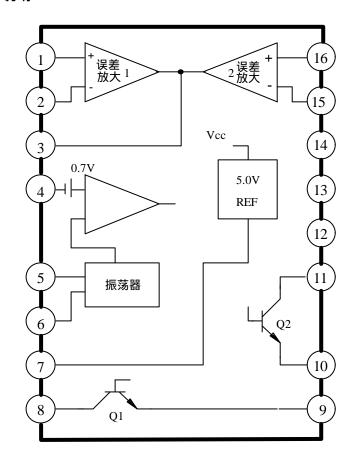
开关稳压器控制器电路


1. 概述与特点

CW494LP 是一块脉冲宽度调制方式的开关稳压器控制器电路,由基准电压、振荡器、误差放大器、比较器、FF(触发器)、输出控制电路、输出晶体管和空载时间等电路构成,输出晶体管能够用输出控制电路选择推挽工作或单端放大工作。其特点如下:

- 输出电流: I_O=200mA
- 工作频率: f=1~300kHz
- 内置两个相同类型的误差放大器
- 内置 5V 基准电压
- 可选择输出方式
- 封装形式: DIP16

2. 功能框图与引脚说明

2.1功能框图

无锡华晶微电子股份有限公司

地址: 江苏省无锡市梁溪路 14号 电话: (0510) 5807123-5542 传真: (0510) 5803016

华晶双极电路 CW494LP

2.2 引脚说明

引脚	符号	功能	引脚	符号	功能
1	$AMP_{ERR1} +$	误差放大器 1+	9	GND _{OUT1}	输出地 1
2	AMP _{ERR1} -	误差放大器 1-	10	$\mathrm{GND}_{\mathrm{OUT2}}$	输出地2
3	IN_{CPWM}	PWM 比较输入	11	OUT_2	输出脚2
4	CON_{TDE}	空载时间控制	12	V_{CC}	电源
5	Cosc	振荡电流	13	CON_{OUT}	输出控制端
6	R _{OSC}	振荡电阻	14	V_{REF}	基准电源
7	GND	地	15	AMP_{ERR2} -	误差放大器 2-
8	OUT ₁	输出脚1	16	$AMP_{ERR2}+$	误差放大器 2+

3. 电特性

3.1 极限参数

除非另有规定: T_{amb}= 25℃

参数名称	符 号	额 定 值	单 位	
电源电压	V_{CC}	41	V	
输入电压	$V_{\rm I}$	Vcc+0.3	V	
输出电压	$V_{\rm O}$	41	V	
输出电流	I_{O}	250	mA	
功耗 (注)	P_{D}	1000	mW	
工作环境温度	T_{amb}	-20~85	ပ္	
存储温度	$\mathrm{T_{stg}}$	-55~150	Ç	
管脚温度	$T_{ m pin}$	260×10	$^{\circ}$ C \times Se	

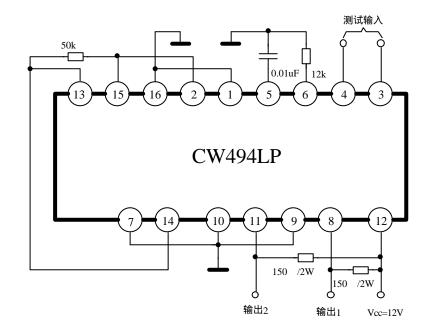
注: 25℃以上时, 温度每升高1℃, 额定功耗减少9.2mW。

3.2电特性

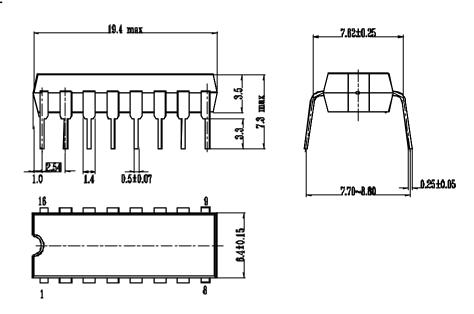
除非另有规定 T_{amb}= 25℃

参数名称	符号	测试条件	规 范 值			单位	
多数石机			最小	典型	最大	半世	
静态电流	I_{CCQ}	$V_{CC}=15V$		6	10	mA	
押心电池		$V_{CC}=40V$		9	15		
平均电流	I_{CC}	$V_{T4}=2V$		7.5		mA	
死区部分	死区部分						
输入偏值电流		V _{IN} =0~5.25V		-2	-10	uA	
最大占空因素	MDC	(各输出) V _{T4} =0	45			%	
端子4阈值电压	V_{TH}	占空因素: 0		3	3.3	V	
		占空因素	0				
	V_{TH}	端子4阈值电压		4	4.5	V	
 端子3阈值电压		占空因素: 0					
畑J3関目七広	$I_{\rm IN}$	端子4阈值电压	0.3	0.7		mA	
		$V_{T3} = 0.7V$					
误差放大器							
失调电压	V_{io}	$V_{T3}=2.5V$		2	10	mV	
失调电流	I_{io}	$V_{T3}=2.5V$		25	250	nA	
输入偏置电流	I_{ib}	$V_{T3}=2.5V$		0.2	1	uA	

续下表


华晶双极电路 CW494LP

接上表


参数名称	符号	测 试 条 件	规 范 值			兴	
多 数 名 孙			最小	典型	最大	单位	
电压增益	A_{V}	\triangle V _{OUT} =3V \triangle V _{OUT} =0.5~3.5V	70	95		dB	
共模输入 电压范围	CMR	$V_{CC}=40V$	65	80		dB	
 输入电流	I_{sink}	V_{id} =-15mV~-5V V_{T3} =0.7V	0.3	0.7		mA	
		V_{id} =15mV~5V V_{T3} =3.5V	-2			mA	
输出回路							
集电极开路电流	I_{CEO}	$V_{CE}=40V$ $V_{CC}=40V$		2	100	uA	
发射极开路电流	I_{EBO}	$V_{CC}=V_{C}=40V$ $V_{E}=0V$			-150	uA	
 饱和压降	$ m V_{SAT}$	V _E =0,Ic=200mA 发射极公共		1.1	1.5	V	
184177.64		V _C =12V,I _C =-200mA 发射极公共		1.5	2.5	V	
上升时间	$T_{\rm r}$	发射极公共 发射极公共		100	200	ns	
	$T_{ m f}$	发射极公共 发射极公共		25	100	ns	
下降时间		发射极公共		40	100		
输出控制端电流	I_{CONT}	$V_{IN}=V_{REF}$			3.5	mA	
基准电压	CONT IN NEXT						
基准电压	V_{REF}	V _{OUT} =1mA	4.75	5	5.25	V	
基准电压 电压漂移	\triangle $V_{OUT}/$ $\triangle V_{CC}$	V _{CC} =7~40V		2	25	mV	
基准电压 电流漂移		I _{OUT} =1~10mA		1	15	mV	
基准电压温漂	¥ V _{OUT}	T _{amb} =全温度范围		0.2	1	%	
振荡回路							
短路输出电流	I_{os}	$V_{REF}=0$	10	35	50	mA	
振荡电流	f_{osc}	$C_T = 0.01 uF$ $R_T = 12k$		10		kHz	
周波数精度				10		%	
频率电压漂移		$V_{CC}=7\sim40V$		0.1		%	
频率温漂	¥ f _{osc}	C _T =0.01uF,R _T =12k T _{amb} =全温度范围			2	%	

华晶双极电路 CW494LP

4. 测试线路

5. 外形尺寸

