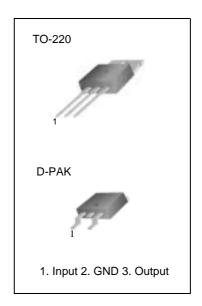
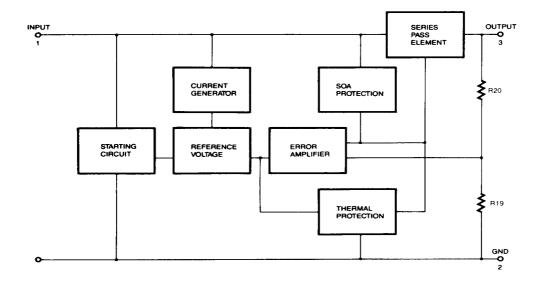


MC78MXX/LM78MXX


3-terminal 0.5A positive voltage regulator

Features


- Output Current up to 0.5A
- Output Voltages of 5, 6, 8, 10, 12, 15, 18, 20, 24V
- · Thermal Overload Protection
- · Short Circuit Protection
- Output Transistor Safe Operating area (SOA)Protection

Description

The MC78MXX/LM78MXX series of three-terminal positive regulators are available in the TO-220/D-PAK package with several fixed output voltages making it useful in a wide range of applications.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for Vo = 5V to 18V)	Vı	35	V
(for VO = 24V)	Vı	40	V
Thermal Resistance Junction-Cases	R _θ JC	5	°C/W
Thermal Resistance Junction-Air (TO-220 Package)	RθJA	65	°C/W
Operating Temperature Range MC78MXX/LM78MXX	TOPR	0~ + 125	°C
Storage Temperature Range	TSTG	-65~ + 150	°C

Electrical Characteristics (MC78M05/LM78M05)

 $(Refer \ to \ the \ test \ circuits, \ 0 \leq T_J \leq +125^{\circ}C, \ I_O=350 mA, \ V_I=10V, \ unless \ otherwise \ specified, \ C_I=0.33 \mu F, \ C_O=0.1 \mu F)$

Parameter	Symbol	Con	ditions	Min.	Тур.	Max.	Unit		
		T _{J=+25°C} I _O = 5 to 350mA V _{I= 7} to 20V		TJ=+25°C		4.8	5	5.2	
Output Voltage	Vo			4.75	5	5.25	V		
Line Regulation	ΔVο	I _O = 200mA	V _I = 7 to 25V	-	-	100	mV		
Line Regulation	ΔνΟ	TJ =+25°C	V _I = 8 to 25V	-	-	50	IIIV		
Load Regulation	1)/0	IO = 5mA to 0.5	5A, T _J =+25°C	-	-	100	mV		
Load Regulation	ΔVO	IO = 5mA to 20	0mA, TJ =+25 °C	-	-	50	IIIV		
Quiescent Current	lQ	T _{J=+25°} C		-	4.0	6	mA		
		I _O = 5mA to 350mA		-	-	0.5			
Quiescent Current Change	ΔlQ	I _O = 200mA V _I = 8 to 25V		-	-	0.8	mA		
Output Voltage Drift	ΔV/ΔΤ	I _O = 5mA T _J = 0 to +125°	°C	-	-0.5	-	mV/°C		
Output Noise Voltage	VN	f = 10Hz to 100)KHz	-	40	-	μV		
Ripple Rejection	RR	f = 120Hz, IO = 300mA VI = 8 to 18V		62	-	-	dB		
Dropout Voltage	VD	TJ =+25°C, IO = 500mA		-	2	-	V		
Short Circuit Current	Isc	TJ=+25°C, VI= 35V		-	300	-	mA		
Peak Current	IPK	TJ =+25°C		•	700	-	mA		

^{*}Load and line regulation are specified at constant junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M06)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=11V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ=+25°C	TJ=+25°C I _O = 5 to 350mA V _I = 8 to 21V		6	6.25	
Output Voltage	Vo	_			6	6.3	V
Line Regulation	ΔVο	I _O = 200mA	V _I = 8 to 25V	-	-	100	mV
Line Regulation	ΔνΟ	TJ =+25°C	VI = 9 to 25V	-	-	50	IIIV
Load Dogulation	ΔVο	IO = 5mA to 0).5A, TJ =+25°C	-	-	120	mV
Load Regulation	ΔνΟ	$I_O = 5mA \text{ to } 2$	200mA, T _J =+25°C	-	-	60	IIIV
Quiescent Current	IQ	TJ=+25°C		-	4.0	6	mA
	ΔlQ	IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change		IO = 200mA VI = 9 to 25V		-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	5°C	-	- 0.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10	00KHz	-	45	-	μV
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 9 to 19V		59	-	-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	TJ= +25°C, VI= 35V		-	300	-	mA
Peak Current	IPK	TJ =+25°C		-	700	-	mA

