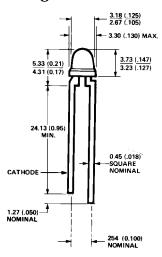


Low Profile T-1 (3 mm) LED Lamps

Technical Data

HLMP-1350 HLMP-1450 HLMP-1550


Features

- Low Profile Height
- Small T-1 Size Diameter 3.18 mm (0.125 inch)
- High Intensity
- IC Compatible
- Choice of 3 Bright Colors
 High Efficiency Red
 Yellow
 High Performance Green

Description

This family of diffused solid state lamps is especially suited for applications where small package size is required without sacrificing luminous intensity. The HLMP-1350 is a red tinted lamp providing a wide viewing angle. The HLMP-1450 and HLMP-1550 are similar products in yellow and green respectively.

Package Dimensions

Axial Luminous Intensity and Viewing Angle at 25°C

Part Number		I _v (mcd)		Test Condition	2θ _{1/2} (Typ.)	λ _d (nm-Typ.)	
HLMP-	Description	Min.	Тур.	(mA)	(1)	(2)	Color
1350	Tinted, Wide Angle	1.0	2.0	10	55°	626	High Efficiency Red
1450	Tinted, Wide Angle	1.0	2.0	10	55°	585	Yellow
1550	Tinted, Wide Angle	1.0	2.0	20	55°	569	Green

Notes

- 1. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial intensity.
- 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Absolute Maximum Ratings

Parameter	HER	Yellow	Green	Units		
Peak Forward Current	90	60	90	mA		
Average Forward Current	25	20	25	mA		
DC Current	30	20	30	mA		
Reverse Voltage	5	5	5	V		
Transient Forward Current (10 µsec Pulse)	500	500	500	μA		
LED Junction Temperature	110	110	110	°C		
Operating Temperature Range	-55 to +100	-55 to +100	-20 to +100	$^{\circ}\mathrm{C}$		
Storage Temperature Range			-55 to +100			
Lead Soldering Temperature	260°C for					
[1.6 mm (0.063 in.) from body]	5 Seconds					

Notes:

- $1. \ See \ Figure \ 5 \ (HER/Orange), \ 10 \ (Yellow), \ or \ 15 \ (Green/Emerald \ Green) \ to \ establish \ pulsed \ operating \ conditions.$
- 2. For Red, Orange, and Green series derate linearly from 50° C at 0.5 mA/°C. For Yellow series derate linearly from 50° C at 0.2 mA/°C.
- 3. For Red, Orange, and Green series derate power linearly from 25° C at 1.8 mW/°C. For Yellow series derate power linearly from 50° C at 1.6 mW/°C.
- 4. The transient peak current is the maximum nonrecurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical Characteristics at $T_{\!A}=25^{\circ} C$

Symbol	Description	Device HLMP	Min.	Тур.	Max.	Units	Test Conditions
I _v	Luminous Intensity	1350	1.0	5.0	Max.	mcd	$I_F = 10 \text{ mA}$
\mathbf{I}_{V}	Lummous intensity	1450	1.0	5.0		nicu	$I_{\rm F} - 10~{\rm Hz}$
		1550	1.0	5.0			
$2\theta_{1/2}$	Included Angle Between Half	1350		55		Deg.	Note 1
- 1/2	Intensity Points	1450		55			
	·	1550		55			
λ_{peak}	Peak Wavelength	1350		635		nm	Note 2
		1450		583			
		1550		565			
$\lambda_{ m d}$	Dominant Wavelength	1350		626		nm	
		1450		585			
		1550		569			
$\Delta\lambda_{1/2}$	Spectral Line Halfwidth	1350		40		nm	
		1450		36			
		1550		28			
$ au_{ m s}$	Speed of Response	1350		90		ns	
		1450		90			
		1550		500			
\mathbf{C}	Capacitance	1350		11		pF	$V_F = 0$
		1450		15			f = 1 MHz
		1550		18			
$R\theta_{J ext{-PIN}}$	Thermal Resistance	1350		290		°C/W	Junction to
		1450					Cathode
		1550					Lead
$ m V_{ m F}$	Forward Voltage	1350	1.6	1.9	3.0	V	$I_F = 10 \text{ mA}$
		1450	1.6	2.0	3.0		
		1550	1.6	2.1	3.0		
$ m V_R$	Reverse Breakdown Voltage	1350	5.0			V	$I_{R} = 100 \mu A$
		1450	5.0				
	7	1550	5.0	1.15		1 /	N
$\eta_{\rm v}$	Luminous Efficacy	1350		145		lumens/	Note 3
		1450		500		Watt	
		1550		595			

