

MEMBER

IrDA

Vishay Semiconductors

Integrated Low Profile Transceiver Module for Telecom Applications 9.6 kbit/s to 1.152 Mbit/s Data Transmission Rate

Description

The miniaturized TFBS5617 is an ideal transceiver for applications in telecommunications like mobile phones, pagers, and PDAs of all kinds. The device is designed for optimum performance and minimum package size.

The transceiver covers the latest IrDA[®] physical layer specification for Low Power SIR and MIR 1.152 Mbit/ s IrDA[®] mode.

The transceiver is in a very low profile package, allowing to replace and upgrade a variety of common SIR devices to MIR functionality with the additional feature

of variable logic voltage swing. The TFBS5617 is using the Vishay, $\text{IBM}^{\textcircled{B}}$ and $\text{Infineon}^{\textcircled{B}}$ order of the pinning.

New Features

- The device is a modification of the TFDU5107 device. An additional new feature as in TFDU5107 is the adjustable logic voltage $V_{ddlogic}$ swing. It can be set externally between 1.5 V and 5.5 V.
- The device covers the supply voltage range from 2.7 V to 5.5 V and with its low current consumption it is optimum suited for battery powered applications. Double eye safety protection by pulse duration and current limitation is integrated. The device is defined to operate over the full IrDA range exceeding 1 m. A custom modification of the current control for MIR low power standard is also available on request (TFBS5616).

Features

 Package: TFBS5617 Vishay Legacy Pinning Order 2.7 mm height

- Compatible to IrDA Standard (MIR and SIR with Lowest Current Consumption)
- Wide Supply Voltage Range (2.7 V to 5.5 V)
- Logic Input and Output Voltage 1.5 V to 5.5 V
- Tri-state-Receiver Output with weak pull-up efficient in shut down mode
- Lowest Power Consumption, typically 500 μA (900 μA max.) in Receive Mode, <1 μA in Shutdown Mode
- Fewest External Components
- Vishay's well known High EMI Immunity
- Eye Safety Protection Integrated

Applications

• Mobile Phones, Pagers, Hand-held Battery Operated Equipment

- Computers (WinCE, PalmPC, PDAs)
- Digital Still and Video Cameras
- Extended IR Adapters
- Medical and Industrial Data Collection

Parts Table

Part Description		Qty / Reel	
TFBS5617-TR3	Oriented in carrier tape for side view surface mounting	1000 pcs	

Vishay Semiconductors

Functional Block Diagram

Mode input is for internal current selection of customized version for low power (TFBS5616) or full IrDA range (TFBS5617)

Pin Description

Pin Number	Function	Description	I/O	Active
1	IRED Anode	IRED Anode to be externally connected to Vcc through a current control resistor. This pin is allowed to be supplied from an uncontrolled power supply separated from the controlled V _{CC} - supply.		
2	IRED Cathode	IRED Cathode, internally connected to driver transistor.		
3	Txd	Transmit Data Input.	I	HIGH
4	Rxd	Received Data Output, push-pull CMOS driver output capable of driving a standard CMOS or TTL load. No external pull-up or pull-down resistor is required. Pin is connected to V_{logic} with a weak pull-up (500 k Ω) when device is in shutdown mode. Rxd output is quiet during transmission.	0	LOW
5	SD	Shutdown, will switch the device into shutdown after a delay of 1 ms.	I	HIGH
6	V _{dd}	Supply Voltage		
7	V _{logic}	Defines the input and output logic swing voltage.	I	
8	GND	Ground		

Pinout

TFBS5617 weight 80 mg

Vishay Semiconductors

Absolute Maximum Ratings

Reference Point Ground, Pin 8, unless otherwise noted

Parameter	Test Conditions		Min	Тур.	Max	Unit
Supply voltage range $0 V < V_{dd2} < 6 V$		V _{dd1}	- 0.5		6	V
	0 V < V _{dd1} < 6 V	V _{dd2}	- 0.5		6	V
	$0 V < V_{dd2} < 6 V, 0 V < V_{dd1} < 6 V$	V _{logic}	- 0.5		6	V
Input current	all pins (Pin 1 excluded)				10	mA
Output sinking current, Rxd	Pin 4				25	mA
Rep. pulsed IRED current	Pin 1, t _{on} < 20 %, < 20 μs	I _{IRED(RP)}			500	mA
Average IRED current		I _{IRED(DC)}			125	mA
Power dissipation		P _{tot}			450	mW
Junction temperature		Τ _J			125	°C
Ambient temperature range (operating)		T _{amb}	- 25		+ 85	°C
Storage temperature range		T _{stg}	- 25		+ 85	°C
Soldering temperature	t = 20 s @ 215 °C			215	240	°C
Transmitter data and shutdown input voltage	2.4 V < V _{dd1} < 5.5 V	V_{Txd}, V_{SD}	- 0.5		6	V
Receiver data output voltage		V _{Rxd}	- 0.5		V _{logic} + 0.5	V
Virtual source size	Method: (1 - 1/e) encircled energy	d	2.5	2.8		mm
Maximum intensity for class 1 operation of IEC825 or EN60825	EN60825-1, edition Jan. 2001 Worst case IrDA pulse pattern, lab. conditions				500 ¹⁾ save in all modes	mW/sr

¹⁾ The Jan. 2001 edition of the IEC825-1 or EN60825-1 gives no limitation below the IrDA standard maximum. IrDA max. limit is 500 mW/sr. The device is protected against Txd short by an internal shut-off when the pulse duration is exceeding maximum IrDA specification value of pulse duration. In addition the max. current is limited.