 $^{^*}$ Load and line regulation are specified at constant, junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M08)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=14V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
		TJ=+25 °C		7.7	8	8.3	
Output Voltage	Vo	_	I _O = 5 to 350mA V _I = 10.5 to 23V		8	8.4	V
Line Regulation	ΔVο	IO = 200mA	V _I = 10.5 to 25V	-	-	100	mV
Line Regulation	ΔνΟ	TJ =+25°C	V _I = 11 to 25V	-	-	50	IIIV
Lood Dogulation	41/0	IO = 5mA to 0.5	5A, TJ =+25°C	-	-	160	mV
Load Regulation	ΔVO	I _O = 5mA to 20	0mA, TJ =+25°C	-	-	80	IIIV
Quiescent Current	IQ	TJ=+25°C		-	4.0	6	mA
	ΔlQ	IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change		IO = 200mA V _I = 10.5 to 25	V	-	-	0.8	mA
Output Voltage Drift	RR	IO = 5mA T _J = 0 to +125°	С	-	-0.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100	KHz	-	52	-	μV
Ripple Rejection	RR	f = 120Hz, I _O = 300mA VI = 9 to 19V		56	-	-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	T _J =+25°C, V _I = 35V		-	300	-	mA
Peak Current	IPK	TJ =+25°C		-	700	-	mA

 $^{^*}$ Load and line regulation are specified at constant, junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M12)

(Refer to the test circuits, $0 \le T_J \le 125$ °C, $I_O = 350$ mA, $V_I = 19$ V, unless otherwise specified, $C_I = 0.33 \mu F$, $C_O = 0.1 \mu F$)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
		TJ=+25°C		11.5	12	12.5	
Output Voltage	Vo	•	I _O = 5 to 350mA V _I = 14.5 to 27V		12	12.6	V
Line Population	ΔVο	I _O = 200mA	V _I = 14.5 to 30V	-	-	100	mV
Line Regulation	ΔνΟ	TJ =+25°C	VI = 16 to 30V	-	-	50	IIIV
Load Pagulation	41/0	IO = 5mA to 0.5	5A, TJ =+25°C	-	-	240	mV
Load Regulation	ΔVO	I _O = 5mA to 20	0mA, TJ =+25°C	-	-	120	IIIV
Quiescent Current	IQ	TJ=+25°C		-	4.1	6	mA
	ΔlQ	I _O = 5mA to 350mA		-	-	0.5	
Quiescent Current Change		IO = 200mA V _I = 14.5 to 30	V	-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +125°	°C	-	- 0.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100)KHz	-	75	-	μV
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 15 to 25V		55		-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	TJ= +25°C, VI= 35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	700	-	mA

 $^{^*}$ Load and line regulation are specified at constant, junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M15)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=23V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
		TJ=+25°C	TJ=+25°C		15	15.6	
Output Voltage	Vo	I _O = 5 to 350mA V _I = 17.5 to 30V		14.25	15	15.75	V
Line Regulation	ΔVο	I _O = 200mA	VI= 17.5 to 30V	-	-	100	mV
Line Regulation	ΔνΟ	TJ =+25°C	VI = 20 to 30V	-	-	50	IIIV
Load Population	ΔVο	IO = 5mA to 0	0.5A, TJ =+25°C	-	-	300	mV
Load Regulation	ΔνΟ	$I_O = 5mA \text{ to } 2$	200mA, TJ =+25°C	-	-	150	IIIV
Quiescent Current	IQ	TJ=+25°C		-	4.1	6	mA
		IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change	ΔlQ	IO = 200mA V _I = 17.5 to 3	30V	-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	5°C	-	– 1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 1	00KHz	-	100	-	μV
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 18.5 to 28.5V		54	-	-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	TJ= +25°C, VI= 35V		-	300	-	mA
Peak Current	lpk	T _J = + 25°C		-	700	-	mA

