3-Pin Microprocessor Reset Circuit

Features

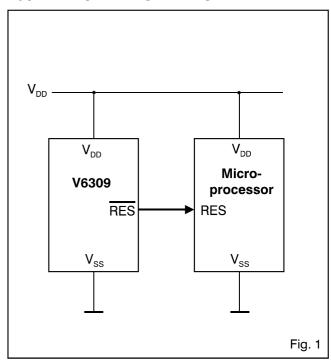
- Precision monitoring of 3 V, 3.3 V and 5 V power supply voltages
- Fully specified over the temperature range of -40 to + 125 °C
- 140 ms minimum power-on reset pulse width:

 RESET output for V6309

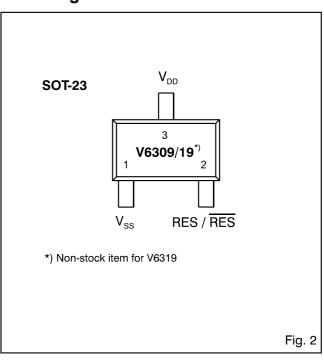
 RESET output for V6319
- 16 µA supply current
- Garanteed RESET/RESET valid to V_{DD} = 1 V
- Power supply transient immunity
- No external components needed
- 3-pin SOT-23 package
- Fully compatible with MAX809/MAX810 and AMD809/AMD810

Description

The V6309 and V6319 are microprocessor supervisory circuits used to monitor the power supplies in μP and digital systems. They provide excellent circuit reliability and low cost by eliminating external components and adjustments when used with 5 V powered or 3 V powered circuits.


These circuits perform a single function: they assert a reset signal whenever the V_{DD} supply voltage declines below a preset threshold, keeping it asserted for at least 140 ms after V_{DD} has risen above the reset threshold. The only difference between the two devices is that the V6309 has an active-low $\overline{\text{RESET}}$ output (which is guaranteed to be in the correct state for V_{DD} down to 1 V), while the V6319 has an active-high RESET output. The reset comparator is designed to ignore fast transients on V_{DD} . Reset thresholds suitable for operation with a variety of supply voltages are available.

Low supply current makes the V6309/V6319 ideal for use in portable equipment. The V6309/V6319 come in a 3-pin SOT-23 package


Applications

- Computers
- Controllers
- Intelligent instruments
- Critical µP and µC power monitoring
- Portable/battery-powered equipment

Typical Operating Configuration

Pin Assignment

V6309/V6319

Absolute Maximum Ratings

Parameter	Symbol	Conditions
Terminal voltage to V _{ss}	V _{DD}	-0.3 to 6.0 V
Min. voltage at Reset or Reset	V_{min}	-0.3 V
Max. voltage at Reset or Reset	V_{max}	$V_{CC} + 0.3 V$
Input current at V _{DD}	I _{min}	20 mA
Output current at Reset or Reset	I _{max}	20 mA
Rate of rise at V _{DD}	t _R	100 Vµs
Continuous power dissipation	P _{max}	320 mW
at $T_A = +70$ °C for SOT-23		
(>70 °C derate by 4 mW /°C)		
Operating temperature range	T _A	-40 to +125 °C
Storage temperature range	T _{ST}	-65 to +150 °C

Table 1

Stresses above these listed maximum ratings may cause permanent damage to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

Handling Procedures

This device has built-in protection against high static voltages or electric fields; however, anti-static precautions must be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage range.

Electrical Characteristics

 $V_{DD}=$ full range, $T_A=-40$ to +125 °C unless otherwise specified, typical values are at $T_A=+25$ °C, $V_{DD}=5$ V for versions L and M, $V_{DD}=3.3$ V for versions T and S, $V_{DD}=3$ V for version R.(Production testing done at $T_A=+25$ °C and 85 °C, over temperature limits guaranteed by design only)

