosedure must be obeyed by these value.

Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, raise the power smoothly by suppressing variation of voltages as shown below. When raising the power, do not use PLL clock. However, if voltage drop is 1mV/s or less, use of PLL clock is allowed during operation.

(4) Serial I/O

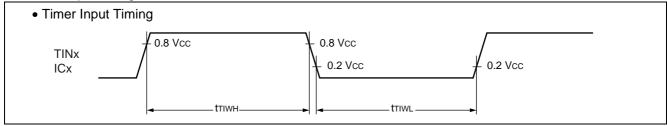

(Vcc = AVcc = 3.3 V \pm 0.3 V, Ta = - 40 to + 85 °C)

Parameter	Sym	Pin name	Conditions	Va	lue	Unit	Remarks
raiailletei	bol	Fili liaille	Conditions	Min	Max	Oilit	Remarks
Serial clock cycle time	tscyc	SC0 to SC3		8 tcp		ns	
$SCK \downarrow \to SOT$ delay time	t sLov	SC0 to SC3 SO0 to SO3	Internal shift clock mode output pin : C _L = 80 pF + 1TTL	-80	80	ns	
Valid SIN → SCK ↑	tıvsн	SC0 to SC3		100		ns	
$SCK \uparrow \rightarrow Valid$ SIN hold time	t sнıx	SI0 to SI3		60	_	ns	
Serial clock H pulse width	t shsl	SC0 to SC3		4 tcp	_	ns	
Serial clock L pulse width	t slsh	300 10 303		4 tcp		ns	
$SCK \downarrow \to SOT$ delay time	t sLov	SC0 to SC3 SO0 to SO3		_	150	ns	
Valid SIN → SCK ↑	tıvsн	SC0 to SC3	C _L = 80 pF + 1TTL	60		ns	
$SCK \uparrow \rightarrow valid$ SIN hold time	t sнıx	SI0 to SI3		60	_	ns	

The Serial I/O is based on Vss = AVss = 0.0 V.

Notes: • AC rating in CLK synchronous mode.

- \bullet C ${\scriptscriptstyle L}$ is a load capacitance value on pins for testing.
- tcp is machine cycle frequency (ns) .

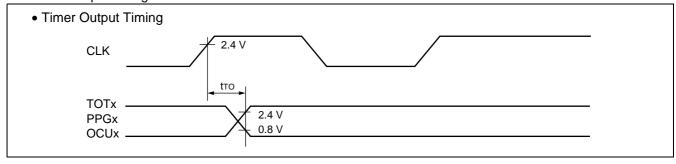


(5) Timer input timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Ta = - 40 to + 85 °C)

Parameter	Symbol	Pin name	Conditions	Val	lue	Unit	Remarks
i arameter	Symbol	i ili ilalile	Conditions	Min	Max	Oilit	Remarks
Input pulse width	t тıwн t тıwL	TIN0 to TIN2 IC0 to IC1	_	4 tcp	_	ns	

The Timer input timing is based on Vss = AVss = 0.0 V.

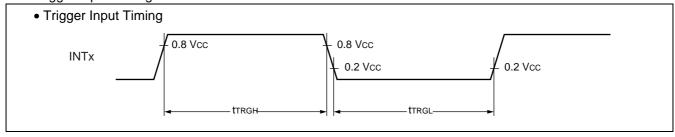


(6) Timer output timing

(Vcc = AVcc = 3.3 V
$$\pm$$
 0.3 V, Ta = $-$ 40 to + 85 °C)

Parameter	Sym-	Pin name	Condi-	Va	lue	Unit	Remarks
Farameter	bol	Fill Hallie	tions	Min	Max	Ollit	iveillai ks
CLK ↑ → Touт change time	t TO	TOT0 to TOT2, PPG0 to PPG1, OCU0 to OCU1	_	30	_	ns	

The Timer output timing is based on Vss = AVss = 0.0 V.



