54ACTQ16245 16-Bit Transceiver with TRI-STATE® Outputs ## **General Description** The 'ACTQ16245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each has separate control inputs which can be shorted together for full 16-bit operation. The T/\overline{R} inputs determine the direction of data flow through the device. The \overline{OE} inputs disable both the A and B ports by placing them in a high impedance state. The 'ACTQ16245 utilizes NSC Quiet Series technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series® features GTO® output control for superior performance. ## **Features** - Utilizes NSC FACT Quiet Series technology - Guaranteed simultaneous switching noise level and dynamic threshold performance - Bidirectional non-inverting buffers - Separate control logic for each byte - 16-bit version of the 'ACTQ245 - Outputs source/sink 24 mA - Standard Microcircuit Drawing (SMD) 5962-9562001 ## **Logic Symbol** #### Pin Description | Pin Names | Description | | | | |--|----------------------------------|--|--|--| | OE _n
T/R | Output Enable Input (Active Low) | | | | | T/R | Transmit/Receive Input | | | | | A ₀ -A ₁₅
B ₀ -B ₁₅ | Side A Inputs/Outputs | | | | | B ₀ -B ₁₅ | Side B Outputs/Inputs | | | | ## **Connection Diagram** #### Pin Assignment for CERPAK GTO™ is a trademark of National Semiconductor Corporation. TRI-STATE® is a registered trademark of National Semiconductor Corporation. FACT™ and FACT Quiet Series™ are trademarks of Fairchild Semiconductor Corporation © 1998 National Semiconductor Corporation DS010926 ## **Functional Description** The 'ACTQ16245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the T/\overline{R} input is HIGH, then Bus A data is transmitted to Bus B. When the T/\overline{R} input is LOW, Bus B data is transmitted to Bus A. The TRI-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each byte. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When $\overline{\text{OE}}_{n}$ is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the ## **Truth Tables** | Inputs | | Outputs | |--------|------|---| | ŌĒ₁ | T/R₁ | | | L | L | Bus B _o -B ₇ Data to Bus A _o -A ₇ | | L | Н | Bus A _o –A ₇ Data to Bus B _o –B ₇ | | Н | Χ | HIGH-Z State on A ₀ -A ₇ , B ₀ -B ₇ | | | Inputs | | Outputs | |---------------------------------------|--------|------------------|---| | \overline{OE}_2 T/ \overline{R}_2 | | T/R ₂ | | | | L | L | Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅ | | | L | Н | Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅ | | | Н | Χ | HIGH-Z State on A ₈ -A ₁₅ , B ₈ -B ₁₅ | H = High Voltage Level L = Low Voltage Level X = Immaterial Z = High Impedance ## Logic Diagram ## **Absolute Maximum Ratings** (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. per Output Pin Junction Temperature C-DIP +175°C Storage Temperature -65°C to +150°C # Recommended Operating Conditions Supply Voltage (V_{CC}) 'ACTQ 4.5V to 5.5V Input Voltage (V_1) 0V to V_{CC} Output Voltage (V_0) 0V to V_{CC} Operating Temperature (T_A) Minimum Input Edge Rate (dV/dt) 'ACTQ Devices 125 mV/ns V_{IN} from 0.8V to 2.0V V_{CC} @ 4.5V, 5.5V Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading varaibles. National does not recommend operation of FACT™ circuits outside databook specifications. ## DC Electrical Characteristics for 'ACTQ Family Devices ±50 mA | Symbol | Parameter | V _{cc} | 54ACTQ | Units | Conditions | |------------------|---------------------------------|-----------------|----------------------------------|-------|--------------------------------------| | | | (V) | T _A = -55°C to +125°C | 7 | | | | | | Guaranteed Limits | | | | V _{IH} | Minimum High | 4.5 | 2.0 | V | V _{OUT} = 0.1V | | | Input Voltage | 5.5 | 2.0 | | or V _{CC} - 0.1V | | V _{IL} | Maximum Low | 4.5 | 0.8 | V | $V_{OUT} = 0.1V$ | | | Input Voltage | 5.5 | 0.8 | | or V _{CC} - 0.1V | | V _{OH} | Minimum High | 4.5 | 4.4 | V | I _{OUT} = -50 μA | | | Output Voltage | 5.5 | 5.4 | | | | | | | | | (Note 2) | | | | | | | $V_{IN} = V_{IL} \text{ or } V_{IH}$ | | | | 4.5 | 3.70 | V | $I_{OH} = -24 \text{ mA}$ | | | | 5.5 | 4.70 | | I _{OH} = -24 mA | | V_{OL} | Maximum Low | 4.5 | 0.1 | V | I _{OUT} = 50 μA | | | Output Voltage | 5.5 | 0.1 | | | | | | | | | (Note 2) | | | | | | | $V_{IN} = V_{IL} \text{ or } V_{IH}$ | | | | 4.5 | 0.50 | V | I _{OL} = 24 mA | | | | 5.5 | 0.50 | | I _{OL} = 24 mA | | I_{OZT} | Maximum I/O | 5.5 | ±10.0 | μA | $V_I = V_{IL}, V_{IH}$ | | | Leakage Current | | | | $V_O = V_{CC}$, GND | | I _{IN} | Maximum Input | 5.5 | ±1.0 | μΑ | $V_I = V_{CC}$, GND | | | Leakage Current | | | | | | I _{CCT} | Maximum I _{CC} /Input | 5.5 | 1.6 | mA | $V_I = V_{CC} -2.1V$ | | Icc | Max Quiescent | 5.5 | 160.0 | μΑ | $V_{IN} = V_{CC}$ or GND | | | Supply Current | | | | (Note 6) | | I _{OLD} | Minimum Dynamic | 5.5 | 50 | mA | V _{OLD} = 1.65V Max | | I _{OHD} | Output Current (Note 3) | | 50 | mA | V _{OHD} = 3.85V Min | | V _{OLP} | Quiet Output | 5.0 | 0.8 | V | | | | Maximum Dynamic V _{OL} | | | | (Notes 4, 5) | | V _{OLV} | Quiet Output | 5.0 | -0.8 | V | | | | Minimum Dynamic V _{OL} | | | | (Notes 4, 5) | 3 Note 2: All outputs loaded; thresholds associated with output under test. Note 3: Maximum test duration 2.0 ms; one output loaded at a time ## DC Electrical Characteristics for 'ACTQ Family Devices (Continued) Note 4: Maximum number of outputs that can switch simultaneously is n. (n - 1) outputs are switched LOW and one output held LOW. Note 5: Maximum number of outputs that can switch simultaneously is n. (n - 1) outputs are switched HIGH and one output held HIGH. Note 6: I_{CC} for 54ACTQ @ 25°C is identical to 74ACTQ @ 25°C. ## **AC Electrical Characteristics** | Symbol | Parameter | V _{cc} | 54ACTQ | | Units | |--------------------|---------------------------------------|------------------------|----------------------------------|------|-------| | | | (V)
(Note 7) | T _A = -55°C to +125°C | | | | | | | C _L = 50 pF | | | | | | | Min | Max | 1 | | t _{PLH} , | Propagation | 5.0 | 2.0 | 9.5 | | | t _{PHL} | Delay A _n , B _n | | 2.0 | 9.5 | ns | | | to B _n , A _n | | | | | | t _{PZH} , | Output Enable | 5.0 | 2.5 | 11.0 | ns | | t _{PZL} | Time | | 2.5 | 13.0 | | | t _{PHZ} , | Output Disable | 5.0 | 1.5 | 9.5 | ns | | t _{PLZ} | Time | | 1.5 | 9.5 | | Note 7: Voltage Range 5.0 is 5.0V ±0.5V. ## Capacitance | Symbol | Parameter | Тур | Units | Conditions | |-----------------|-----------------------|-----|-------|-----------------| | C _{IN} | Input Pin Capacitance | 4.5 | рF | $V_{CC} = 5.0V$ | | C _{PD} | Power Dissipation | 95 | рF | $V_{CC} = 5.0V$ | ## Physical Dimensions inches (millimeters) unless otherwise noted #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86 Email: europe support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-534 16 80 Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Cust Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179 National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.