Parameter		Symbol	Test Conditions	Min.	Тур.	Мах.	Units
V _{DD} range		V _{DD}	$T_A = 0 \text{ to } +70 ^{\circ}\text{C}$ $T_A = -40 \text{ to } +105 ^{\circ}\text{C}$ $T_A = -40 \text{ to } +125 ^{\circ}\text{C}$	1.0 1.2 1.6		5.5 5.5 5.5	V V V
Supply current	versions L, M versions R,S,T	I _{cc}	$V_{DD} < 5.5 V$ $V_{DD} < 3.6 V$		26 16	60 50	μ Α μ Α
Reset threshold ¹⁾	version L	V_{TH}	$T_A = +25 ^{\circ}\text{C}$ $T_A = -40 \text{ to } +125 ^{\circ}\text{C}$	4.56 4.40	4.63	4.70 4.79	V V
	version M		$T_A = +25^{\circ}C$ $T_A = -40 \text{ to } +125^{\circ}C$	4.31 4.16	4.38	4.45 4.53	V V
	version T		$T_A = +25^{\circ}C$ $T_A = -40 \text{ to } +125^{\circ}C$	3.04 2.92	3.08	3.11 3.17	V V
	version S		$T_A = +25 ^{\circ}\text{C}$ $T_A = -40 \text{ to } +125 ^{\circ}\text{C}$	2.89 2.78	2.93	2.96 3.02	V V
	version R		$T_A = +25 ^{\circ}\text{C}$ $T_A = -40 \text{ to } +125 ^{\circ}\text{C}$	2.59 2.50	2.63	2.66 2.72	V V
Reset threshold temp	o. coefficient			-200		ppm/°C	
V _{DD} to reset delay ¹⁾			$V_{DD} = V_{TH}$ to $(V_{TH} - 100 \text{ mV})$		7		μs
Reset active timeout	period		$T_A = -40 \text{ to } +125 ^{\circ}\text{C}$	140	330	590	ms
Reset output voltage	e low for V6309 versions R,S,T versions L, M	V _{OL}	$\begin{split} &V_{\text{DD}} > 1.0 \text{ V, } I_{\text{SINK}} = 50 \mu\text{A} \\ &V_{\text{DD}} = V_{\text{TH}} \text{min., } I_{\text{SINK}} = 1.2 \text{mA} \\ &V_{\text{DD}} = V_{\text{TH}} \text{min., } I_{\text{SINK}} = 3.2 \text{mA} \end{split}$			0.3 0.3 0.4	V V V
Reset output voltage	e high for V6309 versions R,S,T versions L, M	V _{OH}	$\begin{aligned} &V_{DD} > V_{TH} \text{ max., } I_{SOURCE} = 500 \ \mu\text{A} \\ &V_{DD} > V_{TH} \text{ max., } I_{SOURCE} = 800 \ \mu\text{A} \end{aligned}$	0.8 V _{DD} V _{DD} -1.5 V			V V
Reset output voltage	e low for V6319 versions R,S,T versions L, M	V _{OL}	$\begin{aligned} & V_{DD} = V_{TH} max., \ I_{SINK} = 1.2 \ mA \\ & V_{DD} = V_{TH} max., \ I_{SINK} = 3.2 \ mA \\ & I_{SOURCE} = 150 \ \mu A \end{aligned}$			0.3 0.4	V V

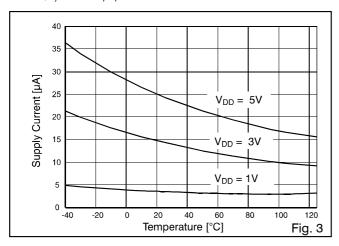
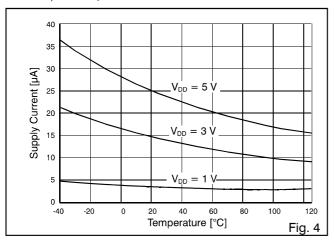
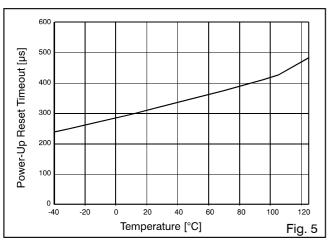

¹⁾ Reset output for V6309, Reset output for V6319

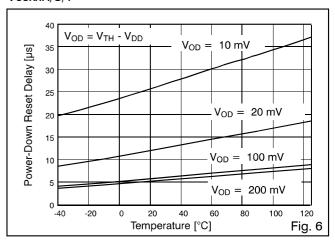
Table 2


Supply Current vs. Temperature

No load, V63xxR/S/T

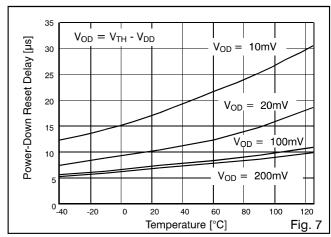

Supply Current vs. Temperature

No load, V63xxL/M



Power-Up Reset Timeout vs. Temperature

All versions



Power-Down Reset Delay vs. Temperature V63xxR/S/T

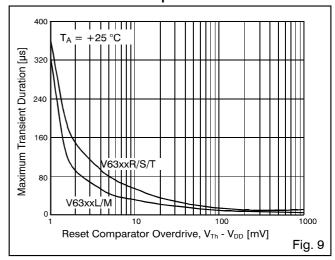
Power-Down Reset Delay vs. Temperature

V63xxL/M

Normalized Reset Threshold vs. Temperature All versions

Pin Description

Pin	Name	Function	
1	V _{ss}	Ground	
2	f <u>or V630</u> 9 RESET	RESET Output remains low while V _{DD} is below the reset threshold and rises for 240 ms after V _{DD} above the reset	
2	for V6319 RESET	threshold RESET Output remains high while V _{DD} is below the reset threshold and rises	
3	V _{DD}	for 240 ms after V_{DD} above the reset Supply voltage (+5V, +3.3V or +3.0V)	

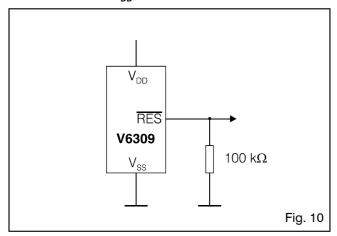

Table 3

Application Information

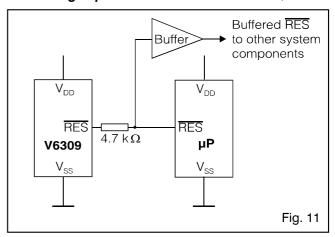
Negative-Going V_{DD} Transients

In addition to issuing a reset to the microprocessor during power-up, power-down, and brownout conditions, the V6309/V6319 are relatively immune to short duration negative-going V_{DD} transients (glitches). Fig. 8 shows typical transient duration vs. Reset comparator overdrive, for which the V6309/V6319 do not generate a reset pulse. The graph was generated using a negative-going pulse applied to V_{DD}, starting 0.5 V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the maximum pulse width a negative-going V_{DD} transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, for the V6309L and V6319M, a $V_{\rm DD}$ transient that goes 100 mV below the reset threshold and lasts 20 µs or less will not cause a reset pulse. A 0.1 μF bypass capacitor mounted as close as possible to the V_{DD} pin provides additional transient immunity.

Max.Transient Duration without Causing a Reset Pulse versus Reset Comparator Overdrive


Ensuring a Valid Reset Output down to V_{DD}= 0 V

When V_{DD} falls below 1 V, the V6309 RESET output no longer sinks current, it becomes an open circuit. Therefore, high-impedance CMOS logic inputs connected to RESET can drift to undetermined voltages. This presents no problem in most applications, since most μP and other circuitry is inoperative with V_{DD} below 1 V. However, in applications where RESET must be valid down to 0 V, adding a pull-down resistor to RESET causes any stray leakage currents to flow to ground, holding RESET low (Fig.10). R1's value is not critical; 100 k Ω is large enough not to load RESET and small enough to pull RESET to ground. A 100 k Ω pull-up resistor to V_{DD} is also recommended for the V6319, if RESET is required to remain valid for V_{DD} <


RESET Valid for V_{DD} = Ground Circuit

Interfacing to μ Ps with Bidirectional Reset Pins

Microprocessors with bidirectional reset pins (such as the Motorola 68HC11 series) can connect to the V6309 reset output. If, for example, the V6309 $\overline{\text{RESET}}$ output is asserted high and the μP wants to pull it low, indeterminate logic levels may result. To correct this, connect a 4.7 k Ω resistor between the V6309 $\overline{\text{RESET}}$ output and the μP reset I/O (Fig. 11). Buffer the V6309 $\overline{\text{RESET}}$ output to other system components.

Interfacing to µPs with Bidirectional Reset I/O

Benefits of Highly Accurate Reset Threshold

Most μP supervisor ICs have reset threshold voltages between 5% and 10% below the value of nominal supply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the supply is 10% below nominal. When using ICs rated at only the nominal supply $\pm 5\%$, this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset may or may not be asserted.

The V6309L/T and V6319L/T use highly accurate circuitry to ensure that reset is asserted close to the 5% limit, and long before the supply has declined to 10% below nominal.

V6309/V6319

Package and Ordering Information

Ordering Information

The V6309 is available with a RESET output, the V6319 with a RESET output. Both type come in a 3-pin SOT-23 package.

Ordering form: Type number < version letter > < package > When ordering, please always specify the complete part number

Version Letter Definition

Output stage	Threshold Voltage [V]				
	4.63	4.38	3.08	2.93	2.63
V6309, RESET output	L	М	Т	S	R
V63191), RESET output	L	М	Т	S	R

Table 4

Marking Information

Marking code	Type number
EL	V6309L
EM	V6309M
ET	V6309T
ES	V6309S
ER	V6309R
1) FL	V6319L
FM	V6319M
FT	V6319T
FS	V6319S
FR	V6319R

Table 5

EM Microelectronic-Marin SA cannot assume any responsibility for use of any circuitry described other than entirely embodied in an EM Microelectronic-Marin SA product. EM Microelectronic-Marin SA reserves the right to change the circuitry and specifications without notice at any time. You are strongly urged to ensure that the information given has not been superseded by a more up-to-date version.

E. & O.E. Printed in Switzerland, Th

© 2000 EM Microelectronic-Marin SA, 10/00, Vers. B/323

¹⁾ Non-stock items for V6319