(7) Trigger Input Timing

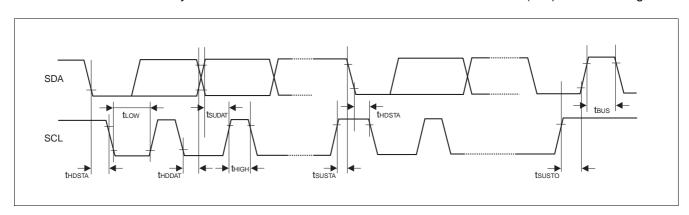
(Vcc = AVcc = 3.3 V
$$\pm$$
 0.3 V, Ta = $-$ 40 to + 85 °C)

Parameter	Symbol	Pin name	Condi-	Val	ue	Unit	Remarks
larameter	Symbol Fill hame ti	tions	Min	Max	Oilit	Remarks	
Input pulse width	t trgh	INT0 to INT3		5 tcp	_	ns	At normal operating
Input pulse width	t trgl	trgl INTO to INTO		1	_	μs	In Stop mode

The Trigger Input Timing is based on Vss = AVss = 0.0 V.

(8) I2C Timing

(AVcc = Vcc = 3.3 V \pm 0.3 V, Ta = - 40 to + 85 °C)


Parameter	Symbol	Conditions		dard- ode	Unit
			Min	Max	
SCL clock frequency	fscL		0	100	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	t hdsta	When power supply voltage of external	4.0	_	μs
"L" width of the SCL clock	t LOW	pull-up resistor is 5.0 V R = 1.0 kΩ, C = 50 pF* ²	4.7	_	μs
"H" width of the SCL clock	t HIGH	When power supply voltage of external	4.0	_	μs
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	t susta	pull-up resistor is 3.6 V R = 1.0 kΩ, C = 50 pF* ²	4.7	_	μs
Data hold time SCL \downarrow \rightarrow SDA \downarrow \uparrow	t hddat		0	3.45	μs
Data set-up time		When power supply voltage of external pull-up resistor is 5.0 V fcP $^{*1} \le 20$ MHz, R = 1.0 k Ω , C = 50 pF *2 When power supply voltage of external pull-up resistor is 3.6 V fcP $^{*1} \le 20$ MHz, R = 1.0 k Ω , C = 50 pF *2	250	_	ns
SDA ↓↑ → SCL ↑	t sudat	When power supply voltage of external pull-up resistor is 5.0 V fcP*1 \leq 20 MHz, R = 1.0 k Ω , C = 50 pF*2 When power supply voltage of external pull-up resistor is 3.6 V fcP*1 \leq 20 MHz, R = 1.0 k Ω , C = 50 pF*2	200	_	ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	t susto	When power supply voltage of external pull-up resistor is 5.0 V	4.0	_	μs
Bus free time between a STOP and START condition	t BUS	$R = 1.0 \text{ k}\Omega, C = 50 \text{ pF}^{*2}$ When power supply voltage of external pull-up resistor is 3.6 V $R = 1.0 \text{ k}\Omega, C = 50 \text{ pF}^{*2}$	4.7		μs

The I^2C trriger is based on AVss = Vss = 0.0 V.

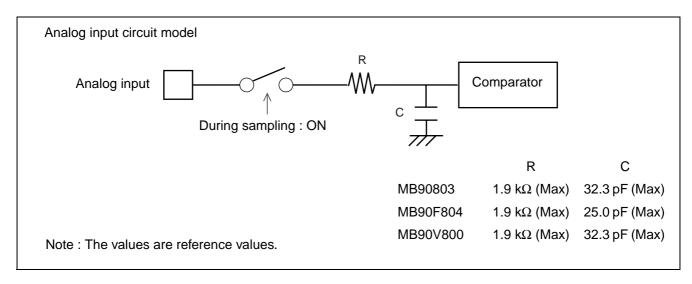
*1: fcp is internal operation clock frequency. Refer to "(1) Clock timing".

*2: R, C: Pull-up resistor and load capacitor of the SCL and SDA lines.