 $^{^*}$ Load and line regulation are specified at constant, junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M18)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=26V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	C	onditions	Min.	Тур.	Max.	Unit		
		TJ=+25°C		TJ=+25°C		17.3	18	18.7	
Output Voltage	Vo	I _O = 5 to 350mA V _I = 20.5 to 33V	I _O = 5 to 350mA V _I = 20.5 to 33V		18	18.9	V		
Line Regulation	ΔVο	I _O = 200mA	V _I = 21 to 33V	-	-	100	mV		
Line Negulation	ΔνΟ	TJ =+25°C	VI = 24 to 33V	-	-	50	1110		
Load Population	ΔVΟ	IO = 5mA to 0.5	A, TJ =+25°C	-	-	360	mV		
Load Regulation	Δ۷Ο	I _O = 5mA to 200mA, T _J =+25°C		Io = 5mA to 200mA, T _J =+25°C	-	-	180	IIIV	
Quiescent Current	IQ	TJ =+25°C		-	4.2	6	mA		
	ΔlQ	I _O = 5mA to 350)mA	-	-	0.5			
Quiescent Current Change		IO = 200mA VI = 21 to 33V		-	-	0.8	mA		
Output Voltage Drift	ΔV/ΔΤ	IO =5mATJ =0 t	o 125°C	-	-1.1	-	mV/°C		
Output Noise Voltage	VN	f=10Hz to 100K	Hz	-	100	-	μV		
Ripple Rejection	RR	f=120Hz, IO=300mA , VI=22 to 32V		53	-	-	dB		
Dropout Voltage	VD	T _J =+25°C, I _O =500mA		-	2	-	V		
Short Circuit Current	Isc	TJ =+25°C, VI=35V		-	300	-	mA		
Peak Current	IPK	TJ =+25°C		-	700	-	mA		

^{*}Load and line regulation are specified at constant, junction temperature. Change in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M20)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, IO=350mA, VI=29V, unless otherwise specified, $CI=0.33\mu F$, $CO=0.1\mu F$)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ= +25°C	TJ= +25°C IO = 5 to 350mA VI= 23 to 35V		20	20.8	
Output Voltage	Vo	~			20	21	V
Line Regulation	ΔVο	I _O = 200mA	V _I = 23 to 35V	-	-	100	mV
Line Regulation	ΔνΟ	TJ =+25°C	V _I = 24 to 35V	-	-	50	IIIV
Load Degulation	41/0	IO = 5mA to	0.5A, TJ =+25°C	-	-	400	mV
Load Regulation	ΔVO	$I_O = 5mA$ to	200mA, T _J =+25°C	-	-	200	IIIV
Quiescent Current	IQ	TJ=+25°C		-	4.2	6	mA
	ΔlQ	IO = 5mA to 350mA		-	-	0.5	
Quiescent Current Change		IO = 200mA VI = 23 to 35	V	-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	25°C	-	-1.1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 1	00KHz	-	110	-	μV
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 24 to 34V		53	-	-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	TJ = +25°C, VI= 35V		-	300	-	mA
Peak Current	IPK	T _J = +25°C		-	700	-	mA

 $^{^*}$ Load and line regulation are specified at constant, junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (MC78M24)

(Refer to the test circuits, $0 \le TJ \le +125$ °C, $I_O=350$ mA, $V_I=33$ V, unless otherwise specified, $C_I=0.33\mu F$, $C_O=0.1\mu F$)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
		TJ=+25°C	TJ=+25°C IO = 5 to 350mA VI= 27 to 38V		24	25	
Output Voltage	Vo	-			24	25.2	V
Line Regulation	ΔVο	Io = 200mA	V _I = 27 to 38V	-	-	100	mV
Line Regulation	ΔνΟ	TJ =+25°C	V _I = 28 to 38V	-	-	50	IIIV
Load Regulation	11/0	IO = 5mA to C).5A, TJ =+25°C	-	-	480	m\/
Load Regulation	ΔVΟ	$I_O = 5mA \text{ to } 2$	200mA, T _J =+25°C	-	-	240	mV
Quiescent Current	IQ	TJ=+25°C		-	4.2	6	mA
	ΔlQ	I _O = 5mA to 350mA		-	-	0.5	
Quiescent Current Change		IO = 200mA VI = 27 to 38\	<i>J</i>	-	-	0.8	mA
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA T _J = 0 to +12	5°C	-	- 1.2	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10	00KHz	-	170	-	μV
Ripple Rejection	RR	f = 120Hz, I _O = 300mA V _I = 28 to 38V		50	-	-	dB
Dropout Voltage	VD	T _J =+25°C, I _O = 500mA		-	2	-	V
Short Circuit Current	Isc	TJ= +25 °C, VI= 35V		-	300	-	mA
Peak Current	IPK	T _J =+25°C		-	700	-	mA