^{1.} $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the

^{3.} Radiant intensity, I_e , in watts/steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

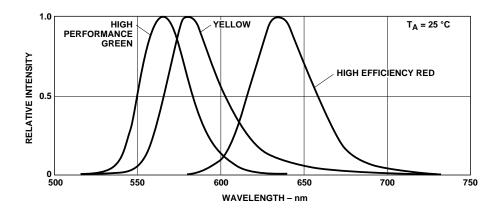


Figure 1. Relative Intensity vs. Wavelength.

High Efficiency Red HLMP-1350

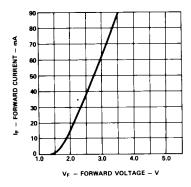


Figure 2. Forward Current vs. Forward Voltage Characteristics.

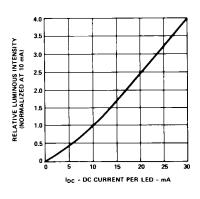


Figure 3. Relative Luminous Intensity vs. DC Forward Current.

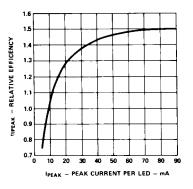


Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

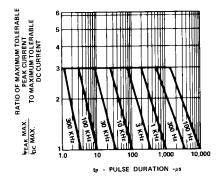


Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings)

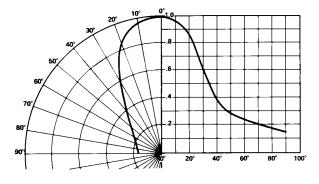


Figure 6. Relative Luminous Intensity vs. Angular Displacement.

Yellow HLMP-1450

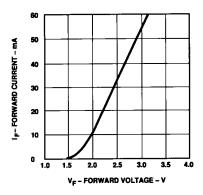


Figure 7. Forward Current vs. Forward Voltage Characteristics.

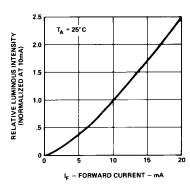


Figure 8. Relative Luminous Intensity vs. DC Forward Current.

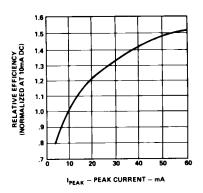


Figure 9. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.

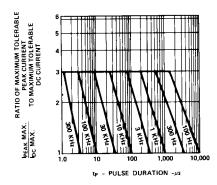
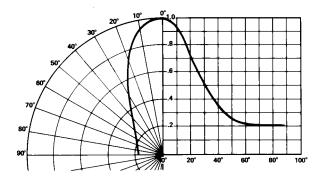



Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings)

 $Figure\ 11.\ Relative\ Luminous\ Intensity\ vs.\ Angular\ Displacement.$

Green HLMP-1550

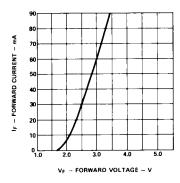


Figure 12. Forward Current vs. Forward Voltage Characteristics.

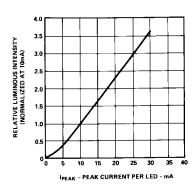


Figure 13. Relative Luminous Intensity vs. Forward Current.

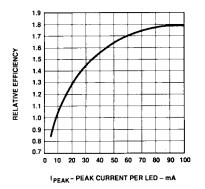


Figure 14. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current.

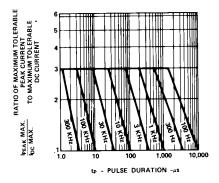


Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (I_{DC} MAX as per MAX Ratings)

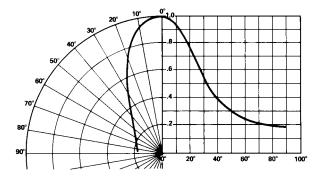


Figure 16. Relative Luminous Intensity vs. Angular Displacement.

Copyright © 1999 Agilent Technologies, Inc. Obsoletes 5953-9316E 5964-3812E (11/99)