Electrical Characteristics

Transceiver

 V_{dd1} = 2.7 V to 5.5 V unless otherwise noted.

Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Parameter	Parameter Test Conditions		Min	Тур.	Max	Unit
Supported data rates, Rxd pulse duration 400 ns	Supported data rates, Rxd pulse base band, SIR mode duration 400 ns		9.6		115.2	kbit/s
	base band, 1.152 Mbit/s		9.6		1152	kbit/s
Supply voltage range	specified operation	V _{dd1}	2.7		5.5	V
Supply voltage	V _{dd2} = 2.7 V to 5.5 V	V _{dd1}	2.7		5.5	V
Supply current receive mode	V _{dd1} = 2.7 V to 5.5 V	ا _S		500	900	μA
Supply current shutdown mode V _{dd1} = 2.7 V to 5.5 V		I _{SSD}		0.1	1	μA
Average supply current ¹⁾ , standard MIR transmit mode $I_e > 100 \text{ mW/sr}$ $V_{dd1} = 2.7 \text{ V to 5.5 V, above}$ $V_{dd1} = 3.3 \text{ V a serial resistor}$ reducing the internal power dissipation should be implemented, e.g. $R_L = 2.7 \text{ G}$		I _S		60	110	mA
Logic voltage range	V _{dd2} = 2.7 V to 5.5 V	V _{logic}	1.5		3.6	V
Shutdown/ Mode clock pulse duration for		t _{prog}	0.2		20	μs
Shutdown delay "Receive off"		t _{prog}	1		1.5	ms
Shutdown delay "Receive on"		t _{prog}	40		100	μs
Transceiver "Power on" settling time	Time from switching on V _{dd1} to established specified operation				50	μs

¹⁾ Maximum data is for 20 % (25 %) duty cycle for SIR (MIR 1.152 Mbit/s) Low power mode. The typical value is given for the case of normal operation with statistical and equal "0" and "1" - distribution.

Optoelectronic Characteristics

Receiver

 V_{dd1} = 2.7 V to 5.5 V unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Parameter	Test Conditions	Symbol	Min	Tvp.	Max	Unit
Minimum detection threshold irradiance SIR 9.6 kbit/s to 115.2 kbit/s ¹⁾	$ \alpha \le \pm 15^{\circ},$ V _{dd1} = 2.4 V to 5.5 V	E _{e, min}	4	22	35	mW/m ²
Minimum detection threshold irradiance MIR 9.6 kbit/s to 115.2 kbit/s ¹⁾	$ \alpha \le \pm 15^{\circ},$ V _{dd1} = 2.7 V to 5.5 V	E _{e, min}	4	40	85	mW/m ²
Maximum detection threshold irradiance	$\mid \alpha \mid \le \pm 90$ °, V _{dd1} = 5 V	E _{e, max}		5000		W/m ²
	$\mid \alpha \mid \leq \pm 90$ °, V _{dd1} = 3 V	E _{e, max}	8000	15000		W/m ²
Logic low receiver input irradiance		E _{e, max,low}	4			mW/m ²
Output voltage Rxd	active, C = 15 pF, R = 2.2 k Ω	V _{OL}		0.5	0.8	V
	non active, C = 15 pF, R = 2.2 k Ω	V _{OH}	V _{dd1} - 0.5			V
Output current Rxd	V _{OL} < 0.8 V				4	mA
Rise time @ load	$\label{eq:constraint} \begin{array}{l} C = 15 \mbox{ pF}, \ R = 2.2 \ \mbox{k}\Omega, \\ 1.5 \ \mbox{V} \leq V_{logic} \leq 1.8 \ \mbox{V} \end{array}$	t _r		30		ns
	$\label{eq:constraint} \begin{array}{l} C = 15 \text{ pF}, \text{ R} = 2.2 \text{ k}\Omega, \\ 1.5 \text{ V} \leq \text{V}_{\text{logic}} \leq 5.5 \text{ V} \end{array}$	t _r		25		ns
Fall time @ load	$\label{eq:constraint} \begin{array}{l} C = 15 \text{ pF}, \text{ R} = 2.2 \text{ k}\Omega, \\ 1.5 \text{ V} \leq \text{V}_{\text{logic}} \leq 1.8 \text{ V} \end{array}$	t _f		30		ns
	$\label{eq:constraint} \begin{array}{l} C = 15 \ \text{pF}, \ R = 2.2 \ \text{k}\Omega, \\ 1.5 \ \text{V} \leq V_{\text{logic}} \leq 5.5 \ \text{V} \end{array}$	t _f		25		ns
Rxd signal electrical output pulse width	$1.5 \text{ V} \leq \text{V}_{\text{logic}} \leq 5.5 \text{ V}$	tp	300	400	500	ns
Latency		tL		50	250	μs

¹⁾ Rxd output pulse duration 400 ns

Transmitter

 V_{dd1} = 2.7 V to 5.5 V unless otherwise noted.

Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Logic CMOS high/low decision threshold		V _{IL(Txd)}		1/2 x V _{logic}		V
Logic low transmitter input voltage		V _{IL(Txd)}	0		0.2 x V _{logic}	V
Logic high transmitter input voltage	1.5 < V _{logic} < 5.5 V	V _{IH(Txd)}	0.8 V _{logic}		V _{logic} + 0.5	V
Output radiant intensity, standard MIR level	$ \alpha \le \pm 15 \circ, V_{dd2} = 3 V$	۱ _e	110	175	500	mW/sr
Controlled IRED peak drive current ^{*)}	V _{dd1} = 2.7 V to 5.5 V	I _{IRED}		450		mA
Maximum output pulse width (eye safety protection)	P _{WI} > 23 μs	P _{WOmin}	23		80	μs
Optical pulse width	P _{WI} = 1.6 μs	P _{WO}	1.45		1.75	μs
	P _{WI} = 217 ns	P _{WO}	210		226	ns
Optical rise/fall time		t _r , t _f			40	ns
Peak wavelength of emission		λρ	880		900	nm
Spectral optical radiation bandwidth		Δλ		45		nm
Output radiant intensity	Txd logic low level				0.04	μW/sr
Overshoot, optical					25	%
Rising edge peak to peak jitter		tj			0.2	μs

 $^{*)}\mbox{The current through the IRED can be reduced and defined by an external resistor;}$

the internal current limitation is set to 450 mA peak, nominal.

Identification

The identification of the device can be recalled by setting the SD active followed by activating Txd for a short period. With the low going edge of Txd a single pulse is generated at Rxd.

The SD is intended to activate the shutdown function after a delay of 1 ms. Therefore the full sequence should be run with that 1 ms time limitation, see drawing.

Current Derating Diagram

Figure 1. Current Derating Diagram

Vishay Semiconductors

Recommended Solder Profile

Vlogic Setting

The logic voltage swing is set by applying an external voltage to the V_{logic} pin.

Figure 2. Recommended Solder Profile

Table 1. Truth table

Inputs			Outputs			
SD	Txd	Optical input Irradiance mW/ m ²	Rxd	LED drive current resulting intensity I _e in mW/sr		
high <1 ms	pulse	x	low going Txd triggers monostable to edit a 400 ns (nominal) low pulse	0		
high <1 ms	x	x	floating (500 k Ω to V _{dd}	0		
low	high	x	high	> 40		
low	high > 80 μs	x	high	0		
low	low	< 4	high	0		
low	low	> 40	low, edge pulse of 400 ns duration	0		

Package Dimensions in mm

Appendix

Application Hints Recommended Circuit Diagram TFBS5617

The TFBS5615 doesn't need any external components when operated at a "clean" power supply. In a more noisy ambient it is recommended to add a combination of a resistor and capacitors (R1, C1, C2) for noise suppression as shown in the figure below. A combination of an electrolytic for the low frequency range and a ceramic capacitor for suppressing the high frequency disturbance will be most effective. The capacitor C3 is only necessary when inductive wiring is used or the power supply cannot deliver the operating peak pulse current. However, a low impedance layout is the better and more cost efficient solution.

The inputs Txd and SD are high impedance CMOS inputs. Therefore, the lines from the I/O to those inputs should be carefully designed not to pick up ambient noise. If long lines are used, loads at the Txd input of the TFBS5617 and at the Rxd input of the controller (!) are recommended. At the IRED Anode voltage supply line an additional capacitor might be necessary when inductive wiring is used.

For adjusting the intensity depending on the application, a serial resistor in the V_{CC2} supply to the IRED Anode pin can be used.

Shut Down

To shut down the TFBS5617 into a standby mode the SD pin has to be set active. After a delay of > 1 ms it will switch to the standby mode.

Latency

The receiver is in specified conditions after the defined latency. In a UART related application after that time (typically 50 μs) the receiver buffer of the UART must be cleared. Therefore, the transceiver has to wait at least the specified latency after receiving the last bit before starting the transmission to be sure that the corresponding receiver is in a defined state.

Table 1.Recommended Application Circuit Components

Component	Recommended Value	Vishay Part Number
C1, C3	47 μF, 16 V	293D 475X9 016B 2T
C2	100 nF, Ceramic	VJ 1206 Y 104 J XXMT
R1	47 Ω, 0.125 W	CRCW-1206-47R0-F-RT1

Reel Dimensions

Tape Width	A max.	Ν	W ₁ min.	W ₂ max.	W ₃ min.	W ₃ max.
mm	mm	mm	mm	mm	mm	mm
16	330	50	16.4	22.4	15.9	19.4

Vishay Semiconductors

Tape Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423