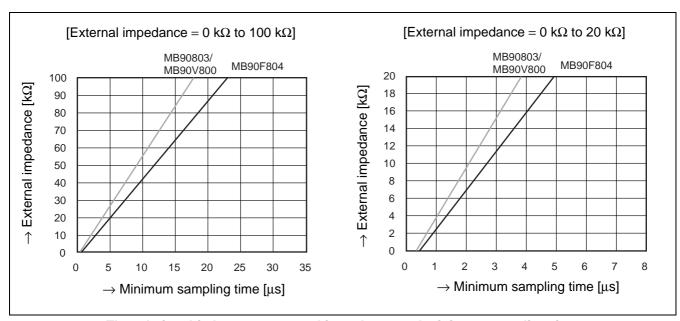
*3: The maximum thddat only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.

5. Electrical Characteristics for the A/D Converter

 $(Vcc = AVcc = 3.3 V \pm 0.3 V, Ta = -40 to +85 °C)$


Parameter	Sym-	Pin name		Value		Unit	Remarks
rarameter	bol	Fili lialile	Min	Тур	Max	Oilit	Remarks
Resolution	_	_	_	_	10	bit	
Total error	_	_			± 3.0	LSB	
Nonlinear error	_	_	_	_	± 2.5	LSB	
Differential linear error	_	_	_	_	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN11	AVss – 1.5 LSB	AVss+0.5 LSB	AVss + 2.5 LSB	mV	1 LSB = AVcc/1024
Full-scale transition voltage	V _{FST}	AN0 to AN11	AVcc – 3.5 LSB	AVcc – 1.5 LSB	AVcc+0.5 LSB	mV	1 LOD = AV00/1024
Conversion time	_	_	8.64*1			μs	
Sampling time	_	_	2			μs	
Analog port input current	Iain	AN0 to AN11			10	μΑ	
Analog input voltage	Vain	AN0 to AN11	0		AVcc	V	
Reference voltage	_	AVcc	3.0		AVcc	V	
Power supply current	lΑ	AVcc		1.4	3.5	mΑ	
Trower supply current	Іан	AVcc			5*2	μΑ	
Reference voltage	IR	AVcc		94	150	μΑ	
supplying current	I _{RH}	AVcc			5*2	μΑ	
Interchannel disparity		AN0 to AN11	_	_	4	LSB	

The Electrical characteristics for the A/D converter is based on $V_{SS} = AV_{SS} = 0.0 \text{ V}$.


^{*1 :} At operating, main clock 25 MHz.

^{*2 :} If A/D converter is not operating, a current when CPU is stopped is applicable (at Vcc - CPU = AVcc = 3.3 V)

- <About the external impedance of analog input and its sampling time>
- A/D converter with sample and hold circuit. If the extrernal impedance is too high to keep sufficient sampling time, the analog voltage changed to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

The relationship between external impedance and minimum sampling time

If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

<About errors>

• As | AVcc | becomes smaller, values of relative errors grow larger.

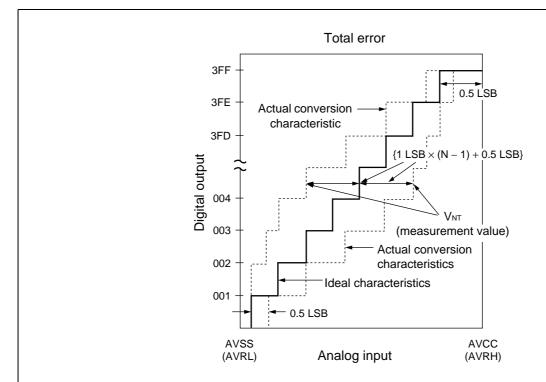
6. Definition of A/D Converter Terms

Resolution

Analog variation that is recognized by an A/D converter.

The 10-bit can resolve analog voltage into $2^{10} = 1024$.

Total error


This shows the difference between the actual voltage and the ideal value and means a total of error because of offset error, gain error, non-linearity error and noise.

