

APT11044JFLL

1100V 22A 0.440Ω

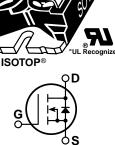
POWER MOS 7[™]

FREDFET

Power MOS 7TM is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7TM by significantly lowering R_{DS(ON)} and Q_g. Power MOS 7TM combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

- Lower Input Capacitance
- Lower Miller Capacitance
- Lower Gate Charge, Qg
- Increased Power Dissipation
- Easier To Drive
- Popular SOT-227 Package
- FAST RECOVERY BODY DIODE

MAXIMUM RATINGS


All Ratings: $T_C = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	APT11044JFLL	UNIT	
V _{DSS}	Drain-Source Voltage	1100	Volts	
I _D	Continuous Drain Current @ T _C = 25°C	22	A	
I _{DM}	Pulsed Drain Current ^①	88	- Amps	
V _{GS}	Gate-Source Voltage Continuous	±30		
V _{GSM}	Gate-Source Voltage Transient	±40	- Volts	
P _D	Total Power Dissipation @ T _C = 25°C	521	Watts	
	Linear Derating Factor	4.17	W/°C	
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C	
Τ _L	Lead Temperature: 0.063" from Case for 10 Sec.	300		
I _{AR}	Avalanche Current $^{\textcircled{1}}$ (Repetitive and Non-Repetitive)	22	Amps	
E _{AR}	Repetitive Avalanche Energy ①	50	1 .	
E _{AS}	Single Pulse Avalanche Energy ④	3000	mJ	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	ΜΑΧ	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0V, I_{D} = 250\mu A$)	1100			Volts
I _{D(on)}	On State Drain Current ⁽²⁾ $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	22			Amps
R _{DS(on)}	Drain-Source On-State Resistance ⁽²⁾ $(V_{GS} = 10V, 0.5 I_{D[Cont.]})$			0.440	Ohms
I _{DSS}	Zero Gate Voltage Drain Current ($V_{DS} = V_{DSS}$, $V_{GS} = 0V$)			250	μA
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0V$, $T_{C} = 125^{\circ}C$)			1000	μΛ
I _{GSS}	Gate-Source Leakage Current ($V_{GS} = \pm 30V$, $V_{DS} = 0V$)			±100	nA
V _{GS(th)}	Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_{D} = 2.5$ mA)	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	$V_{GS} = 0V$		5650		
C _{oss}	Output Capacitance	V _{DS} = 25V		850		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		161		
Qg	Total Gate Charge ^③	V _{GS} = 10V		207		
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		28		nC
Q _{gd}	Gate-Drain ("Miller") Charge	I _D = I _D [Cont.] @ 25°C		131		
t _d (on)	Turn-on Delay Time	V _{GS} = 15V		18		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		9		
t _d (off)	Turn-off Delay Time	I _D = I _D [Cont.] @ 25°C		45		ns
t _f	Fall Time	$R_{G} = 0.6\Omega$		14		1

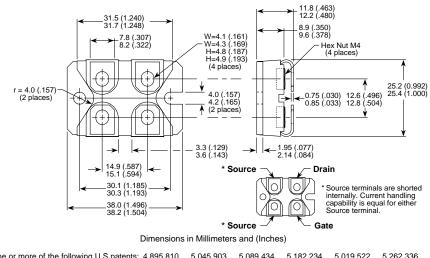
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions		MIN	TYP	MAX	UNIT
۱ _S	Continuous Source Current (Body Diode)				22	A
I _{SM}	Pulsed Source Current ^① (Body Diode)				88	Amps
V _{SD}	Diode Forward Voltage (V _{GS} = 0V, I _S = -I _D [Cont.])				1.3	Volts
dv/ _{dt}	Peak Diode Recovery ^{dv/} dt ^⑤				18	V/ns
t _{rr}	Reverse Recovery Time	T _j = 25°C			320	
	$(I_{S} = -I_{D} [Cont.], di/_{dt} = 100A/\mu s)$	T _j = 125°C			650	ns
Q _{rr}	Reverse Recovery Charge	T _j = 25°C		3.60		
	(I _S = -I _D [Cont.], ^{di/} _{dt} = 100A/µs)	T _j = 125°C		9.72		μC
I _{RRM}	Peak Recovery Current	T _j = 25°C		16.5		A
	(I _S = -I _D [Cont.], ^{di} / _{dt} = 100A/µs)	T _j = 125°C		24.7		Amps

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ extsf{ heta}JC}$	Junction to Case			0.24	
$R_{ extsf{ heta}JA}$	Junction to Ambient			40	°C/W

(1) Repetitive Rating: Pulse width limited by maximum junction temperature.


⁽²⁾ Pulse Test: Pulse width < 380 μ s, Duty Cycle < 2%

③ See MIL-STD-750 Method 3471

4 Starting T_i = +25°C, L = 12.40mH, R_G = 25 Ω , Peak I_L = 22A

(5) dv/_{dt} numbers reflect the limitations of the test circuit rather than the device itself. $I_{S} \leq -I_{D[Cont.]} = di/_{dt} \leq 700 \text{A/}\mu \text{s}$ $V_{R} \leq V_{DSS}$ $T_{J} \leq 150^{\circ}\text{C}$ APT Reserves the right to change, without notice, the specifications and information contained herein.

SOT-227 (ISOTOP®) Package Outline

 APT's devices are covered by one or more of the following U.S.patents:
 4,895,810
 5,045,903
 5,089,434

 5,256,583
 4,748,103
 5,283,202
5.182.234 5.019.522 5,283,202 5,231,474 5,434,095 5,528,058