 $^{^*}$ Load and line regulation are specified at constant, junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Applications

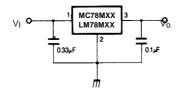
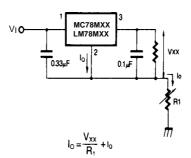



Figure 1. Fixed Output Regulator

Figure 2. Constant Current Regulator

- 1. To specify an output voltage, substitute voltage value for "XX"
- 2. Although no output capacitor is needed for stability, it does improve transient response.
- 3. Required if regulator is located an appreciable distance from power Supply filter

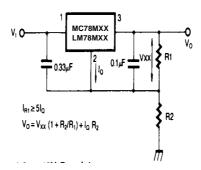


Figure 3. Circuit for Increasing Output Voltage

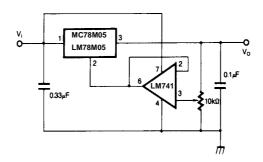
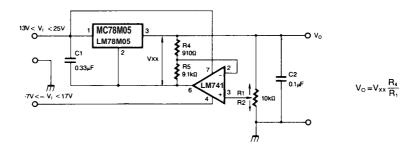
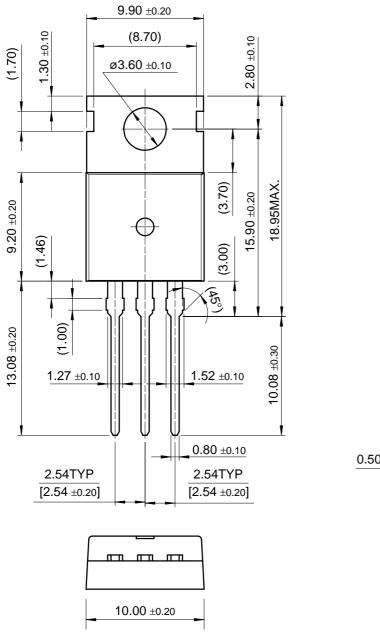
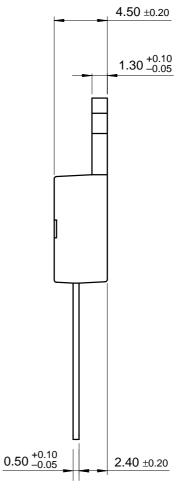


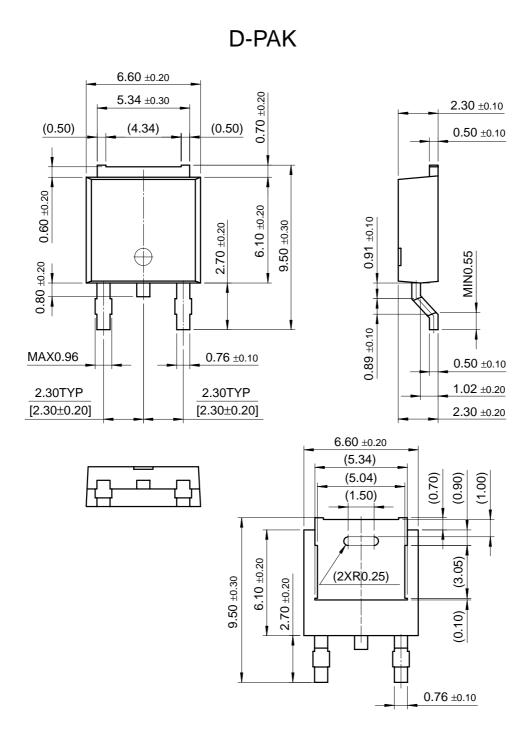
Figure 4. Adjustable Output Regulator (7 to 30V)


Figure 5. 0.5 to 10V Regulator

Mechanical Dimensions

Package


TO-220

Mechanical Dimensions (Continued)

Package

Ordering Information

Product Number	Package	Operating Temperature
LM78M05CT	TO-220	0 ~ + 125°C

Product Number	Package	Operating Temperature
MC78M05CT	TO-220	
MC78M06CT		
MC78M08CT		
MC78M12CT		
MC78M15CT		
MC78M18CT		0 ~ + 125°C
MC78M20CT		
MC78M24CT		
MC78M05CDT	D-PAK	
MC78M08CDT]	
MC78M12CDT		

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com