Linearity error

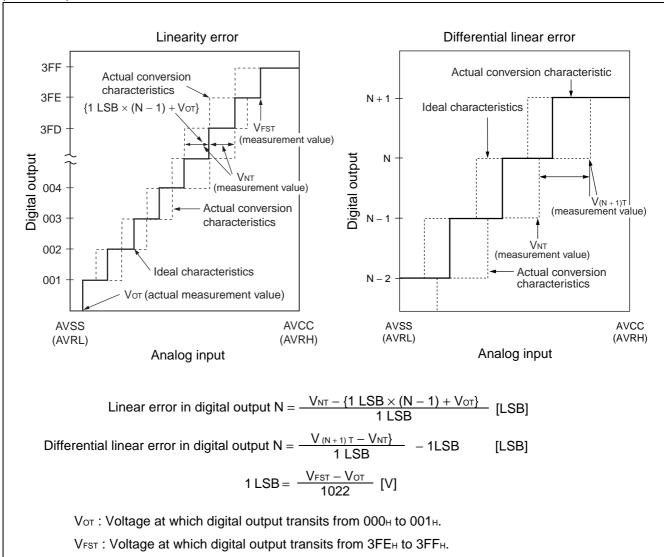
Deviation between a line across zero-transition line (00 0000 0000 \leftrightarrow 00 0000 0001) and full-scale transition line (11 1111 1110 \leftrightarrow 11 1111 1111) and actual conversion characteristics.

Differential linear error

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

$$Total \ error \ of \ digital \ output \ N = \ \frac{V_{NT} - \{1 \ LSB \times (N-1) + 0.5 \ LSB\}}{1 \ LSB} \ \ [LSB]$$

$$1LSB(Ideal value) = \frac{AVCC - AVSS}{1024} [V]$$

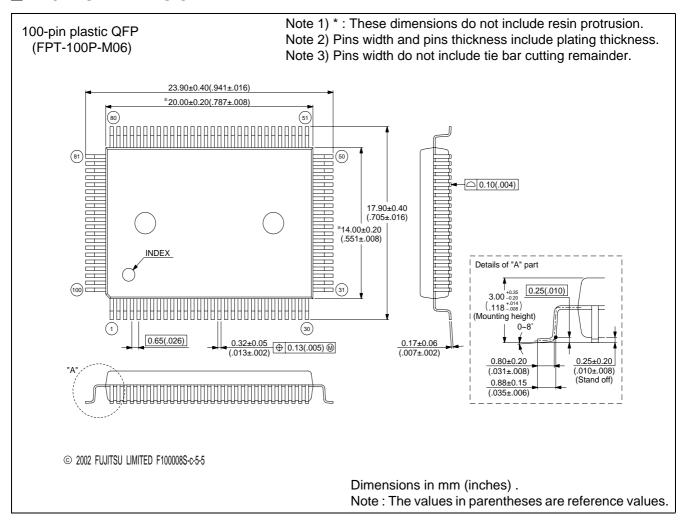

Vot(Ideal value) = AVSS + 0.5 LSB [V]

V_{FST}(Ideal value) = AVCC - 1.5 LSB [V]

 $\ensuremath{V_{\text{NT}}}\xspace$ A voltage at which digital output transitions from (N-1) to N.

(Continued)

7. FLASH MEMORY


Parameter	Conditions		Value		Unit	Remarks
Farameter	Conditions	Min	Тур	Max	Ollit	Remarks
Sector erase time		_	1	15	s	Excludes 00 H programming prior to erasure.
Chip erase time	$T_A = +25 ^{\circ}C$ $Vcc = 3.0 ^{\circ}V$	_	9	_	μs	Excludes 00 H programming prior to erasure.
Word (16 bit width) programming time		_	16	3,600	s	Except for the over head time of the system.
Program/erase cycle		10,000	_	_	cycle	
Flash data retension time	Average T _A = + 85 °C	20	_	_	Yearss	*

^{*:} This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F804-101PF-G MB90F804-201PF-G	100-pin plastic QFP	
MB90803PF MB90803SPF	(FPT-100P-M06)	

■ PACKAGE DIMENSION

MEMO			

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Marketing Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3353

Fax: +81-3-5322-3386 http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94088-3470, U.S.A. Tel: +1-408-737-5600

Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fme.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-6281-0770

Tel: +65-6281-0770 Fax: +65-6281-0220

http://www.fmal.fujitsu.com/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu, Seoul 135-280 Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

Preliminary 2004.